Sabine Pass to Galveston Bay, Texas Coastal Storm Risk Reduction and Ecosystem Restoration Draft Integrated Feasibility Report and Environmental Impact Study

Draft Appendix C

Economic Analysis

September 2015

TABLE OF CONTENTS

1	COASTAL STORM RISK MANAGEMENT 1							
	1.1	Purpos	se	1				
	1.2	Initial	Screening of Alternatives	1				
	1.3	Final A	Array of Alternatives	1				
	1.4	Reach	Determination	2				
		1.4.1	Orange-Jefferson CSRM	2				
		1.4.2	Port Arthur and Vicinity CSRM	3				
		1.4.3	Freeport and Vicinity CSRM	5				
2	HEC-	FDA A	NALYSIS	8				
	2.1	Engine	eering Inputs	8				
		2.1.1	Stage-Probability Relationships	8				
		2.1.2	Fragility Curves	9				
	2.2	Econo	mic Inputs	14				
		2.2.1	Ground Elevations	14				
		2.2.2	Structure Inventory	14				
		2.2.3	Vehicle Inventory	16				
		2.2.4	Depth-Damage Functions	21				
	2.3	Future	Without-Project Structure and Content Damages	21				
		2.3.1	Methodology Overview	21				
		2.3.2	Future Without-Project Condition Expected Annual Damages	23				
	2.4	Altern	ative Analysis	23				
		2.4.1	Orange-Jefferson CSRM	23				
		2.4.2	Port Arthur and Vicinity CSRM	32				
		2.4.3	Freeport and Vicinity CSRM	33				
		2.4.4	Brazoria and Sabine Non-Structural	37				
	2.5	Risk P	Performance of Proposed Actions	39				
		2.5.1	Performance of the Tentatively Selected Plan under Relative Sea Level	1				
			Change	40				
		2.5.2	Life Safety Considerations	44				
		2.5.3	Critical Infrastructure	45				
	2.6	Conclu	usion and Identification of the TSP	47				
		2.6.1	Orange-Jefferson CSRM	47				
		2.6.2	Port Arthur and Vicinity CSRM	47				
		2.6.3	Freeport and Vicinity CSRM	47				

Depth	Damage Functions	. 52
Listing	g of Critical Infrastructure by County	. 58
2.8.1	Orange	. 58
2.8.2	Jefferson	. 60
2.8.3	Brazoria	65
	Depth Listing 2.8.1 2.8.2 2.8.3	Depth Damage Functions.Listing of Critical Infrastructure by County .2.8.1Orange.2.8.2Jefferson .2.8.3Brazoria.

LIST OF FIGURES

Page

		0
Figure 1-1.	Configuration of the Orange-Jefferson CSRM	4
Figure 1-2.	Port Arthur and Vicinity CSRM	6
Figure 1-3.	Freeport and Vicinity CSRM	7
Figure 2-1.	ADCIRC Points Orange-Jefferson CSRM	10
Figure 2-2.	ADCIRC Points in Port Arthur and Vicinity CSRM	11
Figure 2-3.	ADCIRC Points in Freeport and Vicinity CSRM	12
Figure 2-4.	Orange-Jefferson CSRM Structures at Risk (Parcels)	17
Figure 2-5.	Port Arthur and Vicinity CSRM Structures at Risk	18
Figure 2-6.	Freeport and Vicinity CSRM Structures at Risk – Dow Barge Canal Reach	19
Figure 2-7.	Freeport and Vicinity CSRM Structures at Risk – Remaining Reaches	20
Figure 2-8.	Potential Orange County Buyouts	38
Figure 2-9.	Orange County Critical Infrastructure	67
Figure 2-10.	Jefferson County Critical Infrastructure	68
Figure 2-11.	Brazoria County Critical Infrastructure	69

LIST OF TABLES

		Page
Table 1-1.	Sabine Pass to Galveston Bay, TX - Final Array of Alternatives	1
Table 2-1.	Average Still Water Elevations and Discharges at HEC-FDA Index Point .	9
Table 2-2.	Fragility Curves for Port Arthur and Vicinity CSRM	13
Table 2-3.	Fragility Curves for Freeport and Vicinity CSRM	13
Table 2-4.	Structure and Content Values of Inventoried Structures by CSRM and Ty	pe 2015
	Price and Development Levels	15
Table 2-5.	Expected Annual Damages Future Without-Project Condition (2015 price	level)24
Table 2-6.	Structures by Event for Orange-Jefferson CSRM	25
Table 2-7.	Structures by Event for Port Arthur CSRM	27
Table 2-8.	Structures by Event for Freeport CSRM	
Table 2-9.	Economic Performance of Orange-Jefferson CSRM	29
Table 2-10.	Economic Performance of Port Arthur and Vicinity CSRM	34
Table 2-11.	Economic Performance of Freeport and Vicinity CSRM	35

LIST OF TABLES, CONTINUED

		Page
Table 2-12.	Non-structural Analysis	38
Table 2-13.	Project Performance for the Tentatively Selected Plan	41
Table 2-14.	Tentatively Selected Plan Relative Sea Level Change Project Performance	43
Table 2-15.	Population at Risk by CSRM	44
Table 2-16.	TSP for Orange-Jefferson CSRM	48
Table 2-17.	TSP for Port Arthur and Vicinity CSRM	48
Table 2-18.	TSP for Freeport and Vicinity CSRM	50

1 COASTAL STORM RISK MANAGEMENT

1.1 PURPOSE

The purpose of this appendix is to describe the economic methodology, its associated assumptions, and the use of economic and engineering tools used to assess, evaluate, and ultimately conclude and recommend a plan for the Sabine Pass to Galveston Bay, Texas Coastal Storm Risk Management and Ecosystem Restoration Feasibility Study.

1.2 INITIAL SCREENING OF ALTERNATIVES

Prior to the Alternatives Milestone Meeting, development of an initial array of alternatives from a wide range of measures for three regions covering six counties along the Texas Gulf Coast that would address coastal storm risk management and ecosystem restoration. The initial study was scoped during a planning charrette in August 2012 to comply with SMART Planning guidelines. Following the first Alternatives Milestone Meeting (AMM) in July 2013, a determination was made that a study encompassing the three-region, six-county area could not be done within the constraints of SMART Planning. Options were developed in order to minimize risk as much as possible and while still adhering to the basic tenets of SMART Planning. The Galveston District developed an option for completing a study of low to moderate risk that would cost \$4.4 million and would drop the Galveston region concentrating instead on the Brazoria and Sabine regions. The study also dropped any ecosystem restoration measures and would only analyze CSRM alternatives in Brazoria, Jefferson, and Orange Counties.

The initial array of alternatives can be found in Appendix B – Plan Formulation.

1.3 FINAL ARRAY OF ALTERNATIVES

The screening of the evaluation array along with the recommended study scope from the exemption resulted in the modification of a final array of alternative plans. The final array of alternative plans did not include Ecosystem Restoration (ER) measures because those are to be included in future interim feasibility studies, along with the Galveston region. Based on the successful Alternatives Milestone Meeting (AMM) that occurred on April 9, 2014, the final array of alternatives is shown in Table 1-1.

Alternative Alt Name / Description			
No Action	No Action or Future Without Project (FWOP)		
S 5	Sabine Inland Barrier CSRM Focus (Neches Gate/Sabine Levees/Hurricane Flood Protection)		

Table 1-1. Sabine Pass to Galveston Bay, TX - Final Array of Alternatives

Alternative Number	Alt Name / Description
S11	Sabine Nonstructural Alternative/ Buyouts and Lone Star-type Conservation Plan
B2	Brazoria Coastal Barrier CSRM Focus (revised)
B5	Brazoria Nonstructural Alternative/ Buyouts and Lone Star-type Conservation Plan

An IPR was conducted on May 30, 2014, to discuss the results in the analysis supporting whether the Neches Gate should be dropped from further consideration. As a result of the decision to drop the Neches Gate and as means of clarifying the nomenclature for the final array, alternatives in the final array were renamed. The Sabine Inland Barrier Alternative has been split into two parts, one addressing the new levee system in Orange and Jefferson Counties, and the other addressing improvements to the existing Port Arthur hurricane flood protection (HFP). The Brazoria Coastal Barrier Coastal Storm Risk Management (CSRM) Focus has been renamed after its primary component – Freeport and Vicinity CSRM. Non-structural plans will be evaluated for both Brazoria and Sabine regions.

- Orange-Jefferson Coastal Storm Risk Management (CSRM)
- Freeport and Vicinity CSRM
- Port Arthur and Vicinity CSRM
- Brazoria and Sabine Non-Structural

1.4 REACH DETERMINATION

The determination of reaches for the initial array of alternatives was based on the original designation of the three regions with measures and the subsequent alternatives being assigned to the appropriate region. Following the approval of the exemption from SMART Planning and the successful concurrence of the final array of alternatives following the April 2014 AMM, reaches were developed for the areas according to the final array of alternatives. This was required since a different methodology would be employed for the optimization of any new proposed levees/floodwalls and for improvements to any of the existing hurricane flood protection systems (HFP). While the initial screening of alternatives used HEC-FIA with 1 % annual chance exceedance (ACE) depth grids in conjunction with HAZUS-MH data to determine without and with-project economic damages, the analysis for evaluating the final array would incorporate a risk-based analysis in compliance with ER-1105-2-101. The following describes the reaches that were established for evaluating the final array.

1.4.1 Orange-Jefferson CSRM

The initial configuration of new levees was based on alignments from the Orange County Flood Protection Planning Study (Orange Report), completed in 2012. Refinement of the alignments

was made in some areas to increase potential benefits, reduce costs, and reduce potential environmental impacts, and to protect critical infrastructure. Without-project storm surge values were used to optimize levee heights and further refinement of the alignment for identification of the National Economic Development (NED) Plan and TSP. As part of the identification of the NED and TSP, analysis was conducted to determine levee sections that are incrementally justified. Alternatives analysis was based on utilizing the without-project surge elevations and frequencies. Without-project storm surge and waves were based on previous work by FEMA and revised to current joint probability method – optimum sampling (JPM-OS) methods to the appropriate ACE values. Figure 1-1 displays the initial configuration to be evaluated for these new levees at Jefferson and Orange Counties following the exclusion of the Neches Gate from further consideration. The system was set up with three major components based on their location. The following lists the major features.

- Orange 1-3
- Jefferson Main
- Beaumont A C

The Orange component runs along the north side of the Neches River and was divided into three sections; Orange 1 on the western end that primarily protects Rose City, Orange 2 which begins just east of Rose City and ends roughly halfway between Rose City and Bridge City, and Orange 3 which encompasses the remainder of the Orange County component. Orange 1 consists of approximately 27,000 linear feet (LF) of levee and 16,500 LF of floodwall (total of 8.2 miles). Orange 2 consists of approximately 34,600 LF of levee (6.6 miles), while Orange 3 consists of a combination of 113,600 LF of levee and 29,800 LF of floodwall (total of 27 miles).

The Jefferson Main component consists of approximately 41,700 LF of levee and 16,200 LF of floodwall (11 miles). Beaumont A is combination of 3,100 LF of levee and 200 LF of floodwall (0.6 mile). Beaumont B is 2,500 LF of levee (0.5 mile) and Beaumont C is 6,800 LF of levee (1.3 mile).

1.4.2 Port Arthur and Vicinity CSRM

The draft findings of the SQRA for the Freeport system (to be discussed next) were applied to the plan formulation for the Port Arthur because one has not yet been done for this system. For the Port Arthur system, the detailed description of the needs is similar to what will be presented in the Freeport HFPS section. However, the Port Arthur system is different because there are no known deferred maintenance issues for the Port Arthur system at this time.

Figure 1-1. Configuration of the Orange-Jefferson CSRM

4

The formulation of alternatives for the Port Arthur and Vicinity CSRM began with defining reaches for the system. These were based on the failure locations identified by the levee safety program in the absence of a SQRA. Figure 1-2 displays the Port Arthur HFPS failure locations. These locations were included in formulation where improvements would positively impact the system's capacity for protection. The following lists the reaches at Port Arthur.

- Port Arthur 8feet-10feet I-Wall
- Port Arthur Closure Structure
- Port Arthur I-Wall Near Valero
- Port Arthur I-Wall Near Tank Farm

1.4.3 Freeport and Vicinity CSRM

The draft findings of the Semi-Quantitative Risk Assessment (SQRA) for the Freeport system show vulnerabilities primarily associated with floodwall and levee overtopping. Other performance issues identified during the SQRA were the result of deferred local sponsor maintenance, or alterations that local industrial stakeholders have constructed over time. Floodwall performance issues, at locations where the originally constructed floodwall is still in place and has been operated and maintained in an acceptable manner, are being evaluated to include stability and resiliency. Levee reaches that are non-uniform in height or otherwise susceptible to concentrated overtopping erosion during an event are being evaluated for raising or armoring to reduce the likelihood of breach.

The formulation of alternatives for the Freeport and Vicinity CSRM began with defining reaches for the system. These were based on the failure locations identified in the SQRA (Figure 1-3). These locations were then narrowed during formulation to those locations where improvements would positively impact the system's capacity for protection and to reduce any redundancies. For example, improvements to the Dow Barge Canal would negate any failures at the Dow Turning Basin. The following is the resulting list of reaches at the Freeport and Vicinity CSRM.

- Dow Barge Canal
- East Storm Levee
- Freeport Dock
- Old River at Dow Thumb
- Oyster Creek Levee
- South Storm Levee
- Tide Gate I-Wall

Figure 1-2. Port Arthur and Vicinity CSRM

Figure 1-3. Freeport and Vicinity CSRM

2 HEC-FDA ANALYSIS

2.1 ENGINEERING INPUTS

2.1.1 Stage-Probability Relationships

Water surface profiles representing stage-probability functions were imported into HEC-FDA utilizing data from Advanced Circulation model (ADCIRC) points for without-project storm surge and waves. This sub-set of 62 total storms (based on previous FEMA work and revised by ERDC using subject matter expertise for storms having the most effect on stage-frequency) was used in the revised to current JPM-OS simulation technique for the appropriate ACE values analysis. Mean water level, wave height and wave period responses were defined for each of the modeled return periods. In the absence of a Hydrologic Engineering Centers River Analysis System (HEC-RAS) stationing scheme which would also use a stage-discharge function, those ADCIRC points falling closest to the location of the levee/floodwall footprint were used to develop average ACE values for the seven events modeled by ERDC. For the existing Port Arthur and Freeport HFP systems, ADCIRC points representing average still water levels closest to the failure locations were used to quantify damages. An equivalent record length (15 years) for each study reach was used to generate a stage-probability relationship with uncertainty for the without-project and the with-project alternatives through the use of graphical analysis. The model used the eight stage-probability events together with the equivalent record length to define the full range of the stage-probability or stage-probability functions by interpolating between the data points. Values for the 0.999 and 0.5 % ACE were set at 0.25 and 1.0 feet respectively in order to make HEC-FDA operational. Table 2-1 lists these values used for each region. The ADCIRC points for the Orange-Jefferson CSRM are shown in Figure 2-1. Points for the Port Arthur CSRM are shown in Figure 2-2 and the ADCIRC points for the Freeport CSRM are in Figure 2-3.

Still water levels were used to determine the overall economic efficiency, since these are more reliable as a means of determining high-level overall economic efficiency, as opposed to also trying to incorporate low-probability wave run-up and/or overtopping that can be analyzed later and applied to specific locations where it is applicable along a levee/floodwall system in conjunction with any necessary interior drainage analysis on the final recommended plan.

