APPROVED JURISDICTIONAL DETERMINATION FORM **U.S. Army Corps of Engineers** This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook. ### SECTION I: BACKGROUND INFORMATION # REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD): 28 January 2022 B. DISTRICT OFFICE, FILE NAME, AND NUMBER: Galveston District, SWG-2020-00577, TGS Cedar Port Partners, | | Approved Jurisdictional Determination (AJD), Approximate 370-Acre Site, Baytown, Chambers nty Texas | |-----------------------|---| | S
C
U
N
N | PROJECT LOCATION AND BACKGROUND INFORMATION: State: Texas County/Parish: Chambers City: Baytown Center coordinates of site (lat/long in degree decimal format, NAD-83): Lat. See Table 1° N, Long. See Table 1° W; Universal Transverse Mercator: UTM: 15, N., E.,NAD: 83 Name of nearest water body: Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows: Name of watershed or Hydrologic Unit Code (HUC): North Galveston Bay - 12040203 Check if map/diagram of review area and/or potential jurisdictional areas is/are available upon request. Check if other sites (e.g., offsite mitigation sites, disposal sites, etc) are associated with this action and are recorded on a different JD form. | | | REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY): Office (Desk) Determination. Date: 27 January 2022 Field Determination. Date(s): 9 December 2020 | | SECT
A. RI | TION II: SUMMARY OF FINDINGS
HA SECTION 10 DETERMINATION OF JURISDICTION. | | area. | Are "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review Required Waters subject to the ebb and flow of the tide. Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce. Explain: Galveston Bay is listed on the Galveston District Section 10 list and is presently used, was used in the past, and may be susceptible for use to transport interstate or foreign commerce. WA SECTION 404 DETERMINATION OF JURISDICTION. | | | Are "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area. [Required] | | | . Waters of the U.S. a. Indicate presence of waters of U.S. in review area (check all that apply): ¹ ☐ TNWs, including territorial seas ☐ Wetlands adjacent to TNWs ☐ Relatively permanent waters² (RPWs) that flow directly or indirectly into TNWs ☐ Non-RPWs that flow directly or indirectly into TNWs ☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs ☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs ☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs ☐ Impoundments of jurisdictional waters ☐ Isolated (interstate or intrastate) waters, including isolated wetlands | | | b. Identify (estimate) size of waters of the U.S. in the review area: Non-wetland waters: 180.8 linear feet: width (ft) and/or 22.1 acres | c. Limits (boundaries) of jurisdiction based on: Established by mean (average) high waters. Wetlands: 50.5 acres ¹ Boxes checked below shall be supported by completing the appropriate sections in Section III below. ² For purposes of this form, an RPW is defined as a tributary that is not a TNW and that typically flows year-round or has continuous flow at least "seasonally" (e.g., typically 3 months). Elevation of established OHWM (if known): The nearest NOAA Center for Operational Oceanographic Products and Services (CO-OPS) tide station to the project site is Morgans Point Texas (8770613). Data for this station was analyzed for the time period between 2001 and 2021 to cover the contemporary tidal epoch (18.6 years). The monthly maximum high tide elevations were averaged across all years to obtain the highest water levels for the anticipated high tide flood inundation areas within the subject site under normal conditions. The highest tide elevation, based on the monthly average occurred most often in October, which typically has few tropical storm systems. The October average maximum for station 8770613 is +2.71 feet NAVD88. The monthly mean tide elevations were averaged across all years to determine the mean tide level within the subject site under normal conditions. The average mean tide elevation for station 8770613 is +1.01 feet NAVD88. | 2. | Non- | regulated waters/wetlands (check if applicable): ³ | |----|------|--| | | | Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined to be not jurisdictional | | | | Explain: | ## **SECTION III: CWA ANALYSIS** #### A. TNWs AND WETLANDS ADJACENT TO TNWs The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below. #### 1. TNW Identify TNW: Galveston Bay Summarize rationale supporting determination: Galveston Bay is (1) listed on the Galveston District List of Navigable Waters (Section 10 List), (2) is subject to the ebb and flow of the tide, and (3) is presently used, has been used in the past, or may be susceptible for use to transport interstate or foreign commerce. Therefore, per 33 CFR 329.4 Galveston Bay is subject to jurisdiction under Section 10 of the Rivers and Harbors Act of 1899. Per 33 CFR 328.4(b)(1) all Section 10 waters are jurisdictional under Section 404 of the Clean Water Act. #### 2. Wetland adjacent to TNW Summarize rationale supporting conclusion that wetland is "adjacent": The subject site wetlands are contiguous with Galveston Bay and subject to the annual high tide. Under normal circumstances the wetland exhibits a predominance of hydrophytic vegetation, wetland hydrology, and hydric soils, as defined in the 1987 Corps of Engineers Wetland Delineation Manual and the Atlantic and Gulf Coastal Plain Regional Supplement (Version 2.0). Therefore, per 33 CFR 328.3(c) the wetlands are adjacent to Galveston Bay and as such per 33 CFR 328.3(a)(7) are subject to jurisdiction under Section 404 of the Clean Water Act. # B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY): This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under *Rapanos* have been met. The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are "relatively permanent waters" (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting a tributary with perennial flow, fill out Section III.D.2 and Section III.D.4. ³ Supporting documentation is presented in Section III.F. A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law. If the water body⁴ is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the water body has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below. #### 1. Characteristics of non-TNWs that flow directly or indirectly into TNW | (i) | Wat
Drai
Ave | reral Area Conditions: ershed size: Pick List inage area: Pick List rage annual rainfall: inches rage annual snowfall: inches | |------|--------------------|---| | (ii) | | sical Characteristics: Relationship with TNW: Tributary flows directly into TNW. Tributary flows through Pick List tributaries before entering TNW. | | | | Project waters are Pick List river miles from TNW. Project waters are Pick List river miles from RPW. Project waters are Pick List aerial (straight) miles from TNW. Project waters are Pick List aerial (straight) miles from RPW. Project waters cross or serve as state boundaries. Explain: | | | | Identify flow route to TNW ⁵ :
Tributary stream order, if known: | | | (b) | General Tributary Characteristics (check all that apply): Tributary is: Natural Artificial (man-made). Explain: Manipulated (man-altered). Explain: | | | | Tributary properties with respect to top of bank (estimate): Average width: feet Average depth: feet Average side slopes: Pick List | | | | Primary tributary substrate composition (check all that apply): Silts Sands Concrete Cobbles Gravel Muck Bedrock Vegetation. Type/% cover: Other. Explain: | | | | Tributary condition/stability [e.g., highly eroding, sloughing banks]. Explain: Presence of run/riffle/pool complexes. Explain: Tributary geometry: Pick List Tributary gradient (approximate average slope): % | | | (c) | Flow: Tributary provides for: Pick List Estimate average number of flow events in review area/year: Pick List Describe flow regime: Other information on duration and volume: | ⁴ Note that the Instructional Guidebook contains additional information regarding swales, ditches, washes, and erosional features generally and in the arid West. ⁵ Flow route can be described by identifying, e.g., tributary a, which flows through the review area, to flow into tributary b, which then flows into TNW. | | Surface flow is: Pick List. Characteristics: Subsurface flow: Pick List. Explain findings: Dye (or other) test performed: | |------|--| | | Tributary