A HISTORIC LOOK AT GALVESTON DISTRICT'S NAVIGATION PROGRAM & COASTAL RESILIENCY

group and a

Christopher Frabotta Operations Division Chief USACE-Galveston District

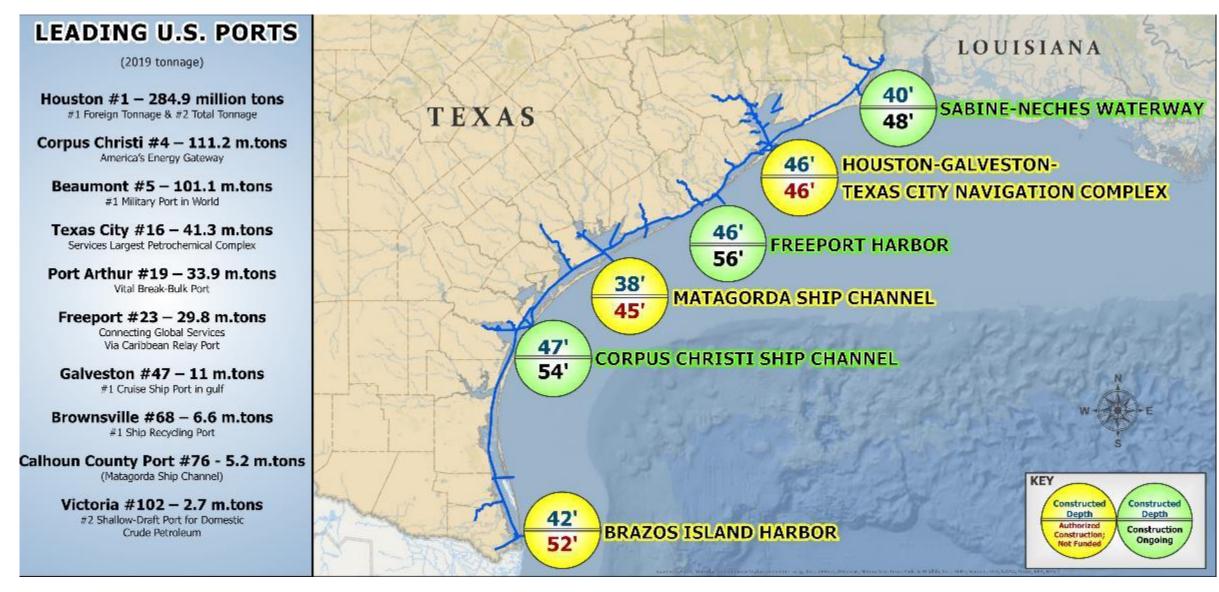
10,000

E DAVE DAROHEADS C

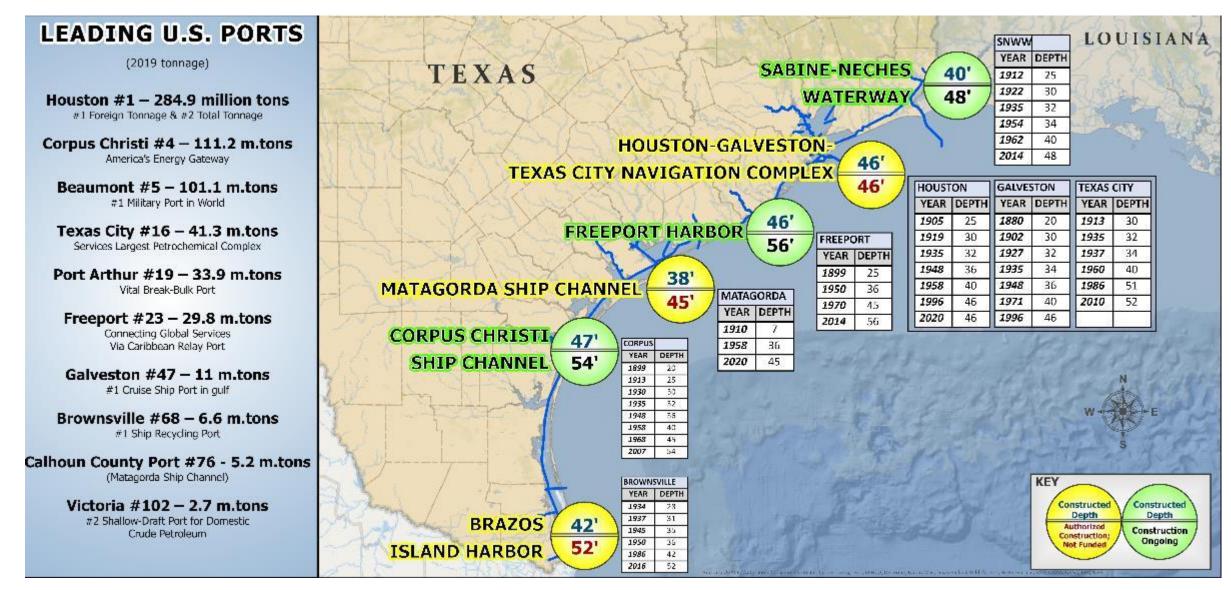
NOTE: TANIERGATE MORIANDATE

A HISTORIC LOOK AT GALVESTON DISTRICT'S NAVIGATION PROGRAM & COASTAL RESILIENCY

Christopher Frabotta Chief, Operations Division Southwestern Division – Galveston District Date: 11 February 2021