Orange-Jefferson							
	0.1	0.05	0.02	0.01	0.005	0.002	0.001
Exceedance Probability/Reach	ACE	ACE	ACE	ACE	ACE	ACE	ACE
Orange 1	3.62	5.05	6.69	7.76	8.66	9.66	10.35
Orange 2	3.6	5.36	7.24	8.52	9.6	10.77	11.57
Orange 3	2.78	4.25	6.11	7.51	8.64	9.81	10.57
Beaumont A	2.92	4.26	6	7.25	8.47	9.73	10.51
Beaumont B	2.71	3.88	5.62	6.86	7.94	9.07	10.34
Beaumont C	3.55	5.1	6.85	8.02	9	10.1	10.85
Jefferson Main	3.08	4.63	6.31	7.49	8.47	9.51	10.22
		Por	t Arthur				
	0.1	0.05	0.02	0.01	0.005	0.002	0.001
Exceedance Probability/Reach	ACE	ACE	ACE	ACE	ACE	ACE	ACE
8ft-10ft I-Wall	2.85	4.31	6.98	9.25	10.94	12.68	13.81
Closure Structure	3.45	5.01	6.9	8.2	9.3	10.46	11.2
I-Wall Near Valero	3.87	5.97	8.47	10.47	12.61	14.77	16.08
I-Wall Near Tank Farm	3.77	5.72	8.1	9.99	12.02	14.08	15.31
		Freep	ort Region				
	0.1	0.05	0.02	0.01	0.005	0.002	0.001
Exceedance Probability/Reach	ACE	ACE	ACE	ACE	ACE	ACE	ACE
South Storm Levee	4.21	6.68	9.59	11.63	13.71	16.31	17.93
Old River levee at Dow Thumb	4.43	7.08	10.15	12.41	14.69	17.43	18.97
Freeport Dock	4.47	7.17	10.3	12.63	14.97	17.79	19.38
Tide Gate	4.46	7.18	10.32	12.65	15.02	17.9	19.52
East Storm Levee	5.08	7.81	11.05	13.38	15.55	17.99	19.5
Dow Barge Canal	4.6	7.46	10.82	13.28	15.76	18.55	20.12
Oyster Creek	4.44	8.49	12.21	14.63	16.62	18.77	20.19

Table 2-1. Average Still Water Elevations and Discharges at HEC-FDA Index Point

2.1.2 Fragility Curves

Fragility curves (the relationship between water surface stage on the exterior side of the levee versus the probability of levee failure) were developed based on the use of average still water levels for damage estimates. Fragility curves for the Freeport HFP system were initially developed as a result of the Freeport SQRA and were modified slightly due to the use of average still water levels for damage estimates. A similar approach was used for the development of the curves for the Port Arthur system. These curves for the Port Arthur and Freeport systems are listed in Tables 2-2 and 2-3, respectively.

Figure 2-1. ADCIRC Points Orange-Jefferson CSRM

Figure 2-2. ADCIRC Points in Port Arthur and Vicinity CSRM

Figure 2-3. ADCIRC Points in Freeport and Vicinity CSRM

Stage/Location	Tank Farm	8ft-10ft I-Wall	I-Wall Near Valero	Closure Structure
14	-	0.10	-	-
14.5	-	0.28	0.10	0.20
15	0.20	0.45	0.50	0.40
15.5	0.35	0.63	0.70	0.60
16	0.50	0.80	0.90	0.90
16.5	0.90	0.90	0.92	0.95
17	1.00	1.00	0.93	1.00
17.5	-	-	0.95	-
18	-	-	0.97	-
18.5	-	-	0.98	-
19	-	-	1.00	-

Table 2-2. Fragility Curves for Port Arthur and Vicinity CSRM

 Table 2-3. Fragility Curves for Freeport and Vicinity CSRM

Word 2010	Dow Barge	Fast Storm	Oyster	Freeport	Tide Gate I-	Old River at
Woru 2010	Canal	East Storm	Creek Levee	Dock	Wall	Dow Thumb
10.5	-	-	0.03	-	0.04	0.04
11	-	-	0.06	-	0.08	0.08
11.5	-	-	0.1	-	0.11	0.11
12	-	-	0.13	-	0.15	0.15
12.5	-	-	0.16	0.05	0.19	0.19
13	-	-	0.19	0.75	0.23	0.23
13.5	-	-	0.23	1.00	0.26	0.26
14	-	-	0.26	1.00	0.3	0.3
14.5	-	0.08	0.29	1.00	0.34	0.34
15	-	0.15	0.32	1.00	0.38	0.38
15.5	-	0.23	0.35	-	0.41	0.41
16	-	0.3	0.39	-	0.45	0.45
16.5	-	0.38	0.42	-	0.6	0.68
17	-	0.45	0.45	-	0.75	1.00
17.5	-	0.54	0.68	-	1.00	-
18	-	0.63	1.00	-	-	-
18.5	-	0.72	-	-	-	-
19	-	0.81	-	-	-	-
19.5	-	1.00	-	-	-	-
20	-	-	-	-	-	-
20.5	0.11	-	-	-	-	-
21	0.23	-	-	-	-	-
21.5	0.34	_	-	-		-
22	0.45	-	-	-	_	-
22.5	0.53	-	-	-	-	-
23	0.6	-	-	_	_	-

Word 2010	Dow Barge Canal	East Storm	Oyster Creek Levee	Freeport Dock	Tide Gate I- Wall	Old River at Dow Thumb
23.5	0.68	-	-	-	-	-
24	0.75	-	-	-	-	-
24.5	0.83	-	-	-	-	-
25	1.00	-	-	-	-	-

Table 2-3, continued

2.2 ECONOMIC INPUTS

2.2.1 Ground Elevations

Centroids were created for each parcel to represent the structures associated with that parcel. Ground elevations were derived from data processed using U.S. Geological Survey Digital Elevation Model (DEM) 0.05m elevation data for the appropriate Gulf Coast Counties. These data were obtained from Texas Natural Resources Information System (TNRIS). Residential structures received a 0.5-foot floor correction while industrial, commercial, and public structures received floor corrections from 0 to 5 feet. The point at which damages for many high-value industrial and commercial structures is reflected in the ground elevation making floor correction was necessary.

2.2.2 Structure Inventory

All three study areas can be described as being relatively fully developed. As discussed under the study area demographics, Brazoria is expected to be the one county among the three that is expected to grow at a rate outpacing the State. Orange and Jefferson Counties are expected to grow at rates well below that of the State of Texas. For the purpose of this analysis, housing stock is assumed to remain relatively constant over the period of analysis. Since commercial and industrial make up a substantial amount of the structure inventory, those developments that are expected to come online with a reasonable amount of certainty and in the relatively near future are include in the inventory. The structure inventory was derived from data obtained from each of the appropriate appraisal districts for the 2015 tax appraisal year (Table 2-4). These data were not adjusted to reflect market nor a replacement cost less depreciation value. Because of this, structures in many cases may be undervalued. Due to tax abatements and incentives given to large industrial developers and due to the competitive nature of the petrochemical industry in the region, many high-value industrial and commercial properties are not listed on the tax appraisal rolls. In these instances, square footage values were developed from those properties that were listed on the tax rolls based on square footage values of similar structures from appraisal data. Therefore, a certain amount of uncertainty exists for these values in many cases, which could lead to an over- or underestimation of damages. Two separate structure files with a high degree of overlap were created for the system since failures would impact slightly different numbers of structures. One structure file was used for a failure at the Dow Barge Canal and another for the remaining reaches. The following tables and figures depict the structure files used in the damage analyses. Parcels representing the structures at risk for the Orange-Jefferson CSRM are in Figure 2-4, while the parcels representing the structures at risk for the Port Arthur and Freeport CSRM are in Figures 2-5, 2-6, and 2-7 respectively.

Table 2-4. Structure and Content Values of Inventoried Structures by CSRM and Type2015 Price and Development Levels

Orange County							
Category Name	Count	Structure Value	Content Value	Total			
Commercial	268	\$109,778,000	\$109,203,000	\$218,981,000			
Industrial	20	\$1,711,063,000	\$1,711,061,000	\$3,422,124,000			
Multi-Family	193	\$23,828,000	\$23,828,000	\$47,656,000			
Mobile	699	\$10,573,000	\$10,573,000	\$21,146,000			
Public	214	\$76,324,000	\$83,913,000	\$160,237,000			
Vehicles	16,045	\$200,448,000	\$0	\$200,448,000			
Single-Family	12,734	\$1,038,476,000	\$1,038,443,000	\$2,076,919,000			
Grand Total	27,135	\$3,170,490,000	\$2,977,021,000	\$6,147,511,000			
		Jefferson Coun	ty				
Category Name	Count	Structure Value	Content Value	Total			
Commercial	893	\$319,062,000	\$431,769,000	\$750,831,000			
Industrial	22	\$662,341,000	\$827,820,000	\$1,490,161,000			
Multi-Family	226	\$186,264,000	\$186,264,000	\$372,528,000			
Public	140	\$124,284,000	\$136,882,000	\$261,166,000			
Vehicles	15,954	\$167,781,000	\$0	\$167,781,000			
Single-Family	12,662	\$2,539,056,000	\$2,538,915,000	\$5,077,971,000			
Grand Total	26,605	\$3,998,788,000	\$4,121,650,000	\$8,120,438,000			

Orange-Jefferson CSRM

Port Arthur and Vicinity CSRM

Category Name	Count	Structure Value	Content Value	Total
Commercial	1,152	\$5,190,935,000	\$8,777,567,000	\$13,968,502,000
Industrial	9	\$201,486,000	\$338,497,000	\$539,983,000
Multi-Family	269	\$69,382,000	\$69,382,000	\$138,764,000
Public	452	\$217,266,000	\$228,574,000	\$445,840,000
Vehicles	26,431	\$350,231,000	\$0	\$350,231,000
Single-Family	20,977	\$1,911,200,000	\$1,911,068,000	\$3,822,268,000
Grand Total	43,968	\$7,869,963,000	\$11,325,088,000	\$19,195,051,000

Freeport and Vicinity CSRM

		Dow Barge Car	nal	
Category Name	Count	Structure Value	Content Value	Total
Commercial	903	\$117,426,000	\$156,275,000	\$273,701,000
Industrial	45	\$5,557,849,000	\$9,339,639,000	\$14,897,488,000
Multi-Family	375	\$68,916,000	\$69,123,000	\$138,039,000
Mobile	6	\$135,000	\$135,000	\$270,000
Public	207	\$225,032,000	\$248,092,000	\$473,124,000
Vehicles	8,832	\$185,858,000	\$0	\$185,858,000
Single-Family	8,826	\$377,405,000	\$377,572,000	\$754,977,000
Grand Total	19,194	\$6,532,621,000	\$10,190,836,000	\$16,723,457,000
		Lower Reache	S	
Category Name	Count	Structure Value	Content Value	Total
Commercial	244	\$39,019,000	\$30,565,000	\$69,584,000
Industrial	5	\$13,383,000	\$22,406,000	\$35,789,000
Multi-Family	117	\$13,168,000	\$13,168,000	\$26,336,000
Public	76	\$28,620,000	\$29,784,000	\$58,404,000
Vehicles	2,323	\$38,847,000	\$0	\$38,847,000
Single-Family	1,844	\$74,744,000	\$74,744,000	\$149,488,000
Grand Total	4,132	\$207,781,000	\$170,667,000	\$378,448,000

2.2.3 Vehicle Inventory

The number of vehicles associated with a residence was estimated based on the average number of vehicles per residence characteristic of the study area, and the probability of their being present at the time of a flood. This value is 1.26 vehicles per residence. Values were based on the national average price of new and used vehicles as reported by the U.S. Bureau of Transportation Statistics (BTS) prices for new vehicles. The most recent price reported by BTS is \$13,105. Adjusting this value based on the percent difference in median income for each county compared to the median income for the U.S., the resulting value for Orange County vehicles was set at \$15,411 and \$13,251 for Jefferson County. Vehicle values for Brazoria were set at \$21,044.

Figure 2-4. Orange-Jefferson CSRM Structures at Risk (Parcels)

Figure 2-5. Port Arthur and Vicinity CSRM Structures at Risk

Figure 2-6. Freeport and Vicinity CSRM Structures at Risk – Dow Barge Canal Reach

Figure 2-7. Freeport and Vicinity CSRM Structures at Risk – Remaining Reaches

2.2.4 Depth-Damage Functions

Depth-damage functions were obtained from the New Orleans District from the Plaquemines Parish study. These functions reflect saltwater inundation for short durations. The functions cover the following structure types:

1STY-SLAB	One-Story Single -Family Residential Slab Foundation
2STY- SLAB	To-Story single -Family Residential Slab Foundation
AUTO	Automobiles
EAT	Restaurants
GROC	Grocery Stores
MOBHOM	Mobile Homes
MULT	Multi-Family Residential
PROF	Professional Businesses
PUBL	Public & Semi Public Structures
REPA	Repairs & Home Use
RETA	Retail & Personal Services
WARE	Warehouse & Contractor Services

Graphical representations for these for these functions are depicted at the end of this appendix.

2.3 FUTURE WITHOUT-PROJECT STRUCTURE AND CONTENT DAMAGES

2.3.1 Methodology Overview

The methodology employed for this economic analysis is in accordance with current principles and guidelines and standard economic practices, as outlined in the Planning Guidance Notebook – ER 1105-2-100. Economic analysis is conducted at a given price level using the current Federal discount rate and a period of analysis of 50 years. Per the Planning Guidance Notebook, flood events will be expressed in probabilistic terms rather than the classic "x-Year" event. For example, the 100-Year event will be called a 1 % ACE (equivalent to the HEC-FDA term Annual Exceedance Probability Event). Other equivalent probabilities can be obtained by dividing 1 by the year occurrence interval; the 500-year event is 1/500 = 0.2 % ACE, and so forth.

A risk-based analysis (RBA) procedure has been used to evaluate without-project flood damages in the study area. Guidance for conducting RBA is included in Corps Engineering Regulation 1105-2-101, Risk-Based Analysis for Evaluation of Hydrology/Hydraulics, Geotechnical Stability and Economics in Flood Damage Reduction Studies (January 3, 2006).

The guidance specifies that the derivation of expected annual flood damage must take into account the uncertainty in hydrologic, hydraulic, and economic factors. Risk and uncertainty are intrinsic in water resource planning and design. They arise from measurement errors and the inherent variability of complex physical, social and economic situations. Best estimates of key variables, factors, parameters and data components are developed, but are often based on short periods of record, small sample sizes, measurements subject to error, and innate residual variability in estimating methods. RBA explicitly and analytically incorporates these uncertainties by defining key variables in terms of probability distributions, rather than single-point estimates. The focus of RBA is to concentrate on the uncertainties of variables having the largest impact on study conclusions.

The following are the primary sources of uncertainty for coastal storm damage analysis studies:

- Stage/Probability
- Geo-technical Features
- Structure Elevation
- Structure and Content Values
- Inundation Depth/Percent Damage

The Army Corps of Engineers Hydrologic Engineering Center has developed software specifically designed for conducting risk based analysis, referred to as the HEC-FDA Program. Version 1.2.5 was used for this analysis. This program applies Monte Carlo simulation process, whereby the expected value of damages is determined explicitly through a numerical integration technique accounting for uncertainty in the basic parameters described above. For this analysis, the number of Monte Carlo simulations is set at 100 with the minimum and maximum number of intervals set at 20 and 30 respectively. Data requirements for the program include:

- Structure data, including structure I.D., category (single or multi-family residential, commercial, industrial, and public), stream location, ground and/or first floor elevation, structure value and content value. These data were developed in a Microsoft Excel spreadsheet and imported into the HEC-FDA program
- Hydrologic and hydraulic data, including water surface profiles and stage/probability relationships
- Depth-Damage functions

2.3.2 Future Without-Project Condition Expected Annual Damages

Estimates of Expected Annual Damages (EAD) under future without-project conditions were calculated, using the risk and uncertainty model, through integration of frequency-damage data. The future expected annual damages shown here are projected over the project life of 50 years. Table 2-5 shows a breakdown of where these damages are predicted to occur for each CSRM. Tables 2-6, 2-7, and 2-8 break down the number of structures by event in each reach of the three project areas along with the corresponding still water level for that event.

For the Orange 1, Orange 2, and Orange 3 alternative reaches, significant damages start at approximately the 1% ACE; the depth of flooding at the 1% ACE is approximately 8 feet. In the Jefferson Main alternative reach, significant damages start between the 2% and 1% ACE; the depth of flooding between the 2% and 1% ACE is approximately 6.5 feet and 7.5 feet. For the Beaumont A, Beaumont B and Beaumont C the significant damages start at the 1% ACE; the depth of flooding is approximately 7.5 feet.