has (check all that apply): Bed and banks OHWM ⁶ (check all indicators that apply): clear, natural line impressed on the bank changes in the character of soil shelving vegetation matted down, bent, or absent leaf litter disturbed or washed away sediment deposition water staining other (list): Discontinuous OHWM. ⁷ Explain: | | | If factors other than the OHWM were used to determine lateral extent of CWA jurisdiction (check all that apply): High Tide Line indicated by: | | , | Chemical Characteristics: Characterize tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc.). Explain: Identify specific pollutants, if known: | | (iv) | Biological Characteristics. Channel supports (check all that apply): Riparian corridor. Characteristics (type, average width): Wetland fringe. Characteristics: Habitat for: Federally Listed species. Explain findings: Fish/spawn areas. Explain findings: Other environmentally-sensitive species. Explain findings: Aquatic/wildlife diversity. Explain findings: | | Cha | racteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW | | | Physical Characteristics: (a) General Wetland Characteristics: Properties: Wetland size: acres Wetland type. Explain: Wetland quality. Explain: Project wetlands cross or serve as state boundaries. Explain: | | | (b) General Flow Relationship with Non-TNW: Flow is: Pick List. Explain: | | | Surface flow is: Pick List Characteristics: | | | Subsurface flow: Pick List. Explain findings: Dye (or other) test performed: | | | (c) Wetland Adjacency Determination with Non-TNW: Directly abutting Not directly abutting | | | (iv)
Cha
(i) | ⁶A natural or man-made discontinuity in the OHWM does not necessarily sever jurisdiction (e.g., where the stream temporarily flows underground, or where the OHWM has been removed by development or agricultural practices). Where there is a break in the OHWM that is unrelated to the water body's flow regime (e.g., flow over a rock outcrop or through a culvert), the agencies will look for indicators of flow above and below the break. Third. | | | ☐ Discrete wetland h ☐ Ecological connect | ydrologic connection. Ex | xplain: | | | | |--|---|---|---|-------------------------------------|--------------------------|--|--| | | | Separated by berm | | | | | | | | | (d) Proximity (Relationship) to Project wetlands are Pick Lip Project waters are Pick Lip Flow is from: Pick List. Estimate approximate local | List river miles from TNV aerial (straight) miles f | From TNW. | | | | | | (ii) | Chemical Characteristics: | | | | | | | | | Characterize wetland system (e. characteristics; etc.). Expl | | rown, oil film on surface; water qu | ality; general watershed | | | | | | Identify specific pollutants, if k | | | | | | | 3. | (iii) Biological Characteristics. Wetland supports (check all that apply): Riparian buffer. Characteristics (type, average width): Vegetation type/percent cover. Explain: Habitat for: Federally Listed species. Explain findings: Fish/spawn areas. Explain findings: Other environmentally-sensitive species. Explain findings: Aquatic/wildlife diversity. Explain findings: | | | | | | | | Э. | All wetland(s) being considered in the cumulative analysis: Pick List Approximately () acres in total are being considered in the cumulative analysis. | | | | | | | | For each wetland, specify the following: | | | | | | | | | | | Directly abuts? (Y/N) | Size (in acres) | Directly abuts? (Y/N) | Size (in acres) | Summarize overall biological, chemical and physical functions being performed: ### C. SIGNIFICANT NEXUS DETERMINATION A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus. Draw connections between the features documented and the effects on the TNW, as identified in the *Rapanos* Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example: - Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW? - Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW? - Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs? - Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW? Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below: - 1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNWs. Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to Section III.D: - 2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNWs. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D: - 3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D: | D. | DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL | |----|---| | | THAT APPLY): | | 1. | TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area: ☐ TNWs: linear feet width (ft), Or, 22.1 acres. ☐ Wetlands adjacent to TNWs: 40.5 acres. | |----|---| | 2. | RPWs that flow directly or indirectly into TNWs. ☐ Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and rationale indicating that tributary is perennial: ☐ Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally: Tributary 01 is located at the confluence of two erosional features and discharges directly into the wetlands contiguous with Galveston Bay. The upslope soil series data show an annual water table depth of 13 centimeters. Therefore, Tributary 01 is subject to ground water influenced seasonal relatively permanent water flow. | | | Provide estimates for jurisdictional waters in the review area (check all that apply): Tributary waters: 180.8 linear feet width (ft) Other non-wetland waters: acres Identify type(s) of waters: | | 3. | Non-RPWs ⁸ that flow directly or indirectly into TNWs. Water body that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has a significant nexus with a TNW is jurisdictional. Data supporting this conclusion is provided at Section III.C. | | | Provide estimates for jurisdictional waters within the review area (check all that apply): Tributary waters: linear feet width (ft). Other non-wetland waters: acres Identify type(s) of waters: | | 4. | Wetlands directly abutting an RPW that flow directly or indirectly into TNWs. Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands. Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting an RPW: | | | ■ Wetlands directly abutting an RPW where tributaries typically flow "seasonally." Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting an RPW: | | | Provide acreage estimates for jurisdictional wetlands in the review area: acres | | 5. | Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNWs. Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisidictional. Data supporting this conclusion is provided at Section III.C. | | | Provide acreage estimates for jurisdictional wetlands in the review area: acres | ⁸See Footnote # 3. | | 6. | Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs. Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C. | |-----|-------------------|---| | | | Provide estimates for jurisdictional wetlands in the review area: acres | | | 7. | Impoundments of jurisdictional waters.9 As a general rule, the impoundment of a jurisdictional tributary remains jurisdictional. Demonstrate that impoundment was created from "waters of the U.S.," or Demonstrate that water meets the criteria for one of the categories presented above (1-6), or Demonstrate that water is isolated with a nexus to commerce (see E below). | | E. | SUC
SUC
SUC | DLATED [INTERSTATE OR INTRA-STATE] WATERS, INCLUDING ISOLATED WETLANDS, THE USE, GRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE, INCLUDING ANY CH WATERS (CHECK ALL THAT APPLY): 10 which are or could be used by interstate or foreign travelers for recreational or other purposes. from which fish or shellfish are or could be taken and sold in interstate or foreign commerce. which are or could be used for industrial purposes by industries in interstate commerce. Interstate isolated waters. Explain: Other factors. Explain: | | Ide | ntify | water body and summarize rationale supporting determination: | | | | vide estimates for jurisdictional waters in the review area (check all that apply): Tributary waters: linear feet width (ft) Other non-wetland waters: acres Identify type(s) of waters: Wetlands: acres | | F. | | N-JURISDICTIONAL WATERS, INCLUDING WETLANDS (CHECK ALL THAT APPLY): If potential wetlands were assessed within the review area, these areas did not meet the criteria in the 1987 Corps of Engineers Wetland Delineation Manual and/or appropriate Regional Supplements. Review area included isolated waters with no substantial