GALVESTON DISTRICT NAVIGATION SYSTEM



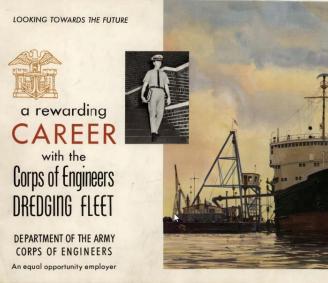
GALVESTON DISTRICT NAVIGATION SYSTEM

HYDRAULIC PIPELINE DREDGE 'GEORGE SEALY'

HYDRAULIC PIPELINE DREDGE 'HOWELL'

She sank in Knef m month Tring hov- one 18 you kd. INCASE INTO AN AND AN ATTIC

HYDRAULIC HOPPER DREDGE 'GENERAL C.B. COMSTOCK'



U.S. ARMY CORPS OF ENGINEERS DREDGE PLANT RECRUITMENT PAMPHLET

8

Looking towards the Future

One of the most important decisions you face prior to graduation is the selection of a challenging and meaningful career. It is, therefore, desirable to thoroughly evaluate job opportunities offered to you. You should consider the arganization with which you will be associated, the promotional opportunities leading to advancement and the personal challenges and tisfaction to be gained from the position you select. The Corps of Engi neers has career openings for licensed Third Mates and Third Engineer (Steam and/or Diesel) aboard Hopper and Sidecasting Dredges that are engaged in improving and maintaining waterways in the Continental United States and in Overseas areas. We believe these employment rant your careful considerat

WHO WE ARE

The Corps of Engineers, Department of the Army is the largest engineering and construction organization in the world. It has earned a reputation for transforming impossible tasks into realities. The variety of the engineering projects, both civil and military, performed by the Corps is unparalleled by any industrial or governmental organization.

WHAT WE DO

In addition to the work of improving and maintaining the navigable waterways and harbors of the United States, our responsibilities encompass the following major areas

Design and construction of beach restoration and nourishment projects which include the installation of jetties, groin: and placement of material to restore offshore slopes to a stable condition.

The design and installation of structures and revetments for channel stabilization and to protect the slopes and levee: of major waterways such as the Missouri and Mississippi Rivers.

The construction, maintenance and operation of flood control structures, hydro-electric dams including irrigation and recreation features, and the locks, spillways and dams re-quired in canalized projects

The design and construction of major structures and facilities for the Army and other military services including guided-rissile sites, air bases, hospitals, training facilities, munitions plants and similar facilities that are vital to defense and to the advancement of the Country-

The design and construction of major structures and facilities for NASA and other Civil Agencies including vertical assembly buildings, gantry cranes, control stations and launching pads for space exploration.

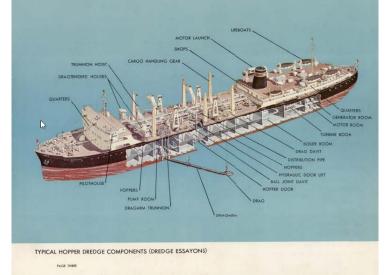
Surveying and mapping of the Earth's surface and preparation of Lunar and Mars mapping programs. Development and distribution of maps required by the U.S. Army.

PAGE ONE

THE DREDGING FLEET OF THE CORPS OF ENGINEERS

The descriptions and illustrations provided in this brochure furnish general information concerning the operation and missions of the Jorps of Engineers Dredging Fleet. The missions of individual units in their assigned Districts are briefly covered on pages six to 13 inclusive. A table of vital statistics is given on pages four and five and characteristic hoppe dredge components are flagged on page three opposite.

on a principle similar to a vacuum cleaner. The dredge has pipes called dregarms extending from each side of the hull. Drags at the end of each dragarm are lowered to the botton and slowly pulled over the area to be dredged. Punps create suction in the dragarm and the silt or sand s drawn up through the arms and deposited in bins ir the mid-section of the dredge. When the bins are full, the dredge proceeds to a place of disposal vhere the load is either directly pumped ashore or naterial is dumped through bottom


THE HOPPER DREDGE works ing out, the dredge pumps draw the material out of the hopper bins and force it through a pipeline into a disposal area on shore. Dredging is also performed by sidecasting the material, which is discharged through a sidecasting boom outside the channel limits on certain projects where littoral currents carry the dredged material from the

PAGE TWO

11 191 18

STATES OF TAXABLE

channel area. Survey vessels fitted with electronic equipment make underwater surveys to determine when the desired project depth of the channel has been obtained by doors in deep water When disposing loads by pumpthe dredge.