The estimated start of damages for the Port Arthur and Vicinity alternative reaches is approximately 15 feet, which corresponds to an estimated high probability of failure of the existing HFPS based on the fragility curves. Flooding depths approximate the stage on the exterior side of the existing HFPS, and goes up to approximately 14 feet for the 0.1% ACE.

The estimated start of damages for the Freeport and Vicinity alternative reaches is approximately 15 feet, which corresponds to an estimated high probability of failure of the existing HFPS based on the fragility curves. Flooding depths approximate the stage on the exterior side of the existing HFPS, and goes up to approximately 19 feet for the 0.1% ACE.

2.4 ALTERNATIVE ANALYSIS

2.4.1 Orange-Jefferson CSRM

As agreed at the Alternative Milestone Meeting (AMM), future without-project (FWOP) damages were run with a rough order of magnitude costs to identify NED benefits. Costs representing a linear foot in both length and height for both levees and floodwalls were developed. The costs per linear foot of levee were estimated at \$237.50 and floodwalls were estimated at \$475.00. These costs included contingency, engineering and design, and constriction management. Real estate costs were also included with commercial and residential estimates of \$100,000 per acre, industrial at \$70,000 per acre, undeveloped land at \$9,000 per acre, and marsh at \$750. Operation, Maintenance, Repair, Replacement and Rehabilitation

		Damage Categories								
Reach	Commercial	Industrial	Multifamily	Mobile	Public	POV	SFR	Total		
Orange Jefferson CSRM										
Orange 1	\$73,000	\$0	\$0	\$7,000	\$10,000	\$33,000	\$190,000	\$312,000		
Orange 2	\$0	\$0	\$0	\$4,000	\$0	\$10,000	\$54,000	\$68,000		
Orange 3	\$21,833,000	\$0	\$93,000	\$98,000	\$409,000	\$969,000	\$6,585,000	\$29,987,000		
Beaumont A	\$0	\$6,937,000	\$0	\$0	\$0	\$0	\$0	\$6,937,000		
Beaumont B	\$0	\$23,000	\$0	\$0	\$0	\$0	\$0	\$23,000		
Beaumont C	\$0	\$262,000	\$0	\$0	\$0	\$0	\$0	\$262,000		
Jefferson Main	\$4,600,000	\$929,000	\$4,834,000	\$0	\$1,824,000	\$536,000	\$15,509,000	\$28,231,000		
Port Arthur CSRM										
8ft-10ft I-Wall	\$19,302,000	\$560,000	\$83,000	\$0	\$368,000	\$275,000	\$2,824,000	\$23,413,000		
Closure Structure	\$3,128,000	\$86,000	\$13,000	\$0	\$59,000	\$44,000	\$453,000	\$3,784,000		
I-Wall Near Valero	\$50,798,000	\$1,587,000	\$228,000	\$0	\$975,000	\$726,000	\$7,553,000	\$61,867,000		
I-Wall Near Tank Farm	\$31,139,000	\$1,012,000	\$143,000	\$0	\$599,000	\$446,000	\$4,670,000	\$38,009,000		
Freeport CSRM										
Dow Barge Canal	\$3,070,000	\$145,903,000	\$884,000	\$2,000	\$4,815,000	\$3,088,000	\$8,897,000	\$166,660,000		
East Storm Levee	\$346,000	\$247,000	\$99,000	\$0	\$233,000	\$191,000	\$587,000	\$1,701,000		
Freeport Dock	\$768,000	\$583,000	\$217,000	\$0	\$549,000	\$456,000	\$1,387,000	\$3,960,000		
Old River at Dow Thumb	\$489,000	\$367,000	\$139,000	\$0	\$349,000	\$290,000	\$882,000	\$2,517,000		
South Storm Levee	\$52,000	\$37,000	\$15,000	\$0	\$35,000	\$28,000	\$87,000	\$254,000		
Tide Gate I-Wall	\$541,000	\$406,000	\$154,000	\$0	\$387,000	\$321,000	\$977,000	\$2,785,000		
Oyster Creek	\$744,000	\$553,000	\$211,000	\$0	\$526,000	\$436,000	\$1,329,000	\$3,800,000		

 Table 2-5. Expected Annual Damages Future Without-Project Condition (2015 price level)

Orange 1								Orange 2							
Event (ACE)	0.1	0.05	0.02	0.01	0.005	0.002	0.001	Event (ACE)	0.1	0.05	0.02	0.01	0.005	0.002	0.001
Elevation (MSL Ft.)	3.62	5.05	6.69	7.76	8.66	9.66	10.35	Elevation (MSL Ft.)	3.60	5.36	7.24	8.51	9.60	10.77	11.57
Damage Category								Damage Category							
Commercial	0	1	1	1	1	1	7	Commercial	0	0	1	1	1	1	1
Industrial	0	0	0	0	0	0	0	Industrial	0	0	0	0	0	0	0
Multifamily	0	0	0	0	0	0	0	Mobile	0	0	4	4	4	11	11
Mobile	2	2	7	7	8	8	19	Public	0	0	0	0	0	0	0
Public	0	0	2	2	2	2	4	Vehicles	0	3	15	16	18	40	42
Vehicles	0	11	13	72	81	87	202	Single-Family	1	3	15	17	17	35	36
Single-Family	2	14	23	82	92	98	232	Grand Total	1	6	35	38	40	87	90
Grand Total	4	28	46	164	184	196	464								
Orange 3								Jefferson Main							
0															
Event (ACE)	0.1	0.05	0.02	0.01	0.005	0.002	0.001	Event (ACE)	0.1	0.05	0.02	0.01	0.005	0.002	0.001
Event (ACE) Elevation (MSL Ft.)	0.1 2.78	0.05 4.25	0.02 6.11	0.01 7.51	0.005 8.64	0.002 9.81	0.001 10.57	Event (ACE) Elevation (MSL Ft.)	0.1 3.08	0.05 4.63	0.02 6.31	0.01 7.49	0.005 8.47	0.002 9.51	0.001 10.22
Event (ACE) Elevation (MSL Ft.) Damage Category	0.1 2.78	0.05 4.25	0.02 6.11	0.01 7.51	0.005 8.64	0.002 9.81	0.001 10.57	Event (ACE) Elevation (MSL Ft.) Damage Category	0.1 3.08	0.05 4.63	0.02 6.31	0.01 7.49	0.005 8.47	0.002 9.51	0.001
Event (ACE) Elevation (MSL Ft.) Damage Category Commercial	0.1 2.78 0	0.05 4.25 3	0.02 6.11 4	0.01 7.51 42	0.005 8.64 48	0.002 9.81 51	0.001 10.57 198	Event (ACE) Elevation (MSL Ft.) Damage Category Commercial	0.1 3.08 0	0.05 4.63 20	0.02 6.31 22	0.01 7.49 153	0.005 8.47 160	0.002 9.51 164	0.001 10.22 240
Event (ACE) Elevation (MSL Ft.) Damage Category Commercial Industrial	0.1 2.78 0 0	0.05 4.25 3 1	0.02 6.11 4 1	0.01 7.51 42 6	0.005 8.64 48 6	0.002 9.81 51 6	0.001 10.57 198 8	Event (ACE) Elevation (MSL Ft.) Damage Category Commercial Industrial	0.1 3.08 0 0	0.05 4.63 20 0	0.02 6.31 22 1	0.01 7.49 153 3	0.005 8.47 160 3	0.002 9.51 164 3	0.001 10.22 240 4
Event (ACE) Elevation (MSL Ft.) Damage Category Commercial Industrial Multifamily	0.1 2.78 0 0 0 0	0.05 4.25 3 1 3	0.02 6.11 4 1 3	0.01 7.51 42 6 99	0.005 8.64 48 6 102	0.002 9.81 51 6 111	0.001 10.57 198 8 180	Event (ACE) Elevation (MSL Ft.) Damage Category Commercial Industrial Multifamily	0.1 3.08 0 0 0	0.05 4.63 20 0 9	0.02 6.31 22 1 10	0.01 7.49 153 3 31	0.005 8.47 160 3 31	0.002 9.51 164 3 31	0.001 10.22 240 4 55
Event (ACE) Elevation (MSL Ft.) Damage Category Commercial Industrial Multifamily Mobile	0.1 2.78 0 0 0 0 0	0.05 4.25 3 1 3 20	0.02 6.11 4 1 3 23	0.01 7.51 42 6 99 167	0.005 8.64 48 6 102 173	0.002 9.81 51 6 111 185	0.001 10.57 198 8 180 385	Event (ACE) Elevation (MSL Ft.) Damage Category Commercial Industrial Multifamily Public	0.1 3.08 0 0 0 0 1	0.05 4.63 20 0 9 5	0.02 6.31 222 1 10 5	0.01 7.49 153 3 31 22	0.005 8.47 160 3 31 22	0.002 9.51 164 3 31 22	0.001 10.22 240 4 55 32
Event (ACE) Elevation (MSL Ft.) Damage Category Commercial Industrial Multifamily Mobile Public	0.1 2.78 0 0 0 0 0 2	0.05 4.25 3 1 3 20 5	0.02 6.11 4 1 3 23 6	0.01 7.51 42 6 99 167 70	0.005 8.64 48 6 102 173 76	0.002 9.81 51 6 111 185 79	0.001 10.57 198 8 180 385 166	Event (ACE) Elevation (MSL Ft.) Damage Category Commercial Industrial Multifamily Public Vehicles	0.1 3.08 0 0 0 0 1 0	0.05 4.63 20 0 9 5 267	0.02 6.31 222 1 10 5 348	0.01 7.49 153 3 31 22 1909	0.005 8.47 160 3 31 22 1974	0.002 9.51 164 3 31 22 2047	0.001 10.22 240 4 55 32 2097
Event (ACE) Elevation (MSL Ft.) Damage Category Commercial Industrial Multifamily Mobile Public Vehicles	0.1 2.78 0 0 0 0 0 2 8	0.05 4.25 3 1 3 20 5 267	0.02 6.11 4 1 3 23 6 319	0.01 7.51 42 6 99 167 70 3,157	0.005 8.64 48 6 102 173 76 3,345	0.002 9.81 51 6 1111 185 79 3,506	0.001 10.57 198 8 180 385 166 9,180	Event (ACE) Elevation (MSL Ft.) Damage Category Commercial Industrial Multifamily Public Vehicles Single-Family	0.1 3.08 0 0 0 1 1 0 0	0.05 4.63 20 0 9 5 267 290	0.02 6.31 222 1 10 5 348 388	0.01 7.49 153 3 31 22 1909 1940	0.005 8.47 160 3 31 22 1974 2010	0.002 9.51 164 3 31 22 2047 2078	0.001 10.22 240 4 55 32 2097 3418
Event (ACE) Elevation (MSL Ft.) Damage Category Commercial Industrial Multifamily Mobile Public Vehicles Single-Family	0.1 2.78 0 0 0 0 0 0 2 8 8 11	0.05 4.25 3 1 3 20 5 267 287	0.02 6.11 4 1 3 23 6 319 347	0.01 7.51 42 6 99 167 70 3,157 3,247	0.005 8.64 48 6 102 173 76 3,345 3,404	0.002 9.81 51 6 1111 185 79 3,506 3,621	0.001 10.57 198 8 180 385 166 9,180 9,146	Event (ACE) Elevation (MSL Ft.) Damage Category Commercial Industrial Multifamily Public Vehicles Single-Family Grand Total	0.1 3.08 0 0 0 0 0 1 1 0 0 1	0.05 4.63 20 0 9 5 267 290 591	0.02 6.31 222 1 100 5 348 388 774	0.01 7.49 153 3 31 22 1909 1940 4,058	0.005 8.47 160 3 31 222 1974 2010 4,200	0.002 9.51 164 3 3 1 22 2047 2078 4,345	0.001 10.22 240 4 55 32 2097 3418 5,846

Table 2-6. Structures by Event for Orange-Jefferson CSRM

Table 2-6, continued

Beaumont A								Beaumont B					
Event (ACE)	0.1	0.05	0.02	0.01	0.005	0.002	0.001	Event (ACE)	0.1	0.05	0.02	0.01	0.005
Elevation (MSL Ft.)	2.92	4.26	6.00	7.25	8.47	9.73	10.51	Elevation (MSL Ft.)	2.71	3.88	5.62	6.86	7.94
Damage Category								Damage Category					
Commercial	0	0	0	0	0	0	0	Industrial	0	0	0	0	1
Industrial	0	0	0	1	1	1	2	Grand Total	0	0	0	0	1
Multifamily	0	0	0	0	0	0	0						
Public	0	0	0	0	0	0	0						
Grand Total	0	0	0	1	1	1	2						
Beaumont C													
Event (ACE)	0.1	0.05	0.02	0.01	0.005	0.002	0.001						
Elevation (MSL Ft.)	3.55	5.09	6.85	8.02	9.00	10.10	10.85						
Damage Category													
Industrial	1	1	1	1	1	1	1						
Grand Total	1	1	1	1	1	1	1						

0.002

9.07

1

1

0.001

10.34

1

1

8ft-10ft I-Wall							
Event (ACE)	0.1	0.05	0.02	0.01	0.005	0.002	0.001
Elevation (MSL Ft.)	2.85	4.31	6.98	9.25	10.94	12.68	13.81
Damage Category							
Commercial	50	549	938	956	1,050	1,057	1,143
Industrial	0	4	6	7	9	9	9
Multifamily	15	119	215	217	249	252	261
Public	16	189	399	401	435	437	445
Vehicles	939	9,129	12,007	16,998	19,478	19,584	20,538
Single Family	1,197	9,262	16,626	16,947	19,378	19,492	20,443
Grand Total	2,217	19,252	30,191	35,526	40,599	40,831	42,839

Table 2-7. Structures by Event for Port Arthur CSRM

Closure Structure							
Event (ACE)	0.1	0.05	0.02	0.01	0.005	0.002	0.001
Elevation (MSL Ft.)	3.45	5.01	6.90	8.20	9.30	10.46	11.20
Damage Category							
Commercial	518	562	938	948	956	1,050	1,050
Industrial	3	5	6	7	7	9	9
Multifamily	114	119	215	216	217	247	250
Public	186	192	399	400	401	435	435
Vehicles	1,269	9,340	11,949	16,847	17,003	19,449	19,495
Single Family	9,002	9,493	16,611	16,793	16,955	19,348	19,392
Grand Total	11,092	19,711	30,118	35,211	35,539	40,538	40,631

I-Wall Near Valero							
Event (ACE)	0.1	0.05	0.02	0.01	0.005	0.002	0.001
Elevation (MSL Ft.)	3.87	5.97	8.47	10.47	12.61	14.77	16.08
Damage Category							
Commercial	535	637	950	1,050	1,056	1,144	1,146
Industrial	4	5	7	9	9	9	9
Multifamily	117	124	217	247	252	261	262
Public	188	315	400	435	437	445	446
Vehicles	8,981	9,682	16,888	19,450	19,581	20,611	20,680
Single Family	9,126	11,610	16,838	19,348	19,484	20,500	20,582
Grand Total	18,951	22,373	35,300	40,539	40,819	42,970	43,125

I-Wall Near Tank Far	m						
Event (ACE)	0.1	0.05	0.02	0.01	0.005	0.002	0.001
Elevation (MSL Ft.)	3.77	5.72	8.10	9.99	12.02	14.08	15.31
Damage Category							
Commercial	531	572	946	1,050	1,052	1,143	1,144
Industrial	3	5	7	9	9	9	9
Multifamily	116	123	216	246	250	261	261
Public	188	208	400	434	436	445	446
Vehicles	1,580	9,585	16,836	17,114	19,549	20,564	20,636
Single Family	9,102	9,749	16,781	19,319	19,445	20,464	20,530
Grand Total	11,520	20,242	35,186	38,172	40,741	42,886	43,026

Dow Barge Canal							
Event (ACE)	0.1	0.05	0.02	0.01	0.005	0.002	0.001
Elevation (MSL Ft.)	4.60	7.46	10.82	13.28	15.76	18.55	20.12
Damage Category							
Commercial	242	284	288	289	289	289	289
Industrial	11	13	14	14	14	14	14
Multifamily	111	115	115	115	115	115	115
Mobile	0	0	2	2	2	2	2
Public	59	62	65	65	65	65	65
Vehicles	2,342	2,566	2,605	2,606	2,607	2,607	2,607
Single Family	2,348	2,571	2,605	2,607	2,607	2,607	2,607
Grand Total	5,113	5,611	5,694	5,698	5,699	5,699	5,699

