MEMORANDUM FOR RECORD

SUBJECT: Coastal Texas Study: Documentation of PDT & Vertical Team Meeting Discussion on Adequacy of Available Geotechnical Data.
MEETING TYPE: WEBEX Meeting DATE: 09-06-2019
TIME: 1200-1300 (CT)
ATTENDEES: Cepero, Carlos E CIV USARMY CESWD (USA); Bateman, Vanessa C CIV USARMY CEHQ (USA); Boothby, David B Jr CIV USARMY CESWG (US); Sterling, Michael C CIV USARMY CESWD (US); Mike Diaz CIV USARMY CESWG (US), Harper, Brian K CIV USARMY CESWF (USA); Das, Himangshu S CIV USARMY CESWG (USA); Tharmendira,

Ratnam I CIV USARMY CESWG (USA).

DISCUSSION SUMMARY: The Project Technical Lead hosted the meeting. The Project Geotechnical Lead conducted a power point presentation as the opening event of the subject discussion. The pdf copy of the powerpoint slides is attached with this document. At the end of the presentation the attendees provided suggestions and conclusions as summarized below;

COMMENTS AND CONCLUSION FROM ATTENDEES:

PDT Inputs on Subject Discussion (See Attachment for more details).

- PD The available geotechnical data is adequate for the subject study level design. This will allow the PDT to perform acceptable study level design and to develop an acceptable study level cost estimate.
- The Geotechnical Risk levels evaluated on Project Cost Estimate as follows for major structural components:

a) Surge Barrier System - Medium level risk b) Dune System - Low

C) Ring Levee System - Medium level risk

- The current study level geotechnical design adopts appropriate risk mitigation strategies, including reasonable engineering assumptions and considerations to meet the subject study requirements. Therefore, the actual foundation cost should be within the acceptable study level cost estimate, when considering a contingency commensurate with the associated risk.
- Geotechnical Risk mitigation strategies will be as follows:
 a) Adopting the lower-bound soil strength data from available soil borings within the vicinity of the proposed structure for Axial pile capacity estimate.

b) Pile type selection will consider the upper bound evaluation of potential hard-driving conditions.
c) Study level design's Lateral pile resistance will be relying on capacity of battered piles only.
d) Sensitivity analysis on using upper - and lower – bound geotechnical parameters for pile foundation design will be performed to estimate the potential change in final pile length to support the project cost estimate at the study level.

• Comprehensive level geotechnical investigations and pile drivability/ pile load testing during the PED phase will be specified as mandatory requirements in the final study report.

Cepero, Carlos E CIV USARMY CESWD (USA):

- The risk levels chosen by the PDT for the foundation cost estimate is acceptable (not lower than moderate).
- PED phase shall consider additional geotechnical investigations for the deep foundation design. Pile drivability study and vibration monitoring (Example: Near Fort Travis) shall be part of the PED, and it should be specified in the final study report.
- Vibrations impacts on wild animals (dolphins, manatees, etc.) in the area
- Sensitivity analysis evaluating different geologic cross sections, representative of variations in site conditions across the bay entrance (in essence, at least two geologic cross sections will be modeled)
- Evaluation, during PED, of slightly different (smaller) size piles, e.g. 60", 54", 48" because of potential installation issues and contractors' limitations (i.e. experience, equipment, etc.) when installing very large diameter driven piles.

Bateman, Vanessa C CIV USARMY CEHQ (USA):

- The current geotechnical team's design approach is considered as reasonable and acceptable to meet the study requirements.
- The Geotechnical team shall provide inputs to the cost engineer to estimate potential cost change for the foundation elements based on upper- and lower- bound geotechnical parameters.

ATTACHMENT: Coastal Texas Study Geotechnical Presentation 09-06-19

Prepared by: Ratnam I. Tharmendira, P.E., G.E., PMP

Reviewed by:

Carlos E. Cepero, P.E.