2/12/2021

SALIENT FEATURES of the HOPPER DREDGES of the CORPS OF ENGINEERS

	Year	Length Beam &	Maximum Hopper Capacity	Maximum Draft	Propulsion H.P. & Type*	Dredge Pumps Horsepower Each				
Dredge	Built	Depth (feet)	(cu. yds.)	Loaded	(all twin screw)	No.	Size	Hopper	Pump-out	
ESSAYONS	1950	525 72 40	8270	31′ 0″	8000 TE	2	32"	1850	-	
GOETHALS	1938	476 69 36	6422	29′ 0″	6000 TE	2	30″	1300	3000	
BIDDLE	1947	352 60 30	3060	24′ 4″	6000 TE	2	28″	1150	-	
COMBER	1947	352 60 30	3524	24' 4''	6000 TE	2	28″	1150	3000	
GERIG	1947	352 60 30	3060	24′ 4″	6000 TE	2	28″	1150	-	
	1947	352 60 30	3060	24' 4''	6000 TE	2	28″	1150	-	
HARDING	1939	308 56 29	2682	20' 3''	4240 D	2	20"	1000	-	
MARKHAM	1960	339 62 28	2681	20' 0''	5300 DE	2	23"	650	1000	

Dredge	Year Built	Length Beam & Depth (feet)	Maximum Hopper Capacity (cu. yds.)	Maximum Draft Loaded	Propulsion H.P. & Type (all twin screw)	No.	Dredge Size	Pumps Horsepo Hopper	wer Each Pump-ou
MACKENZIE	1924	268 46 23	1656	21' 0"	2400 DE	1	26"	900	-
HAINS	1942	216 40 16	885	13' 0''	1400 DE	1	20″	410	4.0
HOFFMAN	1942	216 40 16	920	13' 0''	1400 DE	1	20″	410	-
HYDE	1945	216 40 16	720	13' 0''	1400 DE	1	20"	410	10-1
LYMAN	1945	216 40 16	920	13′ 0″	1400 DE	1	20″	410	-
DAVISON	1945	216 40 16	720	13' 0''	1400 DE	1	20″	410	-
PACIFIC	1937	180 38 14	500	11′ 3″	1200 D	1	18″	340	-
MCFARLAND	1967	300 74 33	3140	23' 0''	6000 DE	2	26″	2800	2800

*TE-Turbo-Electric; DE-Diesel-Electric; D-Diesel Direct Drive

Ī

PAGE FOUR

PAGE FIVE

GALVESTON DISTRICT

The GALVESTON District is responsible for the maintenance and improvement of the navigable waterways, rivers, and harbors along the entire Texas coast. In addition, assistance is rendered occasionally to other districts in performing required dredging of entrance channels from the Gulf of Mexico along the coast from Louisiana to Florida.

To accomplish this mission, the GALVESTON District operates two hopper dredges, the 3060 cubic yard capacity McFARLAND and the 1656 cubic yard capacity A. MACKENZIE. These vessels operate 24 hours a day, six or seven days a week, 12 months a year, except when under repair. Wark schedulel, for the crew are arranged on a rotating shift basis to allow two to four consecutive days off duty each two weeks, including at least one four-day off period each four weeks.

6

DREDGE MACKENZIE DREDGE MCFARLAND

SALIENT FEATURES of the HOPPER DREDGES of the CORPS OF ENGINEERS

Dredge	Year Built	Length Beam & Depth (feet)	Maximum Hopper Capacity (cu. yds.)	Maximum Draft Loaded	Propulsion H.P. & Type* (all twin screw)	No.	Dredg Size	e Pumps Horsepo Hopper	ower Each Pump-out	
ESSAYONS	1950	525 72 40	8270	31′ 0″	8000 TE	2	32″	1850	-	MA
GOETHALS	1938	476 69 36	6422	29′ 0″	6000 TE	2	30″	1300	3000	
BIDDLE	1947	352 60 30	3060	24' 4''	6000 TE	2	28″	1150	-	н
COMBER	1947	352 60 30	3524	24' 4"	6000 TE	2	28″	1150	3000	4
GERIG	1947	352 60 30	3060	24' 4''	6000 TE	2	28″	1150	-	L T
	1947	352 60 30	3060	24' 4''	6000 TE	2	28″	1150	-	D
HARDING	1939	308 56 29	2682	20' 3''	4240 D	2	20″	1000	-	P
MARKHAM	1960	339 62 28	2681	20' 0''	5300 DE	2	23″	650	1000	MC