Table 2-8. Structures by Event for Freeport CSI	eport CSRM
---	------------

Oyster Creek								Freeport Dock
Event (ACE)	0.1	0.05	0.02	0.01	0.005	0.002	0.001	Event (ACE)
Elevation (MSL Ft.)	4.44	8.49	12.21	14.63	16.62	18.77	20.19	Elevation (MSL)
Damage Category								Damage Category
Commercial	206	239	242	243	243	243	243	Commercial
Industrial	3	3	3	3	3	3	3	Industrial
Multifamily	114	117	117	117	117	117	117	Multifamily
Public	62	68	70	70	70	70	70	Public
Vehicles	1,656	1,821	1,845	1,846	1,846	1,846	1,846	Vehicles
Single Family	1,657	1,820	1,843	1,844	1,844	1,844	1,844	Single Family
Grand Total	3,698	4,068	4,120	4,123	4,123	4,123	4,123	Grand Total

Tide Gate							
Event (ACE)	0.1	0.05	0.02	0.01	0.005	0.002	0.001
Elevation (MSL Ft.)	4.46	7.18	10.32	12.65	15.02	17.90	19.52
Damage Category							
Commercial	206	238	242	242	243	243	243
Industrial	3	3	3	3	3	3	3
Multifamily	114	117	117	117	117	117	117
Public	62	68	70	70	70	70	70
Vehicles	1,656	1,816	1,832	1,845	1,846	1,846	1,846
Single Family	1,657	1,816	1,843	1,843	1,844	1,844	1,844
Grand Total	3,698	4,058	4,107	4,120	4,123	4,123	4,123

Old River at Dow							
Event (ACE)	0.1	0.05	0.02	0.01	0.005	0.002	0.001
Elevation (MSL Ft.)	4.43	7.08	10.15	12.41	14.69	17.43	18.97
Damage Category							
Commercial	206	238	242	242	243	243	243
Industrial	3	3	3	3	3	3	3
Multifamily	114	117	117	117	117	117	117
Public	62	68	70	70	70	70	70
Vehicles	1,656	1,814	1,828	1,845	1,846	1,846	1,846
Single Family	1,657	1,816	1,843	1,843	1,844	1,844	1,844
Grand Total	3,698	4,056	4,103	4,120	4,123	4,123	4,123

East Storm Levee							
Event (ACE)	0.1	0.05	0.02	0.01	0.005	0.002	0.001
Elevation (MSL Ft.)	5.08	7.81	11.05	13.38	15.55	17.99	19.50
Damage Category							
Commercial	209	238	242	243	243	243	243
Industrial	3	3	3	3	3	3	3
Multifamily	115	117	117	117	117	117	117
Public	65	68	70	70	70	70	70
Vehicles	1,661	1,820	1,845	1,845	1,846	1,846	1,846
Single Family	1,666	1,819	1,843	1,844	1,844	1,844	1,844
Grand Total	3,719	4,065	4,120	4,122	4,123	4,123	4,123

South Storm Levee							
Event (ACE)	0.1	0.05	0.02	0.01	0.005	0.002	0.001
Elevation (MSL Ft.)	4.21	6.68	9.59	11.63	13.71	16.31	17.93
Damage Category							
Commercial	205	238	241	242	243	243	243
Industrial	3	3	3	3	3	3	3
Multifamily	114	117	117	117	117	117	117
Public	62	68	69	70	70	70	70
Vehicles	1,654	1,686	1,824	1,845	1,846	1,846	1,846
Single Family	1,657	1,814	1,825	1,843	1,844	1,844	1,844
Grand Total	3,695	3,926	4,079	4,120	4,123	4,123	4,123

	0.1	0.05	0.02	0.01	0.005	0.002	0.001
	4.47	7.17	10.30	12.63	14.97	17.79	19.38
	206	238	242	242	243	243	243
	3	3	3	3	3	3	3
	114	117	117	117	117	117	117
	62	68	70	70	70	70	70
1	,656	1,816	1,831	1,845	1,846	1,846	1,846
1	,657	1,816	1,843	1,843	1,844	1,844	1,844
3	,698	4,058	4,106	4,120	4,123	4,123	4,123

	Orange 1 New Levee					Orange 2 New Levee					Orange 3 New Levee			
	10 - Foot	11 - Foot	12 - Foot	13 - Foot		10 - Foot	11 - Foot	12 - Foot	13 - Foot		10 - Foot	11 - Foot	12 - Foot	13 - Foot
INVESTMENT														
Estimated First Cost	\$32,300,000	\$46,617,000	\$60,935,000	\$75,252,000		\$32,870,000	\$41,088,000	\$49,305,000	\$57,523,000		\$205,338,000	\$246,811,000	\$288,284,000	\$329,762,000
Annual Interest Rate	3.375%	3.375%	3.375%	3.375%		3.375%	3.375%	3.375%	3.375%		3.375%	3.375%	3.375%	3.375%
Project Life (years)	50	50	50	50		50	50	50	50		50	50	50	50
Construction Period														
(months)	36	36	36	36		36	36	36	36		36	36	36	36
Interest During														
Construction	\$1,647,000	\$2,377,000	\$3,108,000	\$3,838,000		\$1,676,000	\$2,095,000	\$2,515,000	\$2,934,000		\$10,472,000	\$12,587,000	\$14,702,000	\$16,818,000
Investment Cost	\$33,947,000	\$48,995,000	\$64,043,000	\$79,090,000		\$34,546,000	\$43,183,000	\$51,820,000	\$60,456,000		\$215,810,000	\$259,398,000	\$302,986,000	\$346,580,000
Interest	\$1,146,000	\$1,654,000	\$2,161,000	\$2,669,000		\$1,166,000	\$1,457,000	\$1,749,000	\$2,040,000		\$7,284,000	\$8,755,000	\$10,226,000	\$11,697,000
Amortization	\$269,000	\$388,000	\$508,000	\$627,000		\$274,000	\$342,000	\$411,000	\$479,000		\$1,711,000	\$2,056,000	\$2,402,000	\$2,747,000
O&M (\$/year)*											\$4,084,000	\$4,084,000	\$4,084,000	\$4,084,000
				·										
TOTAL ANNUAL														
COSTS	\$1,415,000	\$2,042,000	\$2,669,000	\$3,296,000		\$1,440,000	\$1,800,000	\$2,160,000	\$2,520,000		\$13,078,000	\$14,895,000	\$16,711,000	\$18,528,000
Without Project EAD	\$312,000	\$312,000	\$312,000	\$312,000		\$68,000	\$68,000	\$68,000	\$68,000		\$29,987,000	\$29,987,000	\$29,987,000	\$29,987,000
Residual EAD	\$62,000	\$39,000	\$23,000	\$12,000		\$32,000	\$26,000	\$20,000	\$16,000		\$8,171,000	\$5,242,000	\$3,044,000	\$1,654,000
Storm Reduction Benefits	\$250,000	\$273,000	\$289,000	\$300,000		\$36,000	\$42,000	\$48,000	\$52,000		\$21,816,000	\$24,745,000	\$26,943,000	\$28,333,000
TOTAL BENEFITS	\$250,000	\$273,000	\$289,000	\$300,000		\$36,000	\$42,000	\$48,000	\$52,000		\$21,816,000	\$24,745,000	\$26,943,000	\$28,333,000
NET BENEFITS	(\$1,165,000)	(\$1,769,000)	(\$2,380,000)	(\$2,996,000)		(\$1,404,000)	(\$1,757,000)	(\$2,112,000)	(\$2,467,000)		\$8,738,000	\$9,851,000	\$10,232,000	\$9,804,000
BENEFIT-COST RATIO	0.2	0.1	0.1	0.1		0.0	0.0	0.0	0.0		1.7	1.7	1.6	1.5

Table 2-9. Economic Performance of Orange-Jefferson CSRM(FY 2015 Price Level/3.375 percent interest rate)

*For Mitigation

		Beaumont A New Levee					Beaumont B New Levee				Beaumont C New Levee		
	11 - Foot	12 - Foot	13 - Foot	14 - Foot		11 - Foot	12 - Foot	13 - Foot	14 - Foot		11 - Foot	12 - Foot	13 - Foot
INVESTMENT													
Estimated First Cost	\$62,661,000	\$70,202,000	\$77,743,000	\$85,284,000		\$1,695,000	\$2,295,000	\$2,895,000	\$3,494,000		\$15,793,000	\$16,078,000	\$19,007,000
Annual Interest Rate	3.375%	3.375%	3.375%	3.375%		3.375%	3.375%	3.375%	3.375%		3.375%	3.375%	3.375%
Project Life (years)	50	50	50	50		50	50	50	50		50	50	50
Construction Period (months)	36	36	36	36		36	36	36	36		36	36	36
Interest During Construction	\$3,196,000	\$3,580,000	\$3,965,000	\$4,349,000		\$86,000	\$117,000	\$148,000	\$178,000		\$805,000	\$820,000	\$969,000
Investment Cost	\$65,857,000	\$73,782,000	\$81,708,000	\$89,634,000		\$1,782,000	\$2,412,000	\$3,042,000	\$3,673,000		\$16,599,000	\$16,898,000	\$19,977,000
Interest	\$2,223,000	\$2,490,000	\$2,758,000	\$3,025,000		\$60,000	\$81,000	\$103,000	\$124,000		\$560,000	\$570,000	\$674,000
Amortization	\$522,000	\$585,000	\$648,000	\$711,000		\$14,000	\$19,000	\$24,000	\$29,000		\$132,000	\$134,000	\$158,000
TOTAL ANNUAL COSTS	\$2,745,000	\$3,075,000	\$3,405,000	\$3,736,000		\$74,000	\$101,000	\$127,000	\$153,000		\$692,000	\$704,000	\$833,000
Without Project EAD	\$6,937,000	\$6,937,000	\$6,937,000	\$6,937,000		\$23,000	\$23,000	\$23,000	\$23,000		\$262,000	\$262,000	\$262,000
Residual EAD	\$1,449,000	\$870,000	\$494,000	\$259,000		\$7,000	\$4,000	\$3,000	\$1,000		\$12,000	\$7,000	\$4,000
Storm Reduction Benefits	\$5,488,000	\$6,067,000	\$6,442,000	\$6,677,000		\$17,000	\$19,000	\$21,000	\$22,000		\$249,000	\$255,000	\$258,000
TOTAL BENEFITS	\$5,488,000	\$6,067,000	\$6,442,000	\$6,677,000		\$17,000	\$19,000	\$21,000	\$22,000		\$249,000	\$255,000	\$258,000
		•				-	-	-	•		•		•
NET BENEFITS	\$2,743,000	\$2,992,000	\$3,037,000	\$2,942,000		(\$58,000)	(\$82,000)	(\$106,000)	(\$131,000)		(\$442,000)	(\$449,000)	(\$574,000)
			1	T	T		1	1	1	T	1	T	1
BENEFIT-COST RATIO	2.0	2.0	1.9	1.8		0.2	0.2	0.2	0.1		0.4	0.4	0.3

Table 2-9. Economic Performance of Orange-Jefferson CSRM (continued)(FY 2015 Price Level/3.375 percent interest rate)

		Jefferson Mai	in New Levee	
	10 - Foot	11 - Foot	12 - Foot	13 - Foot
INVESTMENT				
Estimated First Cost	\$46,948,000	\$65,726,000	\$87,674,000	\$104,747,000
Annual Interest Rate	3.375%	3.375%	3.375%	3.375%
Project Life (years)	50	50	50	50
Construction Period (months)	36	36	36	36
Interest During Construction	\$2,394,000	\$3,352,000	\$4,471,000	\$5,342,000
Investment Cost	\$49,342,000	\$69,078,000	\$92,145,000	\$110,089,000
Interest	\$1,665,000	\$2,331,000	\$3,110,000	\$3,715,000
Amortization	\$391,000	\$548,000	\$730,000	\$873,000
O&M (\$/year)*	\$371,000	\$371,000	\$371,000	\$371,000
TOTAL ANNUAL COSTS	\$2,428,000	\$3,250,000	\$4,212,000	\$4,960,000
Without Project EAD	\$28,231,000	\$28,231,000	\$28,231,000	\$28,231,000
Residual EAD	\$4,207,000	\$2,520,000	\$1,440,000	\$776,000
Flood Reduction Benefits	\$24,025,000	\$25,711,000	\$26,791,000	\$27,456,000
TOTAL BENEFITS	\$24,025,000	\$25,711,000	\$26,791,000	\$27,456,000
NET BENEFITS	\$21,597,000	\$22,461,000	\$22,580,000	\$22,496,000
BENEFIT-COST RATIO	9.9	7.9	6.4	5.5

Table 2-9.	Economic Performance of Orange-Jefferson CSRM (continued)
	(FY 2015 Price Level/3.375 percent interest rate)

* For Mitigation

(OMRR&R) (with the exception of mitigation) was not taken into account, since these are expected to be proportional among alternatives and would not impact the ranking of alternatives. Mitigation was estimated using the Wetlands Value Assessment Model (WVA), and preliminary wetland mitigation costs were developed for use in plan comparison. These costs were based on compensation for a loss of 85.2 Average Annual Habitat Units (AAHUs) from forested wetlands and 181.7 AAHUs from coastal wetlands and applied to only the Orange 3 and Jefferson Main sections, since Beaumont B and C were already not economically viable, and to Beaumont A because they were small. The same costs were applied to all analyzed levee heights and did not vary. Since the alignment may change as a result of public, technical, and policy review, conceptual mitigation plans and preliminary cost estimates were developed to support TSP plan comparison and selection. The primary determinant in differentiating benefits is the scale of the levee being proposed along with the associated cost for that levee/floodwall height.

Table 2-9 displays the economic evaluation for a range of levee/floodwall heights modifications based on the beginning at 10 feet mean sea level (MSL) up to 13 feet MSL NAVD88. They

show the economic performance of the Orange 1, 2, and 3 with new levees and the economic performance of Jefferson Main with new levee as well as Beaumont A, B, and C with new levees. All are calculated at a FY 2015 price level and interest rate.

Based on the information provided in the preceding tables the alternative with the highest net benefits for the Orange-Jefferson CSRM is a levee/floodwall at a height of 12 feet at Orange 3 with Orange 1 and 2 being removed from further consideration. For Beaumont, B and C are removed from consideration and the alternative with the highest net benefits for this area is a 13-foot levee/floodwall at Beaumont A. At Jefferson Main, the alternative with the highest net benefits is a 12-foot levee/floodwall. Residual economic damages in the reaches where an alternative is considered range from \$1.7 to \$8.1 million in Orange 3. At Beaumont A, annual residual economic damages run from \$0.3 to \$1.5 million. For the Jefferson Main reach, residual economic damages run from \$0.8 to \$4.2 million annually.

While both of the 12-foot raises at Orange 3 and Jefferson Main produce higher net benefits than the 11-foot raises, ER-1105-2-100 states "Where two cost-effective plans produce no significantly different levels of net benefits, the less costly plan is to be the NED plan, even though the level of outputs may be less" (Appendix G, pp. G-7 to G-8). The same scenario exists for the 13-foot Raise at Beaumont A versus the 12-foot raise. Based on this guidance, the 11-foot raise at Orange 3 and Jefferson Main and the 12-foot raise at Beaumont A are included as part of the TSP.

2.4.2 Port Arthur and Vicinity CSRM

Just as with the alternative selection with the Freeport CSRM and the Orange-Jefferson CSRM, FWOP damages will have rough order of magnitude costs to identify the NED. Parametric costs were estimated for the first-added resiliency features. The same costs per linear foot both length and height for both levees and floodwalls used for Orange-Jefferson were used for the next added 1- and 2-foot raises to the system. No environmental impacts were identified, and no mitigation costs were included in the comparison. The primary determinant in differentiating benefits lies in the without project damages which is based on the fragility curve at each potential failure location. Additional determinants include the raise of the levee being proposed along with the associated costs associated with those required features, allowing for the removal of the fragility curve in the analysis and the costs for the increases in the levee/floodwall height.