Vanessa C. Bateman, P.E., P.G, D.GE

ATTACHMENT: Coastal Texas Study Geotechnical Presentation 09-06-19

COASTAL TEXAS STUDY RISK ASSESSMENT ON ADEQUACY OF AVAILABLE GEOTECHNICAL DATA & MITIGATION STRATEGY BASED ON ADOPTING APPROPRIATE US Army Corps of Engineers ENGINEERING ASSUMPTIONS AND CONSIDERATIONS FOR THE STUDY LEVEL GEOTECHNICAL DESIGN

By Ratnam. I. Tharmendira, P.E., G.E., PMP, SWG & the PDT

Sept 06, 2019

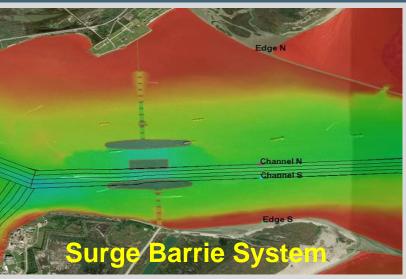
US Army Corps

COASTAL TEXAS STUDY RISK ASSESSMENT ON ADEQUACY OF AVAILABLE GEOTECHNICAL DATA & MITIGATION STRATEGY BASED ON ADOPTING APPROPRIATE of Engineers ENGINEERING ASSUMPTIONS AND CONSIDERATIONS FOR THE STUDY LEVEL GEOTECHNICAL DESIGN

OBJECTIVE OF THE PRESENTATION:

- RISK ASSESSMENT ON ADEQUACY OF AVAILABLE GEOTECHNICAL DATA
- RISK MITIGATION STRATEGY FOR THE STUDY LEVEL GEOTECHNICAL DESIGN

GEOTECHNICAL RISK ASSESSMENT FINDINGS


- Design of Deep Foundation system using available geotechnical data is one of the critical tasks for the subject study.
- The current feasibility level geotechnical design is performed based on a limited (preliminary level) geotechnical data due to the nature of the current design type (Feasibility Level).
- The available geotechnical data is adequate for the subject study level design. This will allow the PDT to perform • acceptable study level design and to develop an acceptable study level cost estimate.
- The current study level geotechnical design adopts appropriate risk mitigation strategies, including reasonable • engineering assumptions and considerations to meet the subject study requirements.
- The current design associates with a medium level risk induced by potential uncertainties on subsurface conditions. This risk level is acceptable, and a similar risk level which is encountered commonly in feasibility studies for large-scale civil projects.
- In general, Large-scale civil projects are associated with a significant level of risk induced by the change in subsurface conditions regardless of the availability of a comprehensive level of geotechnical investigation data. Applying pile drivability/ pile load testing (Static and CAPWAP) during the construction phase can minimize the subject risk on deep foundation design.
- Comprehensive level geotechnical investigations and pile drivability/ pile load testing during the PED will be specified as mandatory requirements in the final study report.

DETAILS FOR SUBJECT RISK ASSESSMENT

As Summarized in the Remaining Presentation slides

COASTAL TEXAS STUDY RISK ASSESSMENT ON ADEQUACY OF AVAILABLE GEOTECHNICAL DATA & MITIGATION STRATEGY BASED ON ADOPTING APPROPRIATE **US Army Corps** of Engineers ENGINEERING ASSUMPTIONS AND CONSIDERATIONS FOR THE STUDY LEVEL GEOTECHNICAL DESIGN

Natural/Fortified Dune System

Major Components	Proposed Structural Elements	Considered Foundation Elements	Major
Surge Barrier System	Combi-wall, Cutoff El variable Vertical Lift Gate, sill El20.0, Deep Vertical Lift Gate, sill El40.0, 125' Sector Gate, Sill El40.0, 650' Navigation Gate, Sill El60.0, Shallow Water Combi Walls	Deep Foundation System 24- to 36- inch Steel Pipe Piles (Vertical and Battered) 48- to 66- inch dia. Precast- Pre-Stressed Pipe Piles Cellular bulkhead structure using Sheet Piles for Artificial Islands for 650' Navigation Gates	• GC • Te Hart
Dune System	N/A	Engineered Earth Fill for Foundation Preparation (if needed)	• GC
Ring Levee System	T-Wall, Combi-Wall, Levees, Sea Wall, Road/Railroad Crossings, Navigation/Circulation/Access Gates, Pump Stations, Drainage Structures	Deep Foundation System 24- to 36- inch Steel Pipe Piles (Vertical and Battered)	• GC
	Community Protection and Recover	y District (GCCPRD) / report refers to the Appendix H (FUGRO 2017) of the