Dredge	Year Built	Length Beam & Depth (feet)	Maximum Hopper Capacity (cu. yds.)	Draft	Propulsion H.P. & Type (all twin screw)	No.	Dredge Pumps Horsepo Size Hopper		ower Each Pump-out
MACKENZIE	1924	268 46 23	1656	21' 0''	2400 DE	1	26″	900	-
HAINS	1942	216 40 16	885	13' 0"	1400 DE	1	20″	410	4.0
HOFFMAN	1942	216 40 16	920	13' 0''	1400 DE	1	20″	410	-
HYDE	1945	216 40 16	720	13' 0''	1400 DE	1	20″	410	-
LYMAN	1945	216 40 16	920	13' 0''	1400 DE	1	20″	410	-
DAVISON	1945	21ć 40 16	720	13' 0''	1400 DE	1	20″	410	-
PACIFIC	1937	180 38 14	500	11' 3"	1200 D	1	18″	340	-
MCFARLAND	1967	300 74 33	3140	23' 0''	6000 DE	2	26″	2800	2800

N

* ALL DREDGES

*TE-Turbo-Electric; DE-Diesel-Electric; D-Diesel Direct Drive

63 PAGE FIVE

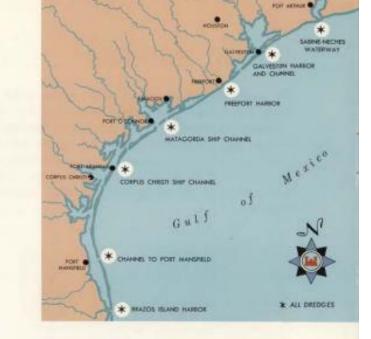
GALVESTON DISTRICT

The GALVESTON District is responsible for the maintenance and improvement of the navigable waterways, rivers, and harbors along the entire Texas coast. In addition, assistance is rendered occasionally to other districts in performing required dredging of entrance channels from the Gulf of Mexico along the coast from Louisiana to Florida.

PAGE FOUR

To accomplish this mission, the GALVESTON District operates two hopper dredges, the 3060 cubic yard capacity McFARLAND and the 1656 cubic yard capacity A. MACKENZIE. These vessels operate 24 hours a day, six or seven days a week, 12 months a year, except when under repair. Work schedule for the crew are arranged on a rotating shift basis to allow two to four consecutive days off duty each two weeks, including at least one four-day off period each four weeks.

Gulf



GALVESTON DISTRICT

The GALVESTON District is responsible for the maintenance and improvement of the navigable waterways, rivers, and harbors along the entire Texas coast. In addition, assistance is rendered occasionally to other districts in performing required dredging of entrance channels from the Gulf of Mexico along the coast from Louisiana to Florida,

To accomplish this mission, the GALVESTON District operates two hopper dredges, the 3060 cubic yard capacity McFARLAND and the 1656 cubic yard capacity A. MACKENZIE. These vessels operate 24 hours a day, six or seven days a week, 12 months a year, except when under repair. Work schedule for the crew are arranged on a rotating shift basis to allow two to four consecutive days off duty each two weeks, including at least one four-day off period each four weeks.

DREDGE MACKENZIE

DREDGE MCFARLAND

WATEPACAT

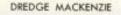
GALVESTON DISTRICT

The GALVESTON District is responsible for the maintenance and improvement of the navigable waterways, rivers, and harbors along the entire Texas coast. In addition, assistance is rendered occasionally to other districts in performing required dredging of entrance channels from the Gulf of Mexico along the coast from Louisiana to Florida,

To accomplish this mission, the GALVESTON District operates two hopper dredges, the 3060 cubic yard capacity McFARLAND and the 1656 cubic yard capacity A. MACKENZIE. These vessels operate 24 hours a day, six or seven days a week, 12 months a year, except when under repair. Work schedule for the crew are arranged on a rotating shift basis to allow two to four consecutive days off duty each two weeks, including at least one four-day off period each four weeks.

