Confined Disposal Facilities

Function, Design, Management and Environmental Evaluation Procedures

Trudy J. Estes US Army Engineer Research and Development Center Vicksburg, MS

Topics

- General processes and procedures
 - Confined Disposal Facilities Function, Design and Management

Contaminants

- > Metals vs. organics in the environment
- Sediment characteristics vs. bioavailability

• Environmental assessment process

- Evaluating potential environmental impacts of confined disposal
- Tiered approach
- Relevant contaminant pathways
- Physical modeling and testing
- Interpretation of test data

What is confined disposal?

- Any placement of dredged material (DM) in a containment area
- When do we used confined disposal?
 - > Open water disposal site unavailable
 - Material is unsuitable for open water disposal
- Confined disposal facilities are engineered structures
 - Design to contain sediment solids
 - Procedures set forth in engineering manuals

Types of Confined Disposal Facilities

Upland

How "proven" is confined disposal?

- Confined disposal is a mature and well established management alternative
- Relative volume of upland and confined disposal vs. total volume dredged

Craney Island

- Craney Island
 - > Norfolk, VA
 - Constructed 1956
 - ~2500 acre CDF
 - Eastward expansion
 future marine
 terminal (2017)

Poplar Island – Chesapeake Bay

- Early 1600's
 ~1000 acres
- By 1990
 - Main island <10 acres
- Restoration effort
 - > 1998-2027
 - ▶ 68M cy DM
 - Baltimore Harbor and channels

What happens during hydraulic disposal?

What happens to the material in the CDF?

- Estuarine and saline sediments more rapid than freshwater sediments
- Informs CDF design and environmental analysis
 Clarified supernatant

2 hours

12 hours

Planning & Design of Confined Disposal Facilities

- Design objectives
 - > Retain solids
 - Manage water
 - Material recovery
- Structured process
 - Siting
 - Capacity evaluation
 - Conceptual design
 - Detailed engineered design

Environmental Evaluation of Confined Disposal

- Structured evaluation process
 - Tiered approach detailed in the UTM
 - Estimate magnitude of contaminant releases
 - Assess potential environmental impact
- Multiple lines of evidence support decision-making
 - Will water quality criteria be exceeded?
 - Is off-site exposure a concern?
 - Is plant and animal uptake acceptable?
- Evaluation of risk informs
 - Need for engineering controls risk management

UTM – Tiered Approach

Tier I	Existing Info			
Tier II	Screening Evaluations	lexity	Required	ost
Tier III	Effects-Based Testing and Evaluations	Complexity	Data/Effort Required	CC
Tier IV	Case Specific Studies/ Risk Assessment			

Conservative Estimates

Refined Estimates

Tier I – Existing Information

- "Reason to believe"
 - Need for "Pathway" Evaluations

Compile

- Available sediment and water chemistry
- Sediment physical characterization
- > Municipal, industrial, surface water inputs
- > Available data from other agencies

 Establish relevant "Exposure Pathways" and "Contaminants of Concern" (COCs)

Proceed to Tier II for relevant pathways

6 Potential Contaminant Pathways

- Volatilization
 - Losses to air from DM surface and ponded water
- Plant and animal uptake
 - From sediment as well as site and pore water
- Effluent
 - Water discharged during disposal operations
- Runoff
 - Water discharged following precipitation
- Leachate
 - Water (precipitation) filtering through the DM and into the underlying soils

Exposure Pathway Concepts

- Risk considers
 - Exposure concentrations
 - Likelihood of exposure
 - Manner of exposure
 - Frequency/duration of exposure
 - Demonstrated "effects"
- Exposure requires a "complete" pathway
 - e.g. no volatile compounds = no inhalation pathway

Sediment Characterization

- Objectives
 - Determine physical (geotechnical) characteristics
 - Identify contaminants of concern
 - Evaluate variability
- Sediment sampling plan
 - Anecdotal data
 - Industry/outfalls
- Obtain representative samples
 - > All sediment types in project area
 - All contaminants and contaminant levels

Tier II – Screening Analysis

- Desktop analysis
- Predict effluent, runoff, leachate concentrations and volatile losses
 - Contaminant properties and behavior
- Predict plant and animal uptake
 - Theoretical bioaccumulation (TBP)
 - Plant uptake (PUP and DTPA)
- Determine need for further testing (Tier III)
- Refine Contaminants of Concern (COC's)