Coastal Texas Protection and Restoration Feasibility Study report refers to the Appendix H (FUGRO 2017) of the GCCPRD Phase 4 Report dated October 18, 2017 as the primary reference material for the available Geotechnical data for the subject study project.

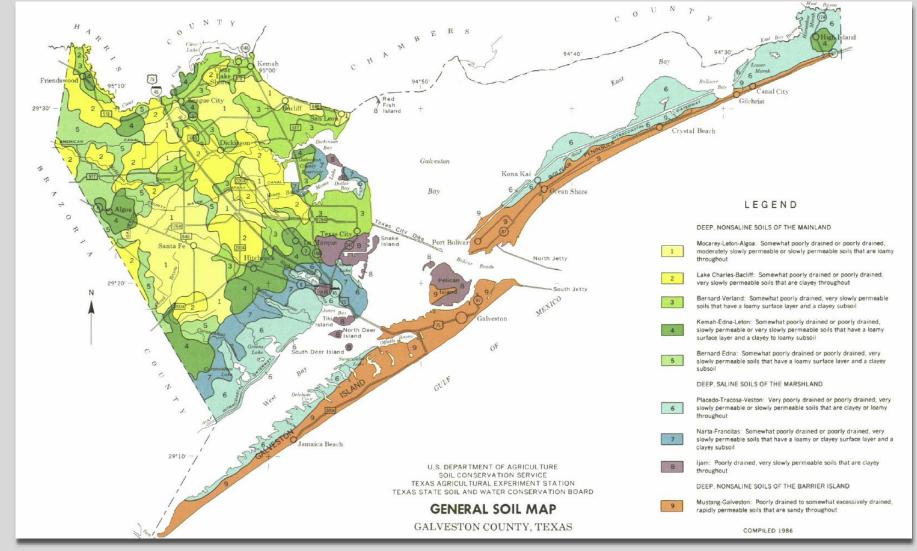
Reference Document for Geology & **Geotechnical Data**