DREDGE MACKENZIE

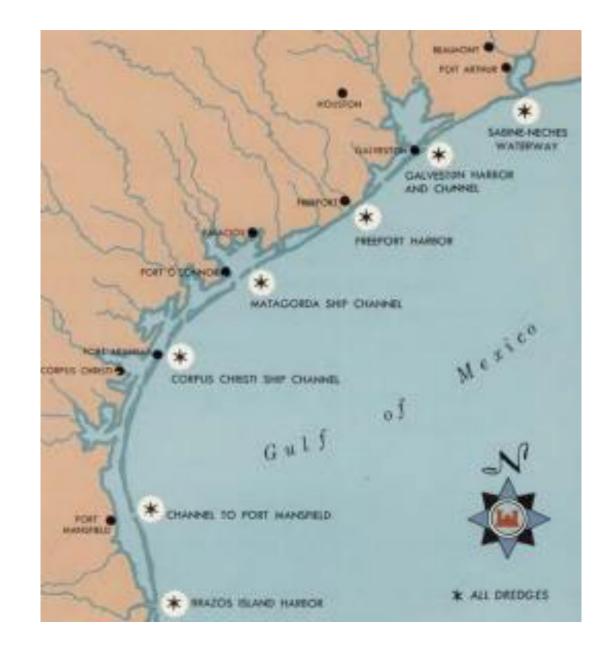
DREDGE MCFARLAND

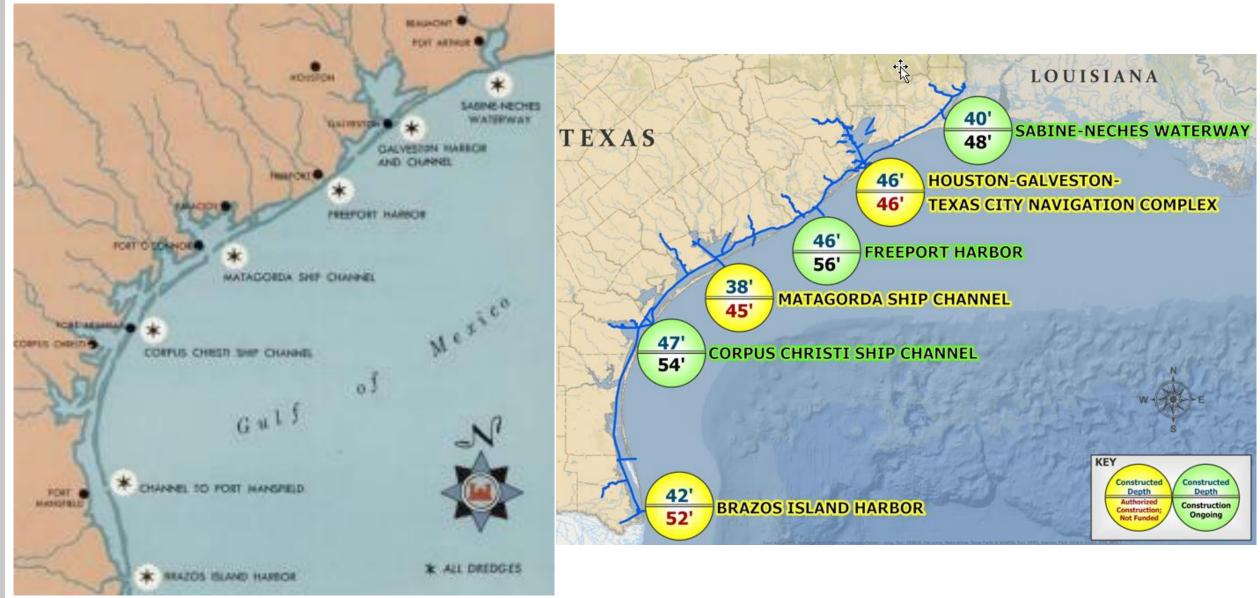


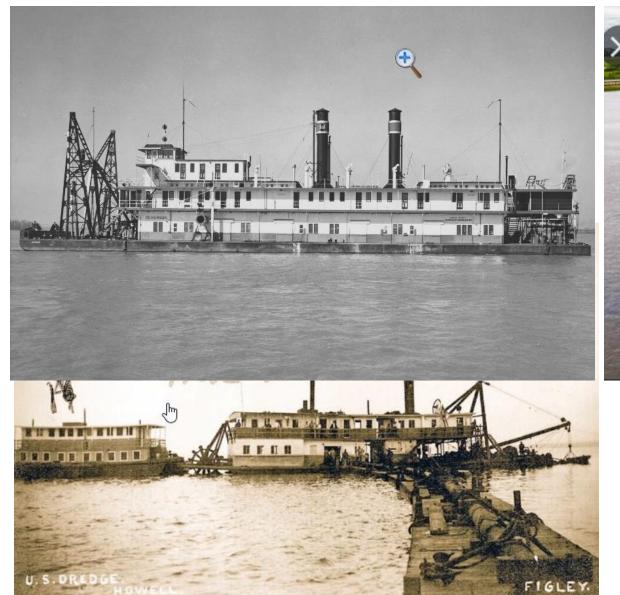
GALVESTON DISTRICT

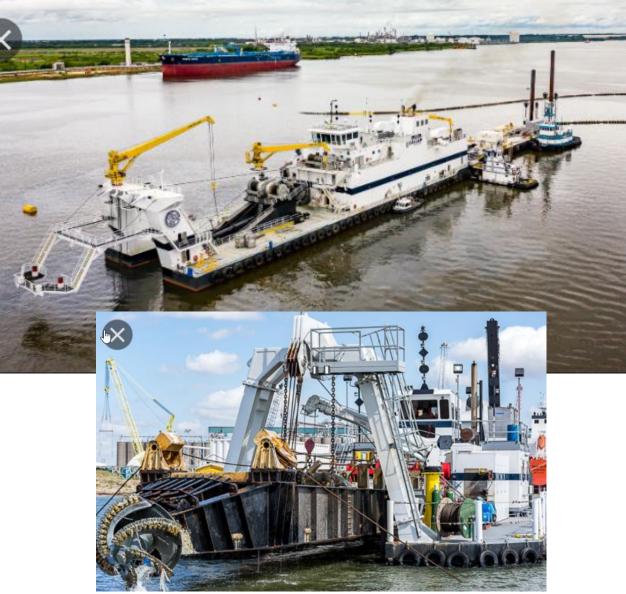
The GALVESTON District is responsible for the maintenance and improvement of the navigable waterways, rivers, and harbors along the entire Texas coast. In addition, assistance is rendered occasionally to other districts in performing required dredging of entrance channels from the Gulf of Mexico along the coast from Louisiana to Florida.