Just as with the Freeport system, costs for any modifications above these resiliency and raise options begin to escalate significantly since reconstruction would be required for providing additional protection from these features. These additional costs include highway raises, gravity
structures, closure structure replacement, replacement of I-wall, and additional pump stations, which are not incrementally justified.

The following tables display the economic evaluation for a range of alternatives beginning with "No Fail" resiliency measures (meaning that the levee/floodwall will not fail prior to overtopping) followed by raises to each reach. All are calculated at a FY 2015 price level and interest rate.

Based on the information provided in Table 2-10, the NED components for the Port Arthur and Vicinity CSRM are generally a "No Fail, One-Foot Raise" for the system. Net benefits for each reach range from \$2.9 million to \$50.7 million. Residual economic damages for the Port Arthur CSRM range from \$3.3 to \$10.0 million for 8-foot to10-foot I-Wall, \$0.2 to \$1.0 million at the Closure Structure, \$7.1 to \$16.3 million at the I-Wall near Valero, and \$10.9 to \$25.1 million at the Tank Farm.

2.4.3 Freeport and Vicinity CSRM

Just as with the alternative selection for the Orange-Jefferson CSRM, FWOP damages will have rough order of magnitude costs to identify NED benefits. The same costs per linear foot both length and height for both levees and floodwalls used for Orange-Jefferson were used for the next added 1- and 2-foot raises to the system. No environmental impacts were identified, and no mitigation costs were included in the comparison.

Costs for any modifications above these resiliency and raise options begin to escalate significantly since reconstruction would be required for providing additional protection from these features. These additional costs include features such as high performance turf reinforcement mats, replacement of the Tide gate, gravity structures, intake structures, and rebuilding the dock and floodwalls, which are not incrementally justified.

Table 2-11 displays the economic evaluation for a range of alternatives beginning with "No Fail" resiliency measures followed by raises to each reach. All are evaluated at a FY 2015 price level and interest rate. Just as with the Port Arthur CSRM, the primary determinant in differentiating benefits lies in the without-project damages, which is based on the fragility curve at each potential failure location. Additional determinants include the raise of the levee being proposed along with the associated costs associated with those required features, allowing for the removal of the fragility curve in the analysis and the costs for the increases in the levee/floodwall height.

	8ft	-10ft I-Wall Ra	aise	Clos	Closure Structure Raise			I-Wall Raise Near Valero			I-Wall Raise Near Tank Farm		
	No Fail	1-Foot Raise	2 -Foot Raise	No Fail	1- Foot Raise	2-Foot Raise	No Fail	1-Foot Raise	2-Foot Raise	No Fail	1-Foot Raise	2-Foot Raise	
INVESTMENT													
Estimated First Cost	\$3,330,000	\$8,915,000	\$66,744,000	\$3,804,000	\$10,654,000	\$22,822,000	\$7,655,000	\$8,948,000	\$312,523,000	\$2,756,000	\$4,627,000	\$188,878,000	
Annual Interest Rate	3.375%	3.375%	3.375%	3.375%	3.375%	3.375%	3.375%	3.375%	3.375%	3.375%	3.375%	3.375%	
Project Life (years)	50	50	50	50	50	50	50	50	50	50	50	50	
Construction Period (months)	36	36	36	36	36	36	36	36	36	36	36	36	
Interest During Construction	\$170,000	\$455,000	\$3,404,000	\$194,000	\$543,000	\$1,164,000	\$390,000	\$456,000	\$15,938,000	\$141,000	\$236,000	\$9,633,000	
Investment Cost	\$3,500,000	\$9,370,000	\$70,148,000	\$3,998,000	\$11,197,000	\$23,986,000	\$8,045,000	\$9,404,000	\$328,461,000	\$2,897,000	\$4,863,000	\$198,511,000	
Interest	\$118,000	\$316,000	\$2,367,000	\$135,000	\$378,000	\$810,000	\$272,000	\$317,000	\$11,086,000	\$98,000	\$164,000	\$6,700,000	
Amortization	\$28,000	\$74,000	\$556,000	\$32,000	\$89,000	\$190,000	\$64,000	\$75,000	\$2,604,000	\$23,000	\$39,000	\$1,574,000	
TOTAL ANNUAL COSTS	\$146,000	\$391,000	\$2,924,000	\$167,000	\$467,000	\$1,000,000	\$335,000	\$392,000	\$13,689,000	\$121,000	\$203,000	\$8,273,000	
Without Project EAD	\$23,413,000	\$23,413,000	\$23,413,000	\$3,784,000	\$3,784,000	\$3,784,000	\$61,867,000	\$61,867,000	\$61,867,000	\$38,009,000	\$38,009,000	\$38,009,000	
Residual EAD	\$9,962,000	\$5,730,000	\$3,274,000	\$995,000	\$408,000	\$156,000	\$16,379,000	\$10,813,000	\$7,101,000	\$25,130,000	\$16,874,000	\$10,893,000	
Flood Reduction Benefits	\$13,451,000	\$17,683,000	\$20,138,000	\$2,788,000	\$3,375,000	\$3,628,000	\$45,488,000	\$51,054,000	\$54,766,000	\$12,879,000	\$21,135,000	\$27,116,000	
TOTAL BENEFITS	\$13,451,000	\$17,683,000	\$20,138,000	\$2,788,000	\$3,375,000	\$3,628,000	\$45,488,000	\$51,054,000	\$54,766,000	\$12,879,000	\$21,135,000	\$27,116,000	
		·	·	•				·		·			
NET BENEFITS	\$13,305,000	\$17,292,000	\$17,215,000	\$2,622,000	\$2,908,000	\$2,628,000	\$45,153,000	\$50,662,000	\$41,076,000	\$12,758,000	\$20,932,000	\$18,843,000	
BENEFIT-COST RATIO	92.1	45.2	6.9	16.7	7.2	3.6	135.8	130.2	4.0	106.4	104.1	3.3	

Table 2-10. Economic Performance of Port Arthur and Vicinity CSRM(FY 2015 Price Level/3.375 percent interest rate)

	Dow Barge Canal Protection	Oyste	Oyster Creek Levee Raise			East Storm Levee Raise			Freeport Dock Floodwall Raise		
	No Fail - Closure Structure	No Fail	1-Foot Raise	2 Foot Raise		No Fail	1-Foot Raise	2- Foot Raise	Partial Fail	No Fail	1-Foot Raise
INVESTMENT											
Estimated First Cost	\$130,000,000	\$1,663,000	\$4,869,000	\$54,244,000		\$3,415,000	\$6,530,000	\$26,402,000	\$1,500,000	\$2,850,000	\$150,000,000
Annual Interest Rate	3.375%	3.375%	3.375%	3.375%		3.375%	3.375%	3.375%	3.375%	3.375%	3.375%
Project Life (years)	50	50	50	50		50	50	50	50	50	50
Construction Period (months)	36	36	36	36		36	36	36	36	36	36
Interest During Construction	\$6,630,000	\$85,000	\$248,000	\$2,766,000		\$174,000	\$333,000	\$1,346,000	\$76,000	\$145,000	\$7,650,000
Investment Cost	\$136,630,000	\$1,748,000	\$5,117,000	\$57,010,000		\$3,590,000	\$6,863,000	\$27,748,000	\$1,576,000	\$2,995,000	\$157,650,000
Interest	\$4,611,000	\$59,000	\$173,000	\$1,924,000		\$121,000	\$232,000	\$937,000	\$53,000	\$101,000	\$5,321,000
Amortization	\$1,083,000	\$14,000	\$41,000	\$452,000		\$28,000	\$54,000	\$220,000	\$12,000	\$24,000	\$1,250,000
TOTAL ANNUAL COSTS	\$5,694,000	\$73,000	\$213,000	\$2,376,000		\$150,000	\$286,000	\$1,156,000	\$66,000	\$125,000	\$6,570,000
Without Project EAD	\$166,660,000	\$3,800,000	\$3,800,000	\$3,800,000		\$1,701,000	\$1,701,000	\$1,701,000	\$3,960,000	\$3,960,000	\$3,960,000
Residual EAD	\$47,052,000	\$1,717,000	\$1,272,000	\$933,000		\$782,000	\$581,000	\$425,000	\$3,771,000	\$1,742,000	\$1,333,000
Storm Reduction Benefits	\$119,608,000	\$2,083,000	\$2,527,000	\$2,866,000		\$919,000	\$1,121,000	\$1,276,000	\$189,000	\$2,218,000	\$2,627,000
TOTAL BENEFITS	\$119,608,000	\$2,083,000	\$2,527,000	\$2,866,000		\$919,000	\$1,121,000	\$1,276,000	\$189,000	\$2,218,000	\$2,627,000
NET BENEFITS	\$113,914,000	\$2,010,000	\$2,314,000	\$490,000		\$769,000	\$835,000	\$120,000	\$123,000	\$2,093,000	(\$3,944,000)
		·									
BENEFIT-COST RATIO	21.0	28.5	11.9	1.2		6.1	3.9	1.1	2.9	17.7	0.4

Table 2-11. Economic Performance of Freeport and Vicinity CSRM(FY 2015 Price Level/3.375 percent interest rate)

	Old River Levee Raise at Dow Thumb			South Storm	Levee Raise		Tide Gate I-Wall Raise			
	No Fail	1-Foot Raise	2- Foot Raise	1-Foot Raise	2- Foot Raise	No Fail	1-Foot Raise	2- Foot Raise		
INVESTMENT										
Estimated First Cost	\$7,581,000	\$8,294,000	\$92,088,000	\$3,325,000	\$6,650,000	\$1,720,000	\$3,800,000	\$35,644,000		
Annual Interest Rate	3.375%	3.375%	3.375%	3.375%	3.375%	3.375%	3.375%	3.375%		
Project Life (years)	50	50	50	50	50	50	50	50		
Construction Period (months)	36	36	36	36	36	36	36	36		
Interest During Construction	\$387,000	\$423,000	\$4,696,000	\$170,000	\$339,000	\$88,000	\$194,000	\$1,818,000		
Investment Cost	\$7,968,000	\$8,717,000	\$96,784,000	\$3,495,000	\$6,989,000	\$1,808,000	\$3,994,000	\$37,462,000		
Interest	\$269,000	\$294,000	\$3,266,000	\$118,000	\$236,000	\$61,000	\$135,000	\$1,264,000		
Amortization	\$63,000	\$69,000	\$767,000	\$28,000	\$55,000	\$14,000	\$32,000	\$297,000		
				·			·			
TOTAL ANNUAL COSTS	\$332,000	\$363,000	\$4,034,000	\$146,000	\$291,000	\$75,000	\$166,000	\$1,561,000		
Without Project EAD	\$2,517,000	\$2,517,000	\$2,517,000	\$254,000	\$254,000	\$2,785,000	\$2,785,000	\$2,785,000		
Residual EAD	\$1,215,000	\$913,000	\$679,000	\$182,000	\$127,000	\$1,184,000	\$897,000	\$675,000		
Storm Reduction Benefits	\$1,302,000	\$1,604,000	\$1,838,000	\$72,000	\$127,000	\$1,601,000	\$1,888,000	\$2,110,000		
TOTAL BENEFITS	\$1,302,000	\$1,604,000	\$1,838,000	\$72,000	\$127,000	\$1,601,000	\$1,888,000	\$2,110,000		
							·			
NET BENEFITS	\$969,000	\$1,241,000	(\$2,196,000)	(\$74,000)	(\$164,000)	\$1,526,000	\$1,721,000	\$549,000		
		·	·							
BENEFIT-COST RATIO	3.9	4.4	0.5	0.5	0.4	21.4	11.4	1.4		

Table 2-11. Economic Performance of Freeport and Vicinity CSRM (continued)(FY 2015 Price Level/3.375 percent interest rate)

Based on the information provided in the preceding table, the NED components for the Freeport and Vicinity CSRM are generally a "No Fail, One-Foot Raise" for the system. The exception is a "No Fail" closure structure at the Dow Barge Canal and a "No Fail" floodwall at Freeport Dock. No further consideration is given to the South Storm Levee, since neither of the two potential raises analyzed is economically justified. A "no fail" alternative was not analyzed, since this levee was not expected to fail prior to overtopping and it also has the highest crest elevation of 21 feet MSL. Residual economic damages are \$47.1 million at the Dow Barge Canal, range from \$0.9 to 1.7 million at the Oyster Creek Levee, range from \$0.4 to \$0.8 million at the East Storm Levee, \$1.3 to \$3.8 at Freeport Dock, \$0.7 to \$1.2 million at Old River Levee at the Dow thumb, and \$0.7 to \$1.2 million at the Tide Gate I-Wall.

2.4.4 Brazoria and Sabine Non-Structural

Surveys of aerial imagery for the three counties were done to look for the potential for buyouts. Buyouts would be ancillary to the implementation of new levees/floodwalls in Orange and Jefferson Counties and to the enhancement of features in the Freeport and Port Arthur systems. Buyout opportunities in Brazoria are virtually non-existent and very limited in both Orange and Jefferson Counties. Several structures in Jefferson have the potential for being bought out. All of these structures, however, are commercial and buying out these structures is very unlikely to be the economically viable. Figure 2-8 shows the potential for buyouts in Orange County. There are approximately 20 residential structures that could be potentially economically viable and are currently being evaluated. While some of the parcels appeared to have no structures located on them, inspection of county appraisal records in many cases showed improvements on many of these parcels. Visual inspections of aerial photos and further inspection of the appraisal records showed that many of these were agricultural improvements and would therefore not be subject to any permanent evacuation analysis. A quantitative analysis was conducted to determine the viability of any proposed evacuation. Water surface profiles and stage/probability functions were developed from the ADCIRC points that intersected those parcels of interest and imported into HEC-FDA along with depth-damage functions and structure files representing these structures of interest and evaluated. The original list of 20 structures was whittled down to six. Four of these structures were in the 2 % ACE, with the other two being in the 0.05 % ACE. Without-project EADs were estimated for these structures which totaled \$8,700. Costs for buying out these structures were low-balled to include merely the appraised value of the structure plus \$10,000 to demolish the structure. Annual costs for evacuating all six were \$21,700, creating net benefits of -\$13,000. Buying only the four in the 2 % ACE produced net benefits of -\$8,600. Based on this analysis, any potential buyouts to be included in the TSP are eliminated. The results of the analysis are captured in Table 2-12.

Figure 2-8. Potential Orange County Buyouts

	0.02 to 0.01 % ACE Buyout	Total Buyout
INVESTMENT		
Estimated First Cost	\$396,400	\$511,900
Annual Interest Rate	3.375%	3.375%
Project Life (years)	50	50
Construction Period (months)	12	12
Interest During Construction	\$7,200	\$9,300
Investment Cost	\$403,600	\$521,200
Interest	\$13,600	\$17,600
Amortization	\$3,200	\$4,100
TOTAL ANNUAL COSTS	\$16,800	\$21,700
Without Project EAD	\$8,700	\$8,700
Residual EAD	\$500	\$0
Flood Reduction Benefits	\$8,200	\$8,700
TOTAL BENEFITS	\$8,200	\$8,700
NET BENEFITS	(\$8,600)	(\$13,000)
BENEFIT-COST RATIO	0.5	0.4

1 abic 2-12. 1011-sti uctul al Allalysis	Table 2-12.	Non-structural	Analysis
--	--------------------	----------------	----------

2.5 **RISK PERFORMANCE OF PROPOSED ACTIONS**

Engineer Regulation 1105-2-101 states that risk and uncertainty are intrinsic in water resources planning and design with inaccuracy in all measured or estimated values in project planning and design to some varying degrees. Invariably, the true values are different from any single, point values presently used in project formulation, evaluation, and design. The best estimates of key variables, factors, parameters, and data components in the planning and design of flood damage reduction projects are considered the "most likely" values. These values, however, are frequently based on small periods of record, sample sizes, and measurements that are subject to error.

The ER also states that risk analyses "captures and quantifies the extent of the risk and uncertainty in the various planning and design components of an investment project. The total effect of uncertainty on the project's design and economic viability can be examined and conscious decisions made reflecting an explicit tradeoff between risks and costs. Risk analysis can be used to compare plans in terms of the variability of their physical performance, economic success, and residual risks."