Contaminant Partitioning

Partitioning coefficient (K_d)

- Contaminants "distribute" between dissolved phases and solid phases
- Ratio sorbed to dissolved contaminant
 - $K_d = C_{sorbed}/C_{dissolved}$
- Literature or direct measurement
- Contaminant specific
- Function of sediment characteristics

Sediment Characteristics – Grain Size

>4.75mm gravel and cobbles

Coarse Fraction Characteristics

Contains

- Large fragments of primary minerals such as quartz —
- Coatings of fine materials e.g. organic matter, soot, clay
- Possibly coarse carbon containing materials – e.g.coal fragments
- Coarse minerals
 - Lower surface area .
 - Non-reactive surfaces

High contaminant sorption potential

Low contaminant sorption potential

Fine Fraction Characteristics

Contains

- Fine fragments of same minerals as coarse fraction
- Very fine natural organic materials, and condensed carbon e.g. soot
- Clay minerals
- Clay minerals
 - Interlayers (some forms)
 - > High surface area
 - Negatively charged surfaces

• High contaminant sorption potential

High ion exchange potential

Metal Contaminants

- Most are cationic (positive charge)
 - E.g. Lead, copper, zinc, etc.
- Attracted to negatively charged clays
- Some sorption to carbon (e.g. soot, coal)
- Form precipitates (insoluble solids)
 - Metal sulfides reducing conditions
 - Metal hydroxides oxidizing conditions
- Wetting and drying cycles promote release
 - Metals release from runoff > from effluent
- Not biodegradable

Organic Contaminants

- Most non-polar, highly hydrophobic
 - Low solubility
 - > High affinity for organic sediment fractions, esp. condensed carbon phases
- Strongly held by solids
 - K_d dioxins 1 to 2 orders of magnitude higher than common metals
 - Slow desorption or irreversible sorption
- Some biodegradable
- Generally not very mobile in the environment
 - Solids containment generally effective in limiting mobility

Tier II Outcomes

- Definitive
 - WQC met with attainable dilutions/attenuation
 - Volatilization exposures acceptable
 - Plant and animal uptake levels acceptable
- Not definitive
 - Contaminants present have no WQC
 - Predicted exposures potentially unacceptable
 - Data or model inconsistency

Resolve specific issues with Tier III Testing and Evaluations

Tier III Testing

- Effects Based Testing and Evaluations
 - Physical/chemical testing to evaluate contaminant releases
 - > Biological testing to evaluate exposure effects
- Models for Mixing, Attenuation, Dispersion
 - Refine exposure predictions
 - Extrapolate to site specific conditions

Column Settling Tests

Effluent Elutriate Test

Modified Elutriate Test Setup

Runoff Physical Testing (Lab)

- Simplified Laboratory Runoff Procedure (SLRP)
 - Models runoff from wet and dry sediment
- Conducted at representative TSS
 - > Wet: 500, 5,000, 50,000 mg/L
 - Dry: 50, 500, 5,000 mg/L
- Total and dissolved contaminants measured

SLRP Procedures

Mixing/Dilution – Effluent/Runoff

- Estimate dilution required to meet WQC outside the mixing zone
 - > Relative flow and background concentrations

$$D = \frac{V_{\text{Re}cWater}}{V_{\text{Eff}}} = \frac{\left(C_{\text{Eff}} - C_{WQC}\right)}{\left(C_{WQC} - C_{\text{Re}cWater}\right)}$$

- Mixing & transport models
 - Cornell Mixing Zone Expert System (CORMIX) et al
 - Determine "where in the receiving water" criteria will be met

Mixing/Dilution – Effluent & Runoff

• Mixing zone

- The area contiguous to a discharge where mixing with receiving waters takes place and where specified criteria, as listed in §307.8(b)(1) of this title (relating to Application of Standards), can be exceeded.
- Mixing zone allowance and dimensions codified
- Zone of Initial Dilution
 - Acute criteria may be exceeded
- Mixing zone
 - Chronic criteria may be exceeded