To accomplish this mission, the GALVESTON District operates two hopper dredges, the 3060 cubic yard capacity McFARLAND and the 1656 cubic yard capacity A. MACKENZIE. These vessels operate 24 hours a day, six or seven days a week, 12 months a year, except when under repair. Work schedule for the crew are arranged on a rotating shift basis to allow two to four consecutive days off duty each two weeks, including at least one four-day off period each four weeks.


DREDGE MCFARLAND







HYDRAULIC PIPELINE DREDGES

TRAILING SUCTION HOPPER DREDGES

SPLIT-HULL HOPPER DREDGE

MECHANICAL DREDGING EQUIPMENT

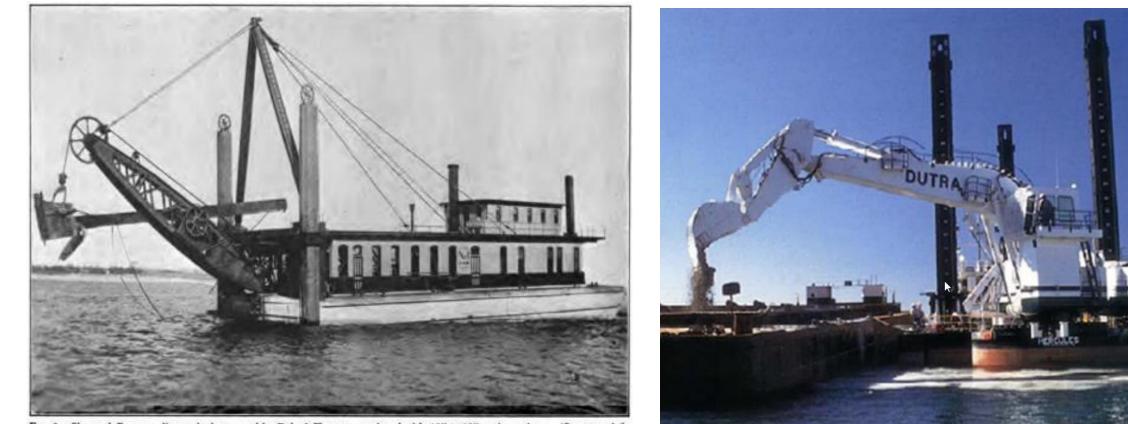
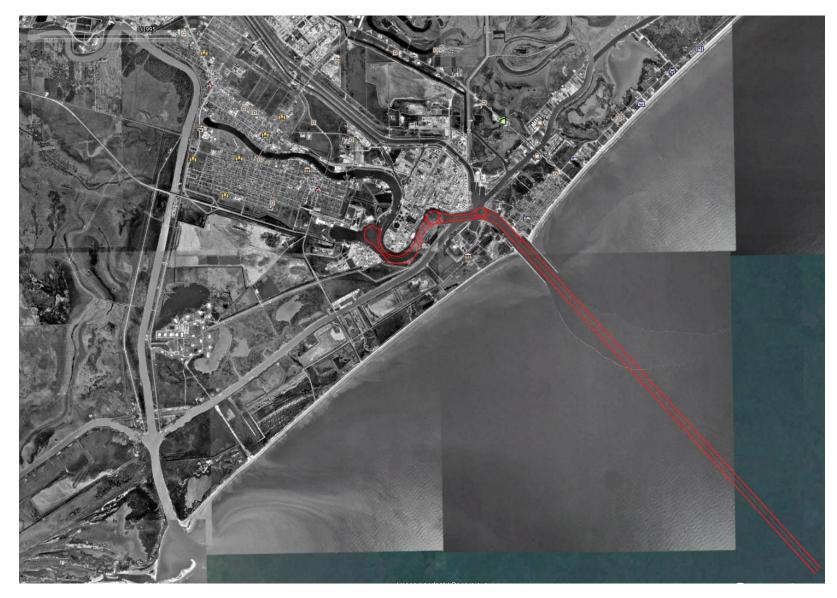


Fig. 9.—Six yard Bucyrus dipper dredge owned by Daly & Hannan—equipped with 16" × 18" main engines. (Courtesy of the Bucyrus Co.)