CCPRD Phase 4 Report dated October 18, 2017

exas Coast Hurricane Study Galveston rbor Channel Crossing October 31, 1967

SCCPRD Phase 4 Report dated October 18, 2017

CCPRD Phase 4 Report dated October 18, 2017

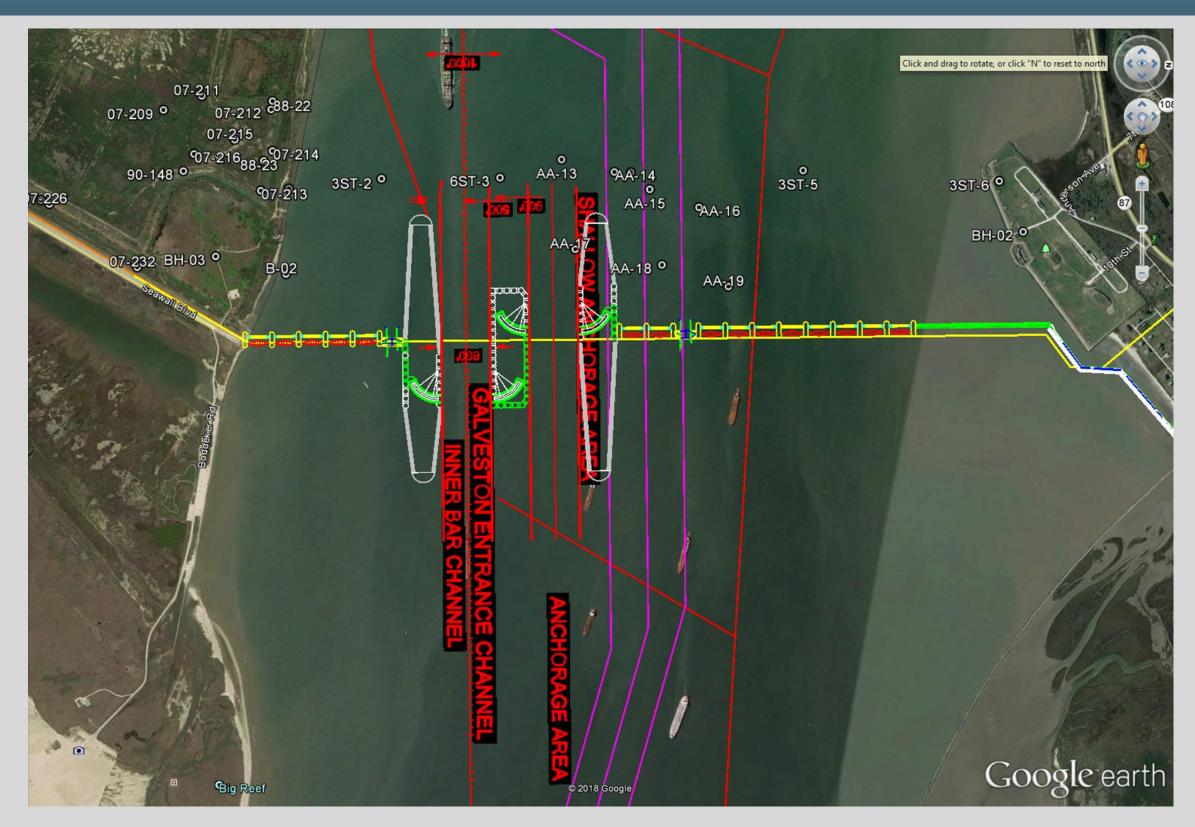

COASTAL TEXAS STUDY RISK ASSESSMENT ON ADEQUACY OF AVAILABLE GEOTECHNICAL DATA & MITIGATION STRATEGY BASED ON ADOPTING APPROPRIATE ENGINEERING ASSUMPTIONS AND CONSIDERATIONS FOR THE STUDY LEVEL GEOTECHNICAL DESIGN

Engineering Geology for the Project is Adequately Evaluated and Documented

- Coastal Texas Protection and Restoration Feasibility Study report refers to the Appendix H (FUGRO 2017) of the GCCPRD Phase 4 Report dated October 18, 2017as the primary reference material for the available Geotechnical data for the subject study project.
- The Relevant Engineering Geology for the study area including Potential Geologic Hazards were evaluated and are presented in the subject reference report.

Surface Faulting – No Seismic hazards, and the project site is not in proximity to known growth faults. Subsidence – No significant subsidence in the future if groundwater pumpage and oil and gas withdrawal are maintained at current levels. Expansive Soils - Applicable to Shallow Foundation elements, replace upper 2-foot of soils with engineered fill. Karst - Not applicable to the Project