Engineer Manual 1110-2-1619 identifies a number of potential sources of uncertainty. These include (1) uncertainty about future hydrologic events such as steam flow and rainfall; (2) uncertainty arising from the use of simplified models to describe complex hydraulic phenomena; (3) economic and social uncertainty, particularly the relationship between depth and inundation damage, inaccuracies in estimates of structure values and locations, and the predictability of how the public will respond to a flood; and (4) uncertainty about structural and geotechnical performance of water-control measures when subjected to rare storm events.

Uncertainty in the hydrology and hydraulics is addressed primarily by utilizing graphical exceedance probability functions which sets confidence limits for discharges at each discrete exceedance probability based on the equivalent record length. Uncertainty for hydrology and hydraulics is also addressed by assigning distributions to stage-damage functions. In the case of this study, the equivalent record length is set at 30 years and the error for the stage-damage functions is set at 0.5 feet. No fragility curves are assigned to the proposed levee, since flooding durations are short and it would be overtopped regardless for those rare events. Economic uncertainties are similarly managed with normal distributions with standard errors assigned to the depth-damage functions and by defining uncertainty parameters for first floor corrections, structure and content values. Uncertainties are further handled by changing, if necessary, the number of Monte Carlo simulations and by varying the range of ordinates in the aggregated stage-damage functions.

HEC-FDA produces project performance reports to display the hydrologic and hydraulic performance of a particular plan. Table 2-13 shows the project performance for the proposed levee raise. For the future without-project condition, the expected annual exceedance probability (AEP) for the Orange Jefferson CSRM ranges from 2.8 percent for Beaumont A to 11.4 percent for Jefferson Main. For the Port Arthur CSRM, the expected AEP ranges from 0.0 percent for the Closure Structure to 0.2 percent for the I-Wall near Valero. For the Freeport CSRM, the expected AEP ranges from 0.1 percent for the South Storm Levee to 6.0 percent for the Dow Barge Canal. Implementing the TSP reduces these expected AEP substantially.

The lack of any long-term performance of the existing conditions at the Orange-Jefferson CSRM shows that the area where levees/floodwalls are being proposed has anywhere from a 76 percent to 99.8 chance of being inundated in 50 years and a virtually zero chance of not being exceeded by the 0.2 percent event. The long-term risk for the existing Port Arthur system is somewhat less, but the long-term risk for the existing Freeport system has a wide variation from the different potential failure locations ranging from 3.7 percent for the South Storm Levee to 95.5 percent for the Dow Barge Canal. Long-term risk is reduced considerably for all three CSRMs with implementation of the TSP. The non-exceedance probability for the 0.2 % ACE also increases substantially with the implementation of the TSP. These results are also all listed in Table 2-13.

2.5.1 Performance of the Tentatively Selected Plan under Relative Sea Level Change

An analysis was conducted in order to assess how the TSP might perform under various relative sea level change (RSLC) scenarios. As part of this analysis, H&H determined what engineering guidance would need to be for levee/floodwall heights based on EC 1110-2-6067 and CFR 2000 Title 44 and additional guidance for the three CSRMs to address the projected 50-year RSLC under low, intermediate, and high scenarios. These required heights were averaged so that they could be compared to the recommended heights specified in the TSP. Table 2-14 shows these required engineering heights in the left side of the table, while the right side specifies the recommend heights based on the criteria to determine the TSP and the difference between the two sets of criteria. Under the three RSLC scenarios, the TSP addresses relative sea level change well for the Port Arthur and Freeport CSRMs. The Orange-Jefferson CSRM shows deficiencies ranging from 2.24 to 4.77 feet. These results are also in Table 2-14.

		Long-T	erm Risk	(years)		A	ssurance	by Event			
Damage Reach	Expected AEP	10	30	50	10%	4%	2%	1%	0.4%	0.2%	
Orange -Jefferson CSRM											
Orange 3	7.7%	55.0%	86.4%	98.2%	85.4%	11.4%	2.1%	0.5%	0.2%	0.0%	
Beaumont A	2.8%	24.8%	50.9%	75.9%	100.0%	77.7%	35.3%	13.0%	3.8%	1.8%	
Jefferson Main	11.4%	70.2%	95.1%	99.8%	55.7%	5.3%	1.3%	0.4%	0.2%	0.0%	
Port Arthur CSRM											
8ft-10ft I-Wall	0.1%	0.5%	1.2%	2.4%	100.0%	100.0%	100.0%	99.8%	94.2%	82.7%	
Closure Structure	0.0%	0.0%	0.1%	0.1%	100.0%	100.0%	100.0%	100.0%	99.5%	98.0%	
I-Wall Near Valero	0.2%	2.3%	6.8%	11.0%	100.0%	100.0%	99.9%	97.1%	75.4%	55.9%	
I-Wall Near Tank Farm	0.1%	1.1%	2.7%	5.2%	100.0%	100.0%	100.0%	99.3%	87.2%	70.7%	
Freeport CSRM											
Dow Barge Canal	6.0%	46.3%	78.9%	95.5%	83.6%	59.4%	43.1%	27.2%	12.3%	6.9%	
East Storm Levee	0.5%	4.7%	11.3%	21.3%	100.0%	99.9%	97.1%	84.8%	59.2%	42.4%	
Freeport Dock	1.2%	10.9%	25.1%	43.8%	100.0%	99.1%	84.2%	52.7%	21.6%	11.3%	
Old River at Dow Thumb	0.7%	7.1%	16.8%	30.8%	100.0%	98.9%	91.8%	75.9%	46.4%	29.3%	
South Storm Levee	0.1%	0.7%	2.2%	3.7%	100.0%	100.0%	100.0%	100.0%	97.7%	89.4%	
Tide Gate I-Wall	0.8%	7.4%	17.5%	32.0%	100.0%	98.7%	91.0%	74.5%	44.9%	27.8%	
Oyster Creek	0.6%	6.2%	14.9%	27.5%	100.0%	99.8%	94.2%	76.1%	49.7%	34.8%	

Table 2-13. Project Performance for the Tentatively Selected Plan

	With Project											
		Long-	Ferm Risł	k (years)			Assurance	e by Event				
Damage Reach	Expected AEP	10	30	50	10%	4%	2%	1%	0.4%	0.2%		
Orange -Jefferson CSRM												
Orange 3 New Levee (11-	0.2%	1.7%	1.7%	4.1%	100.0%	100.0%	100.0%	98.8%	87.0%	72.5%		
Foot)												
Beaumont A New Levee (12-	0.1%	0.8%	2.1%	4.1%	100.0%	100.0%	100.0%	99.9%	95.9%	86.9%		
Foot)		,.	,									
Jefferson Main New Levee	0.1%	0.8%	1.9%	3.8%	100.0%	100.0%	100.0%	99.7%	96.1%	89.3%		
(11-Foot)												
Port Arthur CSRM		Γ	Γ			L	I			Γ		
8- to 10-foot I-Wall Raise (1-	0.4%	0.4%	1.2%	2.0%	100.0%	100.0%	100.0%	100.0%	99.8%	98.3%		
foot)												
Closure Structure Raise (1-	0.0%	0.4%	1.1%	2.1%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%		
foot)			,-							/-		
I-Wall Raise Near Valero (1-	0.1%	0.5%	1.6%	2.7%	100.0%	100.0%	100.0%	100.0%	99.0%	94.3%		
foot)				,								
I-Wall Raise Near Tank Farm	0.1%	0.7%	2.1%	3.6%	100.0%	100.0%	100.0%	100.0%	97.4%	89.5%		
(1-foot)												
Freeport CSRM		•	•			I	I			I		
Dow Barge Canal Gate	0.6%	5.8%	16.4%	25.9%	100.0%	100.0%	97.7%	80.9%	45.2%	27.1%		
Structure										/		
East Storm Levee Raise (1-	0.2%	1.6%	4.8%	7.9%	100.0%	100.0%	100.0%	98.7%	87.3%	72.7%		
foot)		11070			1001070	1001070	1001070	2011/0	071070			
Freeport Dock (No Fail)	0.5%	4.8%	11.5%	21.7%	100.0%	100.0%	98.9%	87.0%	53.5%	32.9%		
Old River Levee Raise at Dow	0.3%	2.5%	7 4%	12.1%	100.0%	100.0%	99.9%	97 3%	77 1%	55.6%		
Thumb (1-foot)	0.570	2.370	7.170	12.170	100.070	100.070	<i>JJ.J</i> 70	21.370	77.170	55.070		
South Storm Levee	-	-	-	-	-	-	-	-	-	-		
Tide Gate I-Wall - 1-foot	0.3%	2.5%	6.1%	11.9%	100.0%	100.0%	100.0%	97.5%	77.6%	55.8%		
Tide Gate I-Wall Raise (1-	0.3%	3 3%	8.0%	15 /1%	100.0%	100.0%	99.5%	92 3%	69.8%	52 3%		
foot)	0.5%	5.570	0.070	1.5.470	100.070	100.070	77.570	12.370	07.070	52.570		

	Engineering Criteria - FT NAVD				TSP Project Performance					
	Without RSLC	Low RSLC	Intermediate RSLC	High RSLC	Recommended Height - TSP	Surplus/ Deficit (Without)	Surplus/ Deficit (Low)	Surplus/Deficit (Intermediate)	Surplus/ Deficit (High)	
Orange-Jefferson										
Floodwall	12.50	13.43	13.98	15.77	11.00	-1.50	-2.43	-2.98	-4.77	
Orange-Jefferson Levee	12.33	13.24	13.83	15.59	11.00	-1.33	-2.24	-2.83	-4.59	
Port Arthur Floodwall	13.25	16.10	16.72	18.25	19.00	5.75	2.90	2.28	0.75	
Port Arthur Levee	12.94	13.86	14.43	16.20	18.00	5.06	4.14	3.58	1.80	
Dow Barge Canal	15.85	16.58	17.15	18.93	26.00	10.15	9.43	8.85	7.08	
Freeport Levee	16.42	17.13	17.66	19.45	20.75	4.33	3.63	3.09	1.30	
Oyster Creek	16.41	16.41	16.41	16.41	19.00	2.59	2.59	2.59	2.59	

Table 2-14. Tentatively Selected Plan Relative Sea Level Change Project Performance

2.5.2 Life Safety Considerations

The population at risk (PAR) is displayed by project area is included in Table 2-15. The PAR was developed based on the 2010 census blocks that intersect the damageable properties in the project areas. This population reflects the residential population that may be exposed to flood risk. This does not include transportation routes for evacuation or those at work in commercial or industrial areas. The PAR the same is due to the fact that virtually the same structures being protected by the levee at Jefferson Main are also being protected by the existing hurricane flood protection system at Port Arthur. In the case of Jefferson Main, the levee is protecting against surge coming up the Neches River. For Port Arthur, damages are being quantified from the failure locations along the HFPS. In the case of Beaumont A – C, all three reaches fall within the same census block.

CSRM	Population at Risk
Orange-Jefferson	
Orange 1	17,014
Orange 2	13,952
Orange 3	60,044
Beaumont A	2,078
Beaumont B	2,078
Beaumont C	2,078
Jefferson Main	116,762
Port Arthur	116,762
Freeport	16,559

 Table 2-15. Population at Risk by CSRM

Broad warnings as storm systems develop are coordinated through various agencies, such as the National Weather Service, which provides reports to the essential print and electronic media outlets. The National Weather Service generally releases tropical storm watches 48 hours in advance of any anticipated onset of tropical storm force winds. Since outside preparedness activities become difficult once winds reach tropical storm force, warnings are issued 36 hours in advance of any anticipated onset of tropical storm force winds. The Texas Department of Public Safety's Division of Emergency Management coordinates the state emergency management program, as well as implementing the Texas Emergency Tracking Network (ETN), part of a comprehensive data-management system that provides real-time information before, during, and after a disaster. Orange and Jefferson Counties are members of the Southeast Texas Altering Network, which can alert users of emergencies, plant operations, traffic, and weather information or other outreach from emergency management. Both counties as well as Brazoria, also have emergency management departments that engage their respective cities, including specific evacuation plans and processes.

2.5.3 Critical Infrastructure

The following describes the existing critical infrastructure in each project area. Critical infrastructure listed here includes industrial and manufacturing facilities as well as public facilities. This is a qualitative discussion of the future without-project condition focused on the impacts associated with potential storm surge flooding. The inventory of critical infrastructure came from information derived from the Homeland Security Infrastructure Program (HSIP), an infrastructure geospatial data inventory. The critical infrastructure is reported for the project areas by type (school, chemical manufacturing, etc.). A North American Industry Classification System (NAICS) code is included in the full listing of the inventory is at the end of this appendix. The project areas are listed by county; Orange-Jefferson CSRM includes Orange and Jefferson County; Port Arthur and Vicinity CSRM includes Jefferson County; Freeport includes Brazoria County.

Orange – Jefferson CSRM (Orange and Jefferson County)

Public Facilities – Orange County

- 20 Schools
- 14 Law enforcement
- 2 Hospitals/6 nursing homes
- 11 Fire stations

Industrial and Manufacturing – Orange County

- 20 Chemical manufacturing
- 5 Electric generation
- 0 Petroleum refining
- 1 Airport

Public Facilities – Jefferson County

- 42 Schools
- 19 Law enforcement
- 13 Hospitals/7 nursing homes
- 26 Fire stations

Industrial and Manufacturing – Jefferson County

- 54 Chemical manufacturing
- 1 Electric generation
- Petroleum refining
- 1 Airport

Some of the significant industrial and manufacturing facilities located in Orange-Jefferson CSRM include Exxon Mobil, DuPont, Honeywell, Firestone, Petrochemical, Chevron, Phillips, Laxness, Solvay Solexis, and Entergy. Exxon Mobil, located in Beaumont, Texas, on the Neches River, processes 345,000 barrels of crude oil per day and produces 2.5 billion gallons of gasoline annually.

Port Arthur and Vicinity CSRM (Jefferson County)

Public Facilities – Jefferson County

- 42 Schools
- 19 Law enforcement
- 13 Hospitals/7 nursing homes
- 26 Fire stations

Industrial and Manufacturing – Jefferson County

- 54 Chemical manufacturing
- 1 Electric generation
- Petroleum refining
- 1 Airport

Significant industrial and manufacturing facilities located in the Port Arthur and Vicinity CSRM include Valero, Premcor, Total, Motiva Enterprises and Huntsman Petrochemical. Jack Brooks Regional Airport is also in the project area. Motiva is the largest petroleum refinery in the United States, with a capacity of approximately 600,000 barrels of crude oil per day.

Freeport and Vicinity CSRM (Brazoria County)

Public Facilities – Brazoria County

- 6 Schools
- 3 Law enforcement
- 0 Hospitals/0 nursing homes
- 2 Fire stations

Industrial and Manufacturing - Brazoria County

- 24 Chemical manufacturing
- 0 Electric generation
- 0 Petroleum refining

Significant industrial and manufacturing facilities located in the Freeport and Vicinity CSRM include Petroleum Reserve, Dow Chemical, Freeport LNG, Huntsman Gulf Chemicals, Phillips 66 Liquefied Petroleum Gas (LPG) Terminal, SI Group, and NALCO. A detailed description of each critical facility is not provided here; however, to explain one in some detail, Dow Chemical is the largest integrated chemical manufacturing complex in the western hemisphere. The Freeport site produces 44 percent of Dow's products sold in the U.S. and 20 percent of the company's products sold globally. A listing of these facilities is located at the end of this appendix.

2.6 CONCLUSION AND IDENTIFICATION OF THE TSP

The primary planning objective to select the TSP is to reduce economic damage for the 50-year period of analysis. The TSP also meets the Federal objective of maximizing net benefits. Alternatives were evaluated to show reductions in expected annual damages towards a plan that maximizes net benefits. To that end, the following summarizes each of the CSRMs with their respective alternatives with the highest net benefits to be included in the TSP.