Mixing/Dilution – Effluent/Runoff

Effluent and/or Runoff Toxicity Testing

May be needed if

- Contaminants without WQC present
- Anticipated WQC exceedances

• Effluent elutriate & SLRP used as test mediums

- Expose test organisms to dilution series of whole effluent elutriate
- End result is LC50 or EC50 expressed as percentage of original effluent elutriate concentration

Compare with effluent & runoff concentrations at the boundary of the allowable mixing zone

Must not exceed 0.01 of LC50 or EC50

Leachate Physical Testing

- Sequential Batch Leach Test (SBLT)
 - Freshwater sediments
- Procedure
 - Load sediment in a 4:1 water-to- sediment ratio under anaerobic (nitrogen atmosphere) conditions.
 - Shake for 24 hours, centrifuge, and filter leachate.
 - Add water to sediment to make Repeat steps 1 and 2.
 - Repeat for at least four cycles.

Physical Modeling - Leachate

- Model transport and attenuation of contaminants in subsurface
 - Sorption and degradation
 - Mixing and dilution
 - Transport diffusion, advection
- Compare predicted concentrations at point of compliance to:
 - > Applicable GW standards
 - > Applicable SW standards if appropriate

Volatilization Physical Testing (Lab)

- Flux chamber
 - Carrier air passes over the sediment
 - Contaminant traps capture contaminants in the

Example Sampling Protocol

• Sampling times / intervals:

- 6, 24, 48, 72 hours, 5, 7, 10, and 14 days
- Sample continuously (replace trap at each sample interval)

• Experimental conditions:

- Initiate with field moist sediment and dry air over sediment surface (14-day experiment)
- Apply humid air over sediment surface for 7 days
- Rework sediment and repeat with dry air

Physical Modeling - Volatilization

- Calculate flux (contaminant mass release rate)
 - Input parameter to model contaminant concentration at a point of exposure
 - Considering dispersion (transport) of the contaminants
- Compare predicted exposure concentrations to end points
 - SHA Human Exposure Standards after factoring in dispersion
 - Health-Based Air Concentrations for acceptable level of risk after factoring in dispersion

Animal Uptake Testing

- Earthworm Bioaccumulation Test
 - Based on ASTM Method E-1676-04
 - > Approximately 30g biomass
 - > 28-day exposure to reference soil & dredge materials

Animal Uptake Modeling

- Compare results between reference soil & dredging material
 - Survival, growth, reproduction
 - COC bioaccumulation
 - > Accounts for bioavailability of contaminants
- Extrapolate to conceptual site model
 - Evaluate risk to receptors of concern

Plant Uptake Testing

- Cyperus plant bioaccumulation test
 - Saltwater terrestrial, freshwater wetland, and freshwater terrestrial habitat
 - > 45-day exposure to reference soil & dredge material
- Spartina plant bioaccumulation test
 - Saltwater wetland habitat
 - > 90-dayexposure to reference soil and dredged material

Plant Uptake Modeling

- Compare results between reference soil & dredge material
 - Survival & growth
 - COC bioaccumulation
- Extrapolate to site conceptual model
 - Evaluate risk to receptors of concern

Tier IV Case Specific Studies

- Formal quantitative risk assessment
- Addresses specific, well-defined questions
- Rarely necessary for navigation dredging
- Useful if
 - Contamination is substantial
 - Decision-making information not otherwise available
 - The evaluation will provide essential information
- Unnecessary use of resources when
 - Merely a refinement of Tier III
 - Definitive determination unchanged

Summary

Overview

- Confined disposal process
- Contaminant partitioning
- Environmental evaluation processes
- Corps wide procedures
 - Relevant pathways and COCs will be site specific

Modeling assumptions and test conditions

- Conservative, but representative
- Protective

Risk assessment

- May be used for final resolution where necessary
- Resource intensive
- Useful only if it informs the final decision

References

- US Army Corps of Engineers 2003. "Evaluation of Dredged Material Proposed for Disposal at Island, Nearshore, or Upland Confined Disposal Facilities — Testing Manual", ERDC/EL TR-03-1, Engineer Research and Development Center, Vicksburg, MS.
- Deliman, P. N., Ruiz, C. E., and Schroeder, P. R. (2001). Implementation of dredging risk assessment modeling. Applications for evaluation of the no-action scenario and dredging impacts. DOER Technical Notes Collection (ERDC TN-DOR-R2), US Army Engineering Research and Development Center, Vicksburg, MS.