Collapsible Soils- Not applicable to the Project

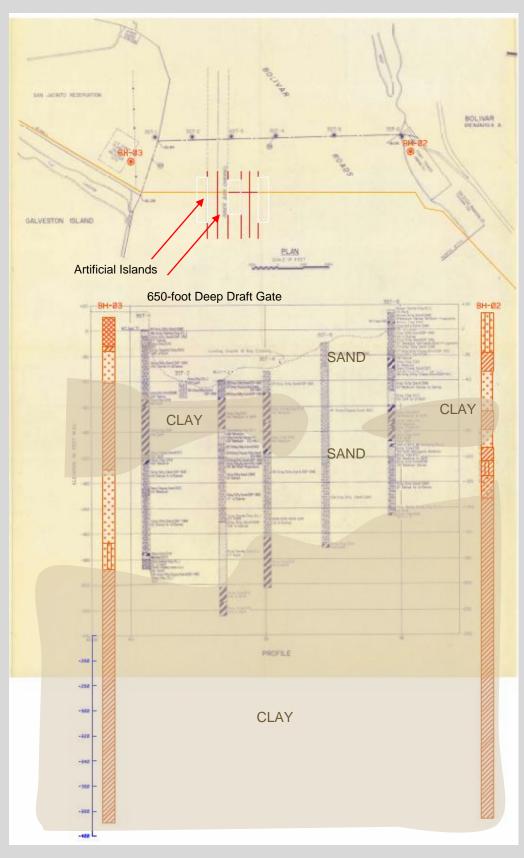


COASTAL TEXAS STUDY

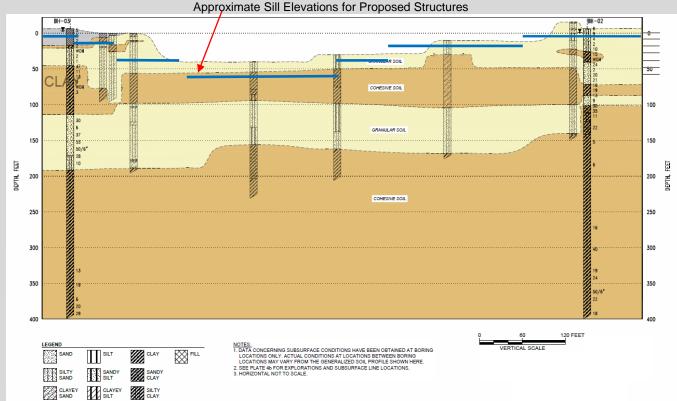
US Army Corps of Engineers.

RISK ASSESSMENT ON ADEQUACY OF AVAILABLE GEOTECHNICAL DATA & MITIGATION STRATEGY BASED ON ADOPTING APPROPRIATE ENGINEERING ASSUMPTIONS AND CONSIDERATIONS FOR THE STUDY LEVEL GEOTECHNICAL DESIGN

Surge Barrier System- Available Geotechnical Borings



COASTAL TEXAS STUDY


11

US Army Corps of Engineers.

RISK ASSESSMENT ON ADEQUACY OF AVAILABLE GEOTECHNICAL DATA & MITIGATION STRATEGY BASED ON ADOPTING APPROPRIATE ENGINEERING ASSUMPTIONS AND CONSIDERATIONS FOR THE STUDY LEVEL GEOTECHNICAL DESIGN

- Approximate length of the Surge barrier System is 11 000 feet, Available deep soil borings (depths vary between 140 to 400 feet) are 7; adequate number of deep borings for the current study level geotechnical design.
- Geotechnical Soil Borings including Laboratory Testing Results are available from the following sources.
- a) 3ST-1, 3ST-2, 6ST-3, 3ST-4, 3ST-5, 3ST-6 Soil Borings (Galveston Entrance Channel Structure1972), Depths up to 200-foot b) BH-03 and BH-02, Appendix H (FUGRO 2017) of the GCCPRD Phase 4 Report dated October 18, 2017, Depths up to 400-foot

Surge Barrier System- Geotechnical Subsurface Profile and Parameters

COASTAL TEXAS STUDY

RISK ASSESSMENT ON ADEQUACY OF AVAILABLE GEOTECHNICAL DATA & MITIGATION STRATEGY BASED ON ADOPTING APPROPRIATE ENGINEERING ASSUMPTIONS AND CONSIDERATIONS FOR THE STUDY LEVEL GEOTECHNICAL DESIGN

SAMPLE SOIL BORING LOG FROM GCCPRD PHASE 4 REPORT DATED OCTOBER 18, 2017

SANDY CLAY, soft to firm, olive gray

1. <u>▼</u>: Water First Noticed. <u>▼</u>: Depth To Water after 15 minutes.

3. Boring coordinates were obtained with a hand-held GPS device. 4. Terms and symbols are presented on Plates D-9a and D-9b.

			T 1	Shear Strength	Parameters		Laboratory Dat	a				~	LOCATION: See Plate 4a
D.C		0.1	Total Unit	Undrained	Friction	Liquid		Water	Raw SPT	ОЕРТН, FT	NATER LEVE SYMBOL	BLOWS PER	COORDINATES: N 29°1'49.24" W 94°5'31.77"
Reference Boring	Depth (feet)	Soil Description	Weight (pcf)	Shear Strength (psf)	Angle (degrees)	Limit (%)	Plasticity Index (%)	Content (%)	Blow count	DEP	VATE SYI	BLOV	SURFACE EL.: Not Available
0	0 to 47	Loose Sand/Soft Clay	110	N/A	N/A	21 to 33	2 to 15	25	2 to 24	-	-	6	STRATUM DESCRIPTION
	47 to 73	Medium dense	120		32				13 to 21	-		X 9	
BH-02	73 to 78	Loose Sand	120		30				9	- 5	-▼	4	
D11-02	78 to 93	Firm to very stiff Clay	120	550 to 2,000		57	43	13		Ē		2	
	93 to 108 to	Medium dense dense Clayey Sand	120		32				30 to 35	- 10-	-		- olive gray, with clay seams below 8'
	108 to 400	Stiff to very stiff Clay	120	1,000 to 2,000		24 to 84	9 to 64	20 to 34		Ē	-		
	0 to 60	Loose to medium dense Sand /Soft Clay	110	N/A	N/A					- - 15· -		X 10	
	60 to 120	Firm to very stiff Clay	120	500 to 1,900		60 to 95	44 to 74	28 to 56		- 20-	-	11	- medium dense below 18.5'
BH-03	120 to 178	Medium dense to very dense Sand	120		32				28 to more than 50	-			
	178 to 198	Loose to medium dense Sand	120		30				10 to 28	- 25		X wo	H - very loose at 24'
	198 to 400	Stiff to very stiff Clay	120	1,200 to 2,000		30 to 87	17 to 68	19 to 37			-	24	

Appendix H (FUGRO 2017) of the GCCPRD Phase 4 Report dated October 18, 2017

Surge Barrier System - Geotechnical Subsurface Profile & Geotechnical Parameters

NOTES:

2. WOH: Weight of Hammer.

		CL/	ASSIF	ICAT	ION		SHEAR STRENGTH			
DEPTH, FT	UNIT DRY WT, PCF	PASSING NO. 200 SIEVE, %	WATER CONTENT, %	LIMIT	PLASTIC	PLASTICITY INDEX (PI)	Penetrometer Unconfined ▼			
	L									
		13 27	25	21	18	- - - - - - - - - - - - - - - - - - -		.10160148_(1).GPJ 0415-1415 10/18/2017		
32.0		26		24	22	- - - - - - - - - - - - - - - - - - -		48 - GOCPRD STORM SURGE PHASE 400_GISIG INTIFINAL GINTIO4.10160148_(1).GPJ 0415-1415 10/18/2017		
32.0	- - - -	56		33	18	- 15_ - -		R:104100/2016 PROJECTS(0100-0199/04.10160148 - GCCPRD S		
	DATE: April 25, 2017 TOTAL DEPTH: 400' CAVED DEPTH: Not Applicable DRY AUGER: Surface to 8' WET ROTARY: 8' to 400' BACKFILL: Cernent-Bentonite Grout LOGGER: E. Schulak									

COASTAL TEXAS STUDY RISK ASSESSMENT ON ADEQUACY OF AVAILABLE GEOTECHNICAL DATA & MITIGATION STRATEGY BASED ON ADOPTING APPROPRIATE ENGINEERING ASSUMPTIONS AND CONSIDERATIONS FOR THE STUDY LEVEL GEOTECHNICAL DESIGN