nexus to interstate (or foreign) commerce. Prior to the Jan 2001 Supreme Court decision in "SWANCC," the review area would have been regulated based solely on the "Migratory Bird Rule" (MBR). Waters do not meet the "Significant Nexus" standard, where such a finding is required for jurisdiction. Explain: Other: (explain, if not covered above): Tributary 02 and 03 are deeply incised erosional features characterised by low, short duration, and infrequest water flow under normal conditions. And Tributary 04 is an upland man-made | | | | ge ditch constructed in and draining wholly uplands. | | | fact | vide acreage estimates for non-jurisdictional waters in the review area, where the <u>sole</u> potential basis of jurisdiction is the MBR ors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional gment (check all that apply): Non-wetland waters (i.e., rivers, streams): 4,053.7 linear feet width (ft). Lakes/ponds: acres. Other non-wetland waters: acres. List type of aquatic resource: Wetlands: acres. | | | | vide acreage estimates for non-jurisdictional waters in the review area that do not meet the "Significant Nexus" standard, where such ading is required for jurisdiction (check all that apply): Non-wetland waters (i.e., rivers, streams): linear feet, width (ft). Lakes/ponds: acres. Other non-wetland waters: acres. List type of aquatic resource: Wetlands: acres. | # **SECTION IV: DATA SOURCES.** To complete the analysis refer to the key in Section III.D.6 of the Instructional Guidebook. Prior to asserting or declining CWA jurisdiction based solely on this category, Corps Districts will elevate the action to Corps and EPA HQ for review consistent with the process described in the Corps/EPA Memorandum Regarding CWA Act Jurisdiction Following Rapanos. | ٠ | SUP | PORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked | |---|-------------|--| | | and | requested, appropriately reference sources below): | | | | Maps, plans, plots or plat submitted by or on behalf of the applicant/consultant: Wetland delineation provided by | | | Be | laire Environmental, Inc., dated 22 August 2017. | | | | Data sheets prepared/submitted by or on behalf of the applicant/consultant. | | | | Office concurs with data sheets/delineation report. | | | | Office does not concur with data sheets/delineation report | | | \boxtimes | Data sheets prepared by the Corps: Site visit conducted 9 December 2020. | | | | Corps navigable waters' study: | | | \boxtimes | U.S. Geological Survey Hydrologic Atlas: North Galveston Bay - 12040203 | | | | ☐ USGS NHD data | | | | ☑ USGS 8 and 12 digit HUC maps | | | | Galveston District's Approved List of Navigable Waters | | | | U.S. Geological Survey map(s). Cite scale & quad name: | | | | USDA Natural Resources Conservation Service Soil Survey. Citation: | | | | National wetlands inventory map(s). Cite name: NWI website, accessed 7 December 2020. Data based on | | | 200 | 06 color infrared imagery which was collected during normal climatic conditions (APT Score 10). | | | | State/Local wetland inventory map(s): | | | \boxtimes | FEMA/FIRM maps: Flood Insurance Rate Map (FIRM), Chambers County Unincorporated Areas, | | | | nel 48071C0345E (05/04/2015). | | | | 100-year Floodplain Elevation is: Flood Zone: VE, Elevations - 15-19 feet; AE, Elevations - 13-14 feet. | | | | tional Geodectic Vertical Datum of 1929) | | | | | | | | Photographs: Aerial (Name & Date): 2018 National Agriculture Imagery Program (NAIP) 0.6-meter | | | | lor Infrared (CIR)/Near Color (NC); Nation al Geospatial-Intelligence Agency (NGA), Global | | | En | hanced Geographic Intelligence (GEOINT) Delivery (G-EGD), Digital Globe High Resolution | | | Ne | ar Color (NC) Aerial Imagery – 29 July 2021. | | | | or \(\times \) Other (Name & Date): Site visit photos, 9 December 2020. | | | | Previous determination(s). File no. and date of response letter: | | | Ħ | Applicable/supporting case law: | | | | Applicable/supporting scientific literature: | | | \boxtimes | Other information (please specify): Antecedent Precipitation Tool (APT) | | | | and medianical (preset special). I miscordanical resultant from (and a figure and | B. ADDITIONAL