BUILDING STRONG®

1.1.0.1.1

Brazos River Floodgates

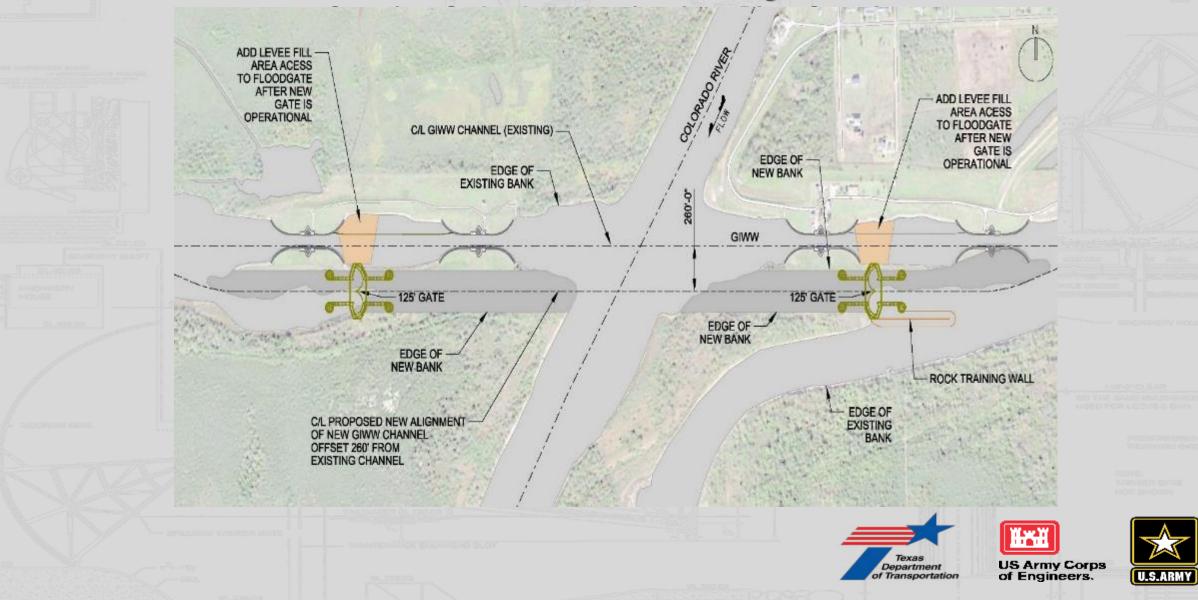
- Minimize shoaling at river crossings
- Safety

Colorado River Locks

BUILDING STRONG®

Colorado River Locks

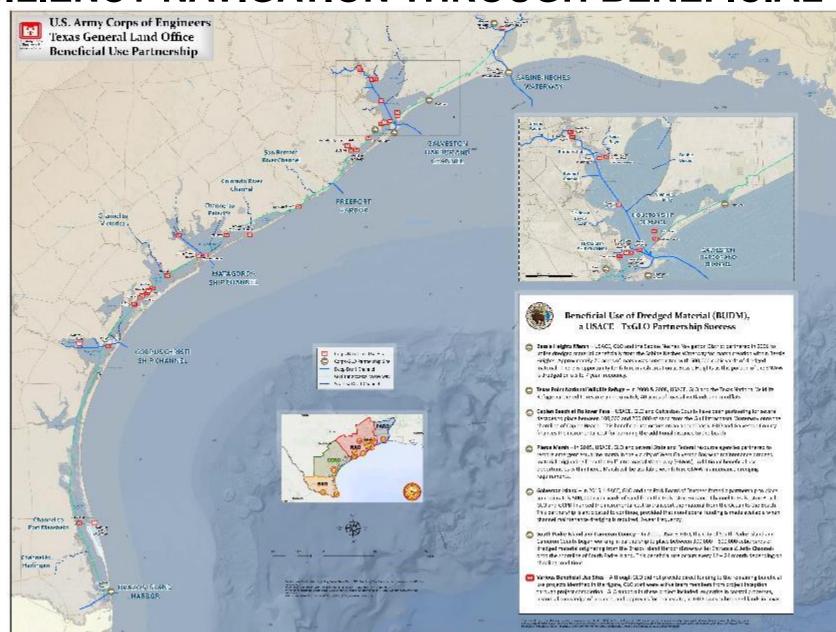
Brazos River Floodgates





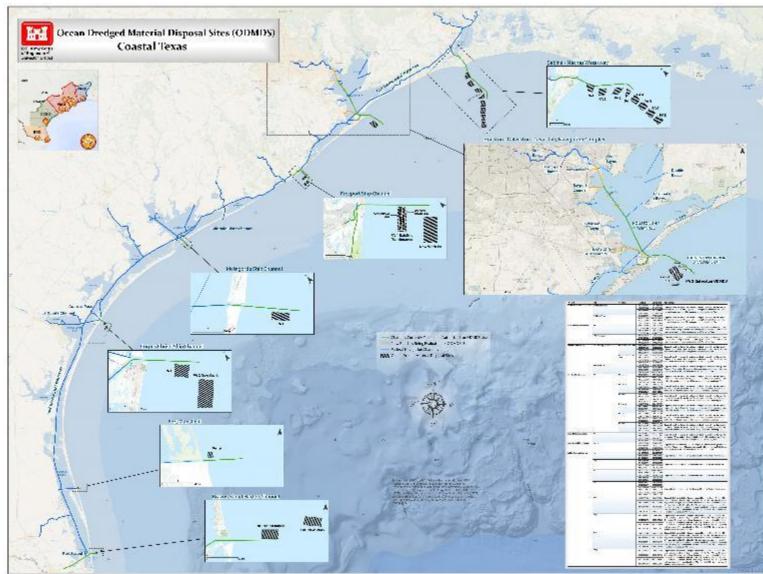
RECOMMENDED PLAN (CRL COMPONENT)

Convert both locks to 125' flood Riverside floodgates on both sides of



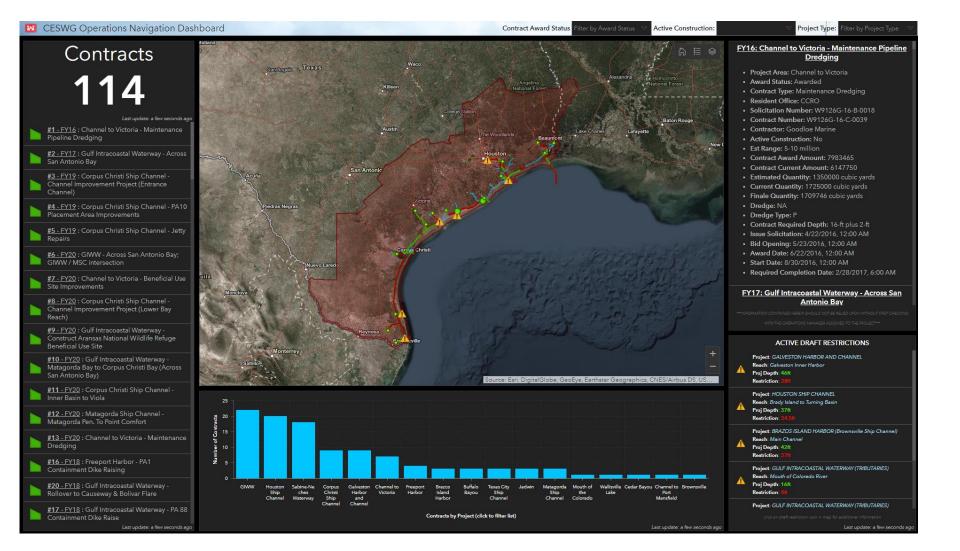
RESILIENCY NAVIGATION THROUGH BENEFICIAL USE

30


2/12/2021

RESILIENT NAVIGATION THROUGH EXPANDED DREDGING/PLACEMENT OPTIONS

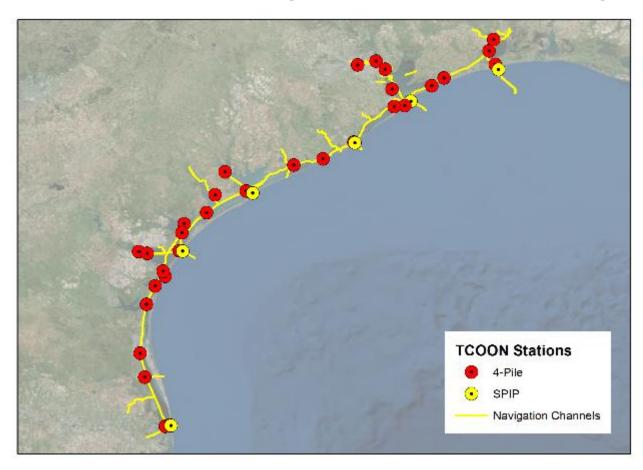
31


2/12/2021

TECHNOLOGY & COMMUNICATION OPERATIONS DASHBOARD

32

https://www.swg.usace.army.mil/Missions/Navigation/Navigation-Projects-Contracts/



TECHNOLOGY & COMMUNICATION TEXAS COASTAL OCEAN OBSERVATION NETWORK

33

https://tidesandcurrents.noaa.gov/map/index.shtml?region=Texas



TECHNOLOGY & COMMUNICATION TEXAS COASTAL OCEAN OBSERVATION NETWORK

34

https://tidesandcurrents.noaa.gov/map/index.shtml?region=Texas

TCOON Sentinel Platform (Galveston, TX)

TCOON 4-Pile Platform (Packery Channel, TX)

USE OF USACE EQUIPEMENT/STAFF FOR SMALL-SCALE O&M

- M/V SNELL
 - Mooring Buoy Deployment, Re-spacing, Maintenance
 - Repair of Navigation Structures
 - Debris Removal
 - Geo-Technical Sampling
- Special Purpose Dredges MURDEN / CURRITUCK
 - Small Maintenance Dredging Applications
- Sister-District Work Crews
 - Memphis District
 - Savannah District
 - Rock Island District
 - Wilmington District
 - Vicksburg District

USE OF USACE EQUIPEMENT/STAFF FOR SMALL-SCALE O&M

INNOVATIVE ACQUISITION METHODS

- Indefinite Delivery Indefinite Quantity Contracts (IDIQ)
 - Multi-Award Task Order Contracts (MATOC)
 - Single-award Task Order Contracts (SATOC)
- Base Contract plus Options
- Regional Contracting (combining like-work)

QUESTIONS