2.6.1 Orange-Jefferson CSRM

- Orange 3 New Levee 11-Foot Levee/Floodwall
- Jefferson Main New Levee –11-Foot Levee/Floodwall
- Beaumont A New Levee –12-Foot Levee/Floodwall

2.6.2 Port Arthur and Vicinity CSRM

- 8-10 ft I-Wall Raise (1-Foot)
- Closure Structure Raise (1-Foot)
- I-Wall Raise Near Valero (1-Foot)
- I-Wall Raise Near Tank Farm (1-Foot)

2.6.3 Freeport and Vicinity CSRM

- Dow Barge Canal Gate Structure
- Oyster Creek Levee Raise (1-Foot)
- East Storm Levee Raise (1-Foot)
- Freeport Dock No Fail
- Old River Levee Raise at Dow Thumb (1-Foot)
- Tide Gate I-Wall Raise (1-Foot)

The following tables display each of the maximized NED alternatives which comprise the TSP beginning with the Orange-Jefferson CSRM, then the Port Arthur and Vicinity CSRM, and finally the Freeport and Vicinity CSRM (Tables 2-16 through 2-18).

	Orange 3	Iefferson Main	Regument A
	11 - Foot	11 - Foot	12 - Foot
INVESTMENT			
Estimated First Cost	\$246,811,000	\$65,726,000	\$70,202,000
Annual Interest Rate	3.375%	3.375%	3.375%
Project Life (years)	50	50	50
Construction Period (months)	36	36	36
Interest During Construction	\$12,587,000	\$3,352,000	\$3,580,000
Investment Cost	\$259,398,000	\$69,078,000	\$73,782,000
Interest	\$8,755,000	\$2,331,000	\$2,490,000
Amortization	\$2,056,000	\$548,000	\$585,000
O&M (\$/year)*	\$4,084,000	\$371,000	
TOTAL ANNUAL COSTS	\$14,895,000	\$3,250,000	\$3,075,000
Without Project EAD	\$29,987,000	\$28,231,000	\$6,937,000
Residual EAD	\$5,242,000	\$2,520,000	\$870,000
Storm Reduction Benefits	\$24,745,000	\$25,711,000	\$6,067,000
TOTAL BENEFITS	\$24,745,000	\$25,711,000	\$6,067,000
NET BENEFITS	\$9,851,000	\$22,461,000	\$2,992,000
BENEFIT-COST RATIO	1.7	7.9	2.0

Table 2-16. TSP for Orange-Jefferson CSRM(FY 2015 Price Level/3.375 percent interest rate)

Table 2-17. TSP for Port Arthur and Vicinity CSRM(FY 2015 Price Level/3.375 percent interest rate)

				I-Wall Near	
	8ft-10ft I-Wall	Closure Structure	I-Wall Near Valero	Tank Farm	
	1-Foot Raise	1-Foot Raise	1-Foot Raise	1-Foot Raise	
INVESTMENT					
Estimated First Cost	\$8,915,000	\$10,654,000	\$8,948,000	\$4,627,000	
Annual Interest Rate	3.375%	3.375%	3.375%	3.375%	
Project Life (years)	50	50	50	50	
Construction Period	26	26	26	26	
(months)	50	50	50	50	
Interest During	\$455,000	\$542,000	\$456,000	\$226,000	
Construction	\$455,000	\$343,000	\$450,000	\$230,000	
Investment Cost	\$9,370,000	\$11,197,000	\$9,404,000	\$4,863,000	
Interest	\$316,000	\$378,000	\$317,000	\$164,000	
Amortization	\$74,000	\$89,000	\$75,000	\$39,000	

				I-Wall Near	
	8ft-10ft I-Wall	Closure Structure	I-Wall Near Valero	Tank Farm	
	1-Foot Raise	1-Foot Raise	1-Foot Raise	1-Foot Raise	
TOTAL ANNUAL	\$201.000	\$167.000	\$202.000	\$202.000	
COSTS	\$391,000	\$407,000	\$392,000	\$203,000	
Without Project EAD	\$23,413,000	\$3,784,000	\$61,867,000	\$38,009,000	
Residual EAD	\$5,730,000	\$408,000	\$10,813,000	\$16,874,000	
Flood Reduction	\$17 682 000	\$2 275 000	\$51.054.000	\$21 125 000	
Benefits	\$17,085,000	\$5,575,000	\$31,034,000	\$21,135,000	
TOTAL	\$17 683 000	\$3 375 000	\$51.054.000	\$21 135 000	
BENEFITS	φ17,00 3 ,000	<i>\$3,373,</i> 000	\$31,034,000	<i>\$</i> 21,133,000	
NET BENEFITS	\$17,292,000	\$2,908,000	\$50,662,000	\$20,932,000	
BENEFIT-COST	15.2	7.2	130.2	10/ 1	
RATIO	43.2	1.2	150.2	104.1	

As stated earlier, the TSP for the Orange-Jefferson CSRM includes a 113,600 LF of levee and 29,800 LF of floodwall (total of 27 miles) combination at a levee crest of 11 feet MSL at Orange 3. This has an estimated first cost of \$246.8 million annualized to \$14.9 million. Total annual benefits are \$24.7 million which produces \$9.85 million in annual net benefits and benefit-to-cost ratio of 1.7. Also included are a 41,700 LF of levee and 16,200 LF of floodwall (11 miles) combination at Jefferson Main with 11-foot crest elevation and an estimated first cost of \$65.7 million with annual costs of \$3.3 million. Total annual benefits come to \$25.7 million, leaving an estimate of \$22.5 million in net benefits and 7.9 benefit-to-cost ratio. Finally, it also includes a combination of 3,100 LF of levee and 200 LF of floodwall (0.6 mile) with a 12-foot crest elevation with first cost of \$70.2 million, annual costs of \$3.1 million, annual benefits of \$6.1 million, and annual net benefits of \$3.0 million, and a 2.0 benefit-to-cost ratio.

	Dow Barge Canal	Oyster Creek Levee	East Storm Levee	Freeport Dock	Old River Levee at Dow Thumb	Tide Gate I- Wall
	No Fail - Closure Structure	1-Foot Raise	1-Foot Raise	No Fail	1-Foot Raise	1-Foot Raise
INVESTMENT						
Estimated First Cost	\$130,000,000	\$4,869,000	\$6,530,000	\$2,850,000	\$8,294,000	\$3,800,000
Annual Interest Rate	3.375%	3.375%	3.375%	3.375%	3.375%	3.375%
Project Life (years)	50	50	50	50	50	50
Construction Period						
(months)	36	36	36	36	36	36
Interest During						
Construction	\$6,630,000	\$248,000	\$333,000	\$145,000	\$423,000	\$194,000
Investment Cost	\$136,630,000	\$5,117,000	\$6,863,000	\$2,995,000	\$8,717,000	\$3,994,000
Interest	\$4,611,000	\$173,000	\$232,000	\$101,000	\$294,000	\$135,000
Amortization	\$1,083,000	\$41,000	\$54,000	\$24,000	\$69,000	\$32,000
TOTAL ANNUAL COSTS	\$5,694,000	\$213,000	\$286,000	\$125,000	\$363,000	\$166,000
Without Project EAD	\$166,660,000	\$3,800,000	\$1,701,000	\$3,960,000	\$2,517,000	\$2,785,000
Residual EAD	\$47,052,000	\$1,272,000	\$581,000	\$1,742,000	\$913,000	\$897,000
Storm Reduction Benefits	\$119,608,000	\$2,527,000	\$1,121,000	\$2,218,000	\$1,604,000	\$1,888,000
TOTAL BENEFITS	\$119,608,000	\$2,527,000	\$1,121,000	\$2,218,000	\$1,604,000	\$1,888,000
NET BENEFITS	\$113,914,000	\$2,314,000	\$835,000	\$2,093,000	\$1,241,000	\$1,721,000
BENEFIT-COST RATIO	21.0	11.9	3.9	17.7	4.4	11.4

Table 2-18. TSP for Freeport and Vicinity CSRM(FY 2015 Price Level/3.375 percent interest rate)

The TSP for the Port Arthur and Vicinity CSRM includes a one-foot raise above the existing elevation of 8-foot to 10-foot I-Wall, 7,500 LF of 15-foot wide scour pad, and 2,000 LF of levee raised one foot. First costs are \$8.9 million, annual costs are \$0.4 million, and annual benefits are \$17.7 million. Net benefits are \$17.3 million with a benefit-to-cost ratio of 45.2. Next is a one-foot raise above the existing elevation at the Port Arthur Closure Structure. The structure would be replaced and 300 LF of 100-foot wide scour pad along with 12,000 LF of levee raised one foot. First costs are \$10.7 million, annual costs are \$0.5 million, annual benefits of \$3.4 million with net benefits of \$2.9 million, and a benefit-to-cost ratio of 7.2. Next is another one-foot raise above the existing elevation at the I-Wall near Valero with 5,000 LF of 15-foot scour pad and 3,000 LF of levee raised one foot. First costs are \$50.7 million annualized to \$0.4 million, with annual benefits of \$51.1 million. Net benefits are \$50.7 million and the benefit-to-cost ratio us 130.2. Finally, the TSP would include a one-foot raise above the existing elevation near the Port Arthur Tank Farm and have 1,800 LF of 15-foot-wide scour pad and 7,000 feet of levee raised one foot. First costs are \$4.6 million, annual costs are \$0.2 million with annual benefits of \$21.1 million. Net benefits are \$20.9 million with a 104.1 benefit-to-cost ratio.

The TSP for the Freeport and Vicinity CSRM includes a No-Fail closure structure at the Dow Barge Canal with two sector gates approximately 500 feet long and 80 feet in width for vessel traffic with an estimated first cost of \$130 million, annual costs of \$5.7 million, annual benefits of \$119.6 million and \$113.9 in annual net benefits. The benefit-to-cost ratio is 21. Also included are a one-foot raise above the existing elevation at the Oyster Creek Levee 10,000 LF in length. First costs are \$4.9 million, annual costs are \$0.2 million, annual benefits of \$2.5 million and net benefits of \$2.3 million, with a benefit-to-cost ration of 11.9. Next, it would include a one-foot raise above the existing elevation at the East Storm Levee and 13,115 LF of High Performance Turf Reinforcement Mat (HPTRM). First costs are \$6.5 million, annual costs are \$0.3 million, annual benefits are \$1.1, and net benefits of \$0.8 million with a 3.9 benefit-to cost ratio. Next is a 3,000 LF of No-Fail floodwall at Freeport Dock with first costs of \$2.9 million, annual costs of \$0.1 million and annual benefits of \$2.2 million. Net benefits are \$2.1 million and the benefit to-cost ratio is 17.7. Next would be a one-foot raise above the existing elevation at the Old River Levee at the Dow Thumb with a distance of 3,000 LF. First costs are \$8.3 million, annual costs \$0.4 million, annual benefits are \$1.6 million, and net benefits are \$1.2 million with a benefit-to-cost ratio of 4.4. Finally, it would also include a reconstructed I-Wall raised one foot above the existing elevation, 700 LF in length. It would also have 2,000 LF of levee raised one foot. First costs are \$3.8 million, annual costs are \$0.2 million, annual benefits are \$1.9 million with \$1.7 million in net benefits, and a 11.4 benefit-to-cost ratio.

2.7 DEPTH DAMAGE FUNCTIONS

One Story Residence – Slab Foundation

Two Story Residences – Slab Foundation

Autos

Eating Establishments

Grocery Stores

Mobile Residence

Multi-Family Residence

Professional Buildings

Public Buildings

Repair

Retail

Warehouse

2.8 LISTING OF CRITICAL INFRASTRUCTURE BY COUNTY

2.8.1 Orange

Chemical Manufacturing					
Business Name	City	NAICS Category			
DuPont Sabine River Works	Orange	Pesticide and Other Agricultural Chemical			
Dui ont Saome River works		Manufacturing			
Solvay America Inc.	Orange	All Other Basic Inorganic Chemical			
Solvay America me.		Manufacturing			
Latex Supply Inc	Orange	All Other Basic Inorganic Chemical			
Latex Supply Inc.		Manufacturing			
Red Bird Supply, Inc.	Orange	Soap and Other Detergent Manufacturing			
A Schulman Inc.	Orange	Plastics Material and Resin Manufacturing			
Alloy Polymers, Inc.	Orange	Plastics Material and Resin Manufacturing			
Clark & Company Inc	Orange	All Other Basic Inorganic Chemical			
Clark & Company Inc.	Orange	Manufacturing			
Bourg Distributing Inc	Bridge City	Polish and Other Sanitation Good			
bourg Distributing Inc.	Druge City	Manufacturing			
Hyett Manufacturing and Instrument Company,	Bridge City	All Other Basic Inorganic Chemical			
Inc.	Druge City	Manufacturing			
Chevron Phillips Chemical Company LP	Orange	Plastics Material and Resin Manufacturing			
Fine Line Colognes	Orange	Toilet Preparation Manufacturing			
Lanxess Corporation Rubber Division	Orange	Synthetic Rubber Manufacturing			
Invista S.A.R.L.	West Orange	Plastics Material and Resin Manufacturing			
Chem32 LLC	West Orange	All Other Basic Inorganic Chemical			
		Manufacturing			
E. I. DuPont De Nemours and Company	Orange	Plastics Material and Resin Manufacturing			
Nitrogen National	Orange	Industrial Gas Manufacturing			
Lanvess Corn	Orange	All Other Basic Organic Chemical			
		Manufacturing			
Invista Capital Management, LLC	Orange	All Other Basic Organic Chemical			
nivisu cupitui Management, ELC	Orange	Manufacturing			
Invista S.A.R.L.	Orange	Plastics Material and Resin Manufacturing			
Chevron Phillips Chemical Company LP	Orange	Plastics Material and Resin Manufacturing			
Electric Generation					
Engineered Carbons Echo Cogeneration	Little Cypress				
Entergy Texas	Bridge City				
AirLiquide - Sabine Cogeneration LP	West Orange				
DuPont - Sabine River Works	West Orange				
SRW Cogeneration	West Orange				
Hospitals]			
Harbor Hospital of Southeast Texas	Orange]			
Memorial Hermann Baptist Orange Hospital	Orange]			

Nursing Homes	
Golden Years Assisted Living	Orange
Orange Villa Nursing and Rehabilitation	Orange
Pinehurst Nursing and Rehabilitation	Orange
Sabine House	Orange
The Meadows of Orange	Orange
Answered Prayer	Orange
Schools	
Little Cypress Jr. High	Orange
Bridge City High School	Bridge City
Bridge City Middle School	Bridge City
Little Cypress-Mauriceville High School	Orange
Little Cypress Elementary School	Orange
Little Cypress Intermediate	Orange
Oak Forest Elementary	Vidor
Vidor Middle School	Vidor
West Orange-Stark Elementary	Orange
West Orange-Stark Middle School	Orange
West Orange-Stark High School	Orange
North Early Learning Center	Orange
Orangefield Elementary	Orangefield
Orangefield High School	Orangefield
Orangefield Jr. High	Orangefield
Hatton Elementary	Bridge City
Bridge City Elementary	Bridge City
Bridge City Intermediate	Bridge City
OISD DAEP	Bridge City
Tekeo Academy of Accelerated Studies	Orange
Law Enforcement	
Orange County Sheriff Dept./Orange County Jail	Orange
Bridge City ISD Police Dept.	Bridge City
Orange Police Dept.	Orange
Rose City Police Dept.	Rose City
Vidor ISD Police Dept.	Vidor
Pine Forest Police Dept.	Vidor
Pinehurst Police Dept.	Orange
Vidor Police Dept.	Vidor
West Orange Police Dept.	Orange
Bridge City Police Dept.	Bridge City
Orange County Constable - Precinct 1	Orange
Orange County Constable - Precinct 2	Orange
Orange County Constable - Precinct 3	Orange
Orange County Constable - Precinct 4	Vidor

Fire Departments				
Bridge City Volunteer Fire and Rescue -	Orange			
Orange County Emergency Services District	Vidor			
Station 1	Vidor			
Orange County Emergency Services District Station 2	Vidor			
Pinehurst Volunteer Fire Dept.	Orange			
West Orange Volunteer Fire Dept.	West Orange			
Little Cypress Fire and Rescue Station 1	Orange			
Bridge City Volunteer Fire and Rescue	Bridge City			
McLewis Volunteer Fire Dept.	Orange			
City of Orange Fire Dept. Station 1	Orange			
City of Orange Fire Dept. Station 2	Orange			
City of Orange Fire Dept. Station 3	Orange			
Airport				
Orange County Airport	Orange			

2.8.2 Jefferson

Chemical Manufacturing		
Business Name	City	NAICS Category
Air Liquide America L.P.	Port Neches	Industrial Gas Manufacturing
Air Liquide America L.P.	Beaumont	Industrial Gas Manufacturing
Air Liquide Industrial U.S. LP	Nederland	Industrial Gas Manufacturing
Air Products and Chemicals, Inc.	Port Arthur	Industrial Gas Manufacturing
Arkama Ina	Decumont	All Other Basic Inorganic Chemical
Arkenia, inc.	Deaumont	Manufacturing
Ashland Elastomers LLC	Port Neches	Synthetic Rubber Manufacturing
Ashland Inc	D IN 1	All Other Basic Organic Chemical
Ashiand Inc.	Port Neches	Manufacturing
DASE Dates Chemicals	Port Arthur	All Other Miscellaneous Chemical Product and
BASF Petro Chemicais		Preparation Manufacturing
PASE Datro Chamicala	Port Arthur	All Other Miscellaneous Chemical Product and
BASE Fello Chemicais		Preparation Manufacturing
BASE Corporation	Decumont	All Other Basic Organic Chemical
BASI Corporation	Deaumont	Manufacturing
BASE Corporation	Dout Authors	All Other Basic Organic Chemical
BASI [®] Corporation	Fort Artiful	Manufacturing
Proof Specialty Services I td	Desumont	All Other Basic Inorganic Chemical
block specially services, Elu.	Deaumont	Manufacturing
Calabrian Corporation	Port Nachas	All Other Basic Organic Chemical
	ron neches	Manufacturing

Chemical Manufacturing				
Business Name	City	NAICS Category		
Chamtrada Dafinami Samiaaa Ina	D	All Other Basic Inorganic Chemical		
Cheminade Rennery Services Inc.	Deaumont	Manufacturing		
Chamtract Inc.	N. I. J. J.	All Other Miscellaneous Chemical Product and		
Chemiteat, inc.	Nederland	Preparation Manufacturing		
Chauman Dhilling Chamical Company I D	Dont Anthun	All Other Miscellaneous Chemical Product and		
Chevron Phillips Chemical Company LP	Port Arthur	Preparation Manufacturing		
DuPont Performance Elastomers L.L.C.	Nederland	Synthetic Rubber Manufacturing		
Elegant Designer Essences	Port Arthur	Toilet Preparation Manufacturing		
Elivir Inconco	Dout Authors	All Other Miscellaneous Chemical Product and		
Enxir incense	Port Arthur	Preparation Manufacturing		
Ethel Additions Companying	Dout Authors	All Other Basic Organic Chemical		
Etnyl Additives Corporation	Port Artnur	Manufacturing		
Faubion Veterinary Clinic	Nederland	Pharmaceutical Preparation Manufacturing		
Fligt Hills Deserves Dect Arthur LLC	Dout Authory	All Other Basic Organic Chemical		
Fint Hills Resources Port Arthur LLC	Port Artnur	Manufacturing		
G V C Holdings Inc.	Port Neches	Synthetic Rubber Manufacturing		
Huntsman Corporation	Port Neches	Plastics Material and Resin Manufacturing		
		All Other Basic Inorganic Chemical		
In Your Element Photography	Port Neches	Manufacturing		
	Port Arthur	All Other Miscellaneous Chemical Product and		
Ineos Americas LLC		Preparation Manufacturing		
J & M Resources	Port Arthur	Toilet Preparation Manufacturing		
J F D Enterprises, Inc.	Groves	Toilet Preparation Manufacturing		
	D (All Other Miscellaneous Chemical Product and		
Kor Technical Services, Inc.	Beaumont	Preparation Manufacturing		
Wanta	Port Arthur	All Other Basic Inorganic Chemical		
Kmtex		Manufacturing		
La Designs	Port Arthur	Toilet Preparation Manufacturing		
Nature's Secret	Port Arthur	Medicinal and Botanical Manufacturing		
Neo Fuels	Port Arthur	Petrochemical Manufacturing		
	N 1 1 1	Cyclic Crude, Intermediate, and Gum and Wood		
Oci Partners LP	Nederland	Chemical Manufacturing		
Pd Glycol LP	Beaumont	Plastics Material and Resin Manufacturing		
Penny's Style	Port Arthur	Toilet Preparation Manufacturing		
Perfume Palace	Port Arthur	Toilet Preparation Manufacturing		
Praxair, Inc.	Groves	Industrial Gas Manufacturing		
Pro Star Industries, Inc.	Port Arthur	Polish and Other Sanitation Good Manufacturing		
Rbf Port Neches LLC	Port Neches	Petrochemical Manufacturing		
Reliable Polymer Services, LP	Port Arthur	Synthetic Rubber Manufacturing		
Sally Beauty Supply LLC	Port Arthur	Toilet Preparation Manufacturing		
		All Other Basic Inorganic Chemical		
Savage Services Corporation	Port Arthur	Manufacturing		

Chemical Manufacturing				
Business Name	City	NAICS Category		
Scan Tech Inc	Nederland	All Other Miscellaneous Chemical Product and		
Scan Teen, me.		Preparation Manufacturing		
Service Offshore, Inc.	Beaumont	Paint and Coating Manufacturing		
Smith and Thome Cardiovascular Consultants,	Port Arthur	Pharmaceutical Preparation Manufacturing		
L.L.P.	1 oft 7 fitting	Thannaceutear Preparation Manufacturing		
Sophia's International LLC	Port Neches	Toilet Preparation Manufacturing		
Sunrose Scents	Nederland	Toilet Preparation Manufacturing		
Texas Brine Company LLC	Beaumont	All Other Basic Inorganic Chemical		
	Deaumont	Manufacturing		
Texas Petrochemicals LP	Port Neches	All Other Basic Organic Chemical		
	Torriteenes	Manufacturing		
Texas Petrochemicals LP	Port Neches	All Other Basic Organic Chemical		
	1 01011 000000	Manufacturing		
The Chemours Company Fc LLC	Beaumont	Synthetic Rubber Manufacturing		
The Valspar Corporation	Beaumont	Paint and Coating Manufacturing		
Worldwide Sorbent Products, Inc.	Port Arthur	Plastics Material and Resin Manufacturing		
Petroleum Refining				
Exxon Mobil Refining & Supply Co.	Beaumont			
Total Petrochemicals Inc.	Port Arthur			
Motiva Enterprises LLC	Port Arthur			
Premcor Refining Group	Port Arthur			
Valero Refining Co.	Port Arthur			
Electric Generation	City			
JCO Oxides Olefins Plant	Port Neches			
Entergy Texas	Beaumont			
Public Schools	City			
Al Price State Juvenile Correctional Facility	Beaumont			
Jefferson County Youth Academy	Beaumont			
Preschool Center	Groves			
Groves Elementary	Groves			
Groves Middle School	Groves			
Van Buren Elementary	Groves			
Highland Park Elementary	Nederland			
Nederland High School	Nederland			
Alternative Education School	Nederland			
Helena Park Elementary	Nederland			
Hillcrest Elementary	Nederland			
Lanham Elementary	Nederland			
Central Middle School	Nederland			
Wilson Middle School	Nederland			
Dowling Elementary	Port Arthur			
Houston Elementary	Port Arthur			

Chemical Manufacturing		
Business Name	City	NAICS Category
Port Arthur Alternative Center	Port Arthur	
Stilwell Tech Center	Port Arthur	-
Memorial High School	Port Arthur	-
Tekeo Academy of Accelerated Studies	Port Arthur	
DeQueen Elementary	Port Arthur	
Jefferson Middle School	Port Arthur	-
Lee Elementary	Port Arthur	-
Travis Elementary	Port Arthur	
Tyrrell Elementary	Port Arthur	
Wheatley School Of Early Childhood Programs	Port Arthur	-
Lincoln Middle School	Port Arthur	
Taft Elementary	Port Arthur	
Austin Middle School	Port Arthur	1
Tekeo Academy of Accelerated Studies	Port Arthur	1
Tekeo Academy of Accelerated Studies	Port Arthur	1
Bob Hope School	Port Arthur	-
Performing Arts School Of Technology	Port Arthur	
Staff Sergeant Lucien Adams Elementary	Port Arthur	
Washington Elementary	Port Arthur	
Memorial 9th Grade Academy at Austin	Port Arthur	
Woodcrest Elementary	Port Neches	
Port Neches Elementary	Port Neches	
Port Neches Middle School	Port Neches	
Port Neches-Groves High School	Port Neches	
Ridgewood Elementary	Port Neches	
Alter School	Port Neches	
Nursing Homes	City	1
Gulf Healthcare Center	Port Arthur	
Magnolia Manor	Groves	1
Oak Grove Nursing Home	Groves	1
Senior Rehabilitation and Skilled Nursing	Dort Arthur	
Center	FOR Arthur	
Cypress Glen East Nursing and Rehabilitation	Port Arthur	
Cypress Glen Nursing and Rehabilitation	Port Arthur	
Rose House	Port Arthur	
Hospitals	City]
Beaumont Bone and Joint Institute	Beaumont	
Christus Spohn Hospital - Saint Elizabeth	Beaumont]
Christus Spohn Hospital - Saint Mary	Port Arthur]
Dubuis Hospital of Beaumont	Beaumont	
Dubuis Hospital of Port Arthur	Port Arthur	

Chemical Manufacturing				
Business Name	City	NAICS Category		
HealthSouth Rehabilitation Hospital -	Decument			
Beaumont	Deaumont			
Kate Dishman Rehabilitation Hospital	Beaumont			
Memorial Hermann Baptist Hospital	Beaumont			
Memorial Hermann Baptist Hospital -	Beaumont			
Behavioral Health Center				
Mid-Jefferson Extended Care Hospital	Nederland			
Promise Hospital of Southeast Texas	Nederland			
Renaissance Hospital - Groves	Groves			
The Medical Center of Southeast Texas	Port Arthur			
Law Enforcement	City			
Lamar University Police Dept.	Beaumont			
Beaumont Police Dept.	Beaumont			
Groves Police Dept.	Groves			
Port of Beaumont Port Authority Police Dept.	Beaumont			
Port Neches Police Department	Port Neches			
Bureau of Alcohol Tobacco & Firearms -	Description			
Beaumont Field Office	Beaumont			
US Customs and Border Protection - Port of				
Entry - Port Arthur	Port Arthur			
Port Arthur Police Dept.	Port Arthur			
Jefferson County Sheriff's Office	Beaumont			
Beaumont ISD Police Dept.	Beaumont			
Nederland Police Department	Nederland			
Texas Dept. of Public Safety	Beaumont			
Jefferson County Constable - Precinct 1	Beaumont			
Jefferson County Constable - Precinct 2	Port Arthur			
Jefferson County Constable - Precinct 4	Beaumont			
Jefferson County Constable - Precinct 6	Beaumont			
Jefferson County Constable - Precinct 7	Beaumont			
Jefferson County Constable - Precinct 8	Port Arthur			
US Marshal's Service - Beaumont	Beaumont			
Fire Departments	City			
Port Arthur Fire Dept. Central Station	Port Arthur			
Beaumont Fire and Rescue Station 1	Beaumont			
Nederland Fire and Rescue	Nederland			
Beaumont Fire and Rescue Station 10	Beaumont			
Beaumont Fire and Rescue Station 11	Beaumont			
Beaumont Fire and Rescue Station 14	Beaumont			
Beaumont Fire and Rescue Station 2	Beaumont			
Beaumont Fire and Rescue Station 3	Beaumont			
Beaumont Fire and Rescue Station 4	Beaumont			

Chemical Manufacturing				
Business Name	City			
Beaumont Fire and Rescue Station 5	Beaumont			
Beaumont Fire and Rescue Station 6	Beaumont			
Beaumont Fire and Rescue Station 7	Beaumont			
Beaumont Fire and Rescue Station 7	Beaumont			
Beaumont Fire and Rescue Station 9	Beaumont			
Groves Fire Dept.	Groves			
Jefferson Volunteer Fire Dept.	Nederland			
LaBelle - Fannett Volunteer Fire/Emergency	Desumont			
Medical Services - Substation	Deaumont			
Lamar Institute of Technology Regional Fire	Booumont			
Academy	Deaumont			
Port Arthur Fire Dept. Station 1	Port Arthur			
Port Arthur Fire Dept. Station 2	Port Arthur			
Port Arthur Fire Dept. Station 3	Port Arthur			
Port Arthur Fire Dept. Station 4	Port Arthur			
Port Arthur Fire Dept. Station 5	Port Arthur			
Port Arthur Fire Dept. Station 6	Port Arthur			
Port Arthur Fire Dept. Station 8	Port Arthur			
Port Neches Fire Dept.	Port Arthur			

2.8.3 Brazoria

Chemical Manufacturing		
Business Name	City	NAICS Category
L C Huntsman-Cooper	Freeport	Plastics Material and Resin Manufacturing
Incos Americas LLC	Freeport	All Other Basic Inorganic Chemical
meos Americas ELC		Manufacturing
K-Bin, Inc.	Freeport	Plastics Material and Resin Manufacturing
Air Liquide Large Industries U.S. LP	Freeport	Industrial Gas Manufacturing
Air Liquide Industrial U.S. LP	Freeport	Industrial Gas Manufacturing
S E Sulphur Company	Freeport	All Other Basic Inorganic Chemical
		Manufacturing
Nalco Epergy Services I. P.	Freeport	All Other Miscellaneous Chemical Product and
Nato Energy Services E 1		Preparation Manufacturing
Services Enterprise	Freeport	Polish and Other Sanitation Good Manufacturing
Air Liquide America L.P.	Freeport	Industrial Gas Manufacturing
Shintech Incorporated	Freeport	Plastics Material and Resin Manufacturing
Air Liquide Large Industries U.S. LP	Freeport	Industrial Gas Manufacturing
Air Liquide Large Industries U.S. LP	Freeport	Industrial Gas Manufacturing
Samdac Industries	Freeport	Plastics Material and Resin Manufacturing
Si Group, Inc.	Freeport	Petrochemical Manufacturing

Chemical Manufacturing		
Business Name	City	NAICS Category
The Dow Chemical Company	Francert	All Other Basic Inorganic Chemical
The Dow Chemical Company	rieepon	Manufacturing
Avon	Freeport	Toilet Preparation Manufacturing
Solvay USA Inc	Freeport	All Other Basic Inorganic Chemical
Solvay USA, IIC.		Manufacturing
The Dow Chemical Company	Freeport	Plastics Material and Resin Manufacturing
Matheson Tri-Gas, Inc.	Freeport	Industrial Gas Manufacturing
Vencorex U.S. Inc	Freeport	All Other Basic Organic Chemical
venebrex 0.5., me.	Пеерон	Manufacturing
Vancoray U.S. Inc	Freeport	All Other Basic Organic Chemical
vencorex 0.5., me.	ricepon	Manufacturing
BASE Corporation	Francert	All Other Basic Organic Chemical
BASI Corporation	ricepoir	Manufacturing
Ineos	Freeport	All Other Miscellaneous Chemical Product and
lileos	ricepoir	Preparation Manufacturing
Americas Styrenics LLC	Freeport	Plastics Material and Resin Manufacturing
Schools	City	
Brazosport High School	Freeport	
OA Fleming Elementary	Freeport	
Freeport Intermediate	Freeport	
Jane Long Elementary	Freeport	
Velasco Elementary	Freeport	
O'Hara Lanier Middle School	Freeport	
Fire Departments	City	
Oyster Creek Volunteer Fire Dept.	Freeport	
Freeport Fire and Emergency Medical Services	Freeport	
Dept.	ricepoir	
Law Enforcement	City	
Freeport City Marshals Office	Freeport	
Freeport Police Dept.	Freeport	
Brazoria County Constable - Precinct 1	Freeport	

Figure 2-9. Orange County Critical Infrastructure

Figure 2-10. Jefferson County Critical Infrastructure

Figure 2-11. Brazoria County Critical Infrastructure