COMMENTS TO SUPPORT JD: Galveston Bay is (1) listed on the Galveston District List of Navigable Waters (Section 10 List), (2) is subject to the ebb and flow of the tide, and (3) is presently used, has been used in the past, or may be susceptible for use to transport interstate or foreign commerce. Therefore, per 33 CFR 329.4 Galveston Bay is subject to jurisdiction under Section 10 of the Rivers and Harbors Act of 1899. Per 33 CFR 328.4(b)(1) all Section 10 waters are jurisdictional under Section 404 of the Clean Water Act. The subject site wetlands are contiguous with Galveston Bay and subject to the annual high tide. Under normal circumstances the wetland exhibits a predominance of hydrophytic vegetation, wetland hydrology, and hydric soils, as defined in the 1987 Corps of Engineers Wetland Delineation Manual and the Atlantic and Gulf Coastal Plain Regional Supplement (Version 2.0). Therefore, per 33 CFR 328.3(c) the wetlands are adjacent to Galveston Bay and as such per 33 CFR 328.3(a)(7) are subject to jurisdiction under Section 404 of the Clean Water Act. Tributary 01 is located at the confluence of two erosional features and discharges directly into the wetlands contiguous with Galveston Bay. The upslope soil series data show an annual water table depth of 13 centimeters. Therefore, Tributary 01 is subject to ground water influenced seasonal relatively permanent water flow. | Table 1. | | | | | | |----------|-----------|------------|---------------------|-------|-----------------------------| | Site | Latitude | Longitude | Approximate
Size | Units | Jurisdictional
Authority | | Tidal 01 | 29.66078 | -94.917939 | 0.051 | Acre | 10/404 | | Tidal 02 | 29.660827 | -94.918176 | 0.001 | Acre | 10/404 | | Tidal 03 | 29.661038 | -94.918448 | 0.064 | Acre | 10/404 | | Tidal 04 | 29.66128 | -94.918804 | 0.001 | Acre | 10/404 | | Tidal 05 | 29.662373 | -94.923593 | 14.404 | Acre | 10/404 | | Tidal 06 | 29.667724 | -94.925919 | 6.710 | Acre | 10/404 | | Wet 01 | 29.65959 | -94.921725 | 0.003 | Acre | 404 | | Wet 02 | 29.659636 | -94.921677 | 0.0005 | Acre | 404 | | Wet 03 | 29.659797 | -94.921800 | 0.004 | Acre | 404 | | Wet 04 | 29.65981 | -94.921941 | 0.002 | Acre | 404 | | Wet 05 | 29.659833 | -94.921827 | 0.002 | Acre | 404 | | Wet 06 | 29.65989 | -94.921852 | 0.002 | Acre | 404 | | Wet 07 | 29.66055 | -94.922222 | 0.0005 | Acre | 404 | | Wet 08 | 29.660559 | -94.922191 | 0.001 | Acre | 404 | | Wet 09 | 29.660612 | -94.922217 | 0.0004 | Acre | 404 | | Wet 10 | 29.66062 | -94.922122 | 0.001 | Acre | 404 | | Wet 11 | 29.660675 | -94.919189 | 0.062 | Acre | 404 | | Wet 13 | 29.660724 | -94.922187 | 0.026 | Acre | 404 | | Wet 14 | 29.660812 | -94.922318 | 0.038 | Acre | 404 | | Wet 15 | 29.660812 | -94.922246 | 0.007 | Acre | 404 | | Wet 16 | 29.660812 | -94.918506 | 0.025 | Acre | 404 | | Wet 17 | 29.660828 | -94.921699 | 0.614 | Acre | 404 | | Wet 18 | 29.66084 | -94.919129 | 0.164 | Acre | 404 | | Wet 19 | 29.66088 | -94.918813 | 0.408 | Acre | 404 | | Wet 20 | 29.661249 | -94.920519 | 6.476 | Acre | 404 | | Wet 21 | 29.661466 | -94.921833 | 0.814 | Acre | 404 | | Wet 22 | 29.661894 | -94.921844 | 0.044 | Acre | 404 | | Wet 23 | 29.661934 | -94.921440 | 0.011 | Acre | 404 | | Wet 24 | 29.66196 | -94.920461 | 0.279 | Acre | 404 | | Wet 25 | 29.661967 | -94.921615 | 0.016 | Acre | 404 | | Wet 26 | 29.66201 | -94.922046 | 0.096 | Acre | 404 | | Wet 27 | 29.66205 | -94.921429 | 0.044 | Acre | 404 | | Wet 28 | 29.662069 | -94.921014 | 0.359 | Acre | 404 | | Wet 29 | 29.662181 | -94.921782 | 0.008 | Acre | 404 | | Wet 30 | 29.662326 | -94.924632 | 18.251 | Acre | 404 | | Wet 31 | 29.662788 | -94.924761 | 0.001 | Acre | 404 | | Wet 32 | 29.662838 | -94.924763 | 0.002 | Acre | 404 | | Wet 33 | 29.66470 | -94.924495 | 0.029 | Acre | 404 | | Wet 34 | 29.665816 | -94.925756 | 0.708 | Acre | 404 | | Wet 35 | 29.666045 | -94.926268 | 0.028 | Acre | 404 | | Wet 36 | 29.66618 | -94.926408 | 0.123 | Acre | 404 | | Wet 37 | 29.666471 | -94.926810 | 0.442 | Acre | 404 | | Wet 38 | 29.667443 | -94.925168 | 21.334 | Acre | 404 | | Wet 39 | 29.667676 | -94.928528 | 0.046 | Acre | 404 | | Trib 01 | 29.666058 | -94.921742 | 0.027 | Acre | 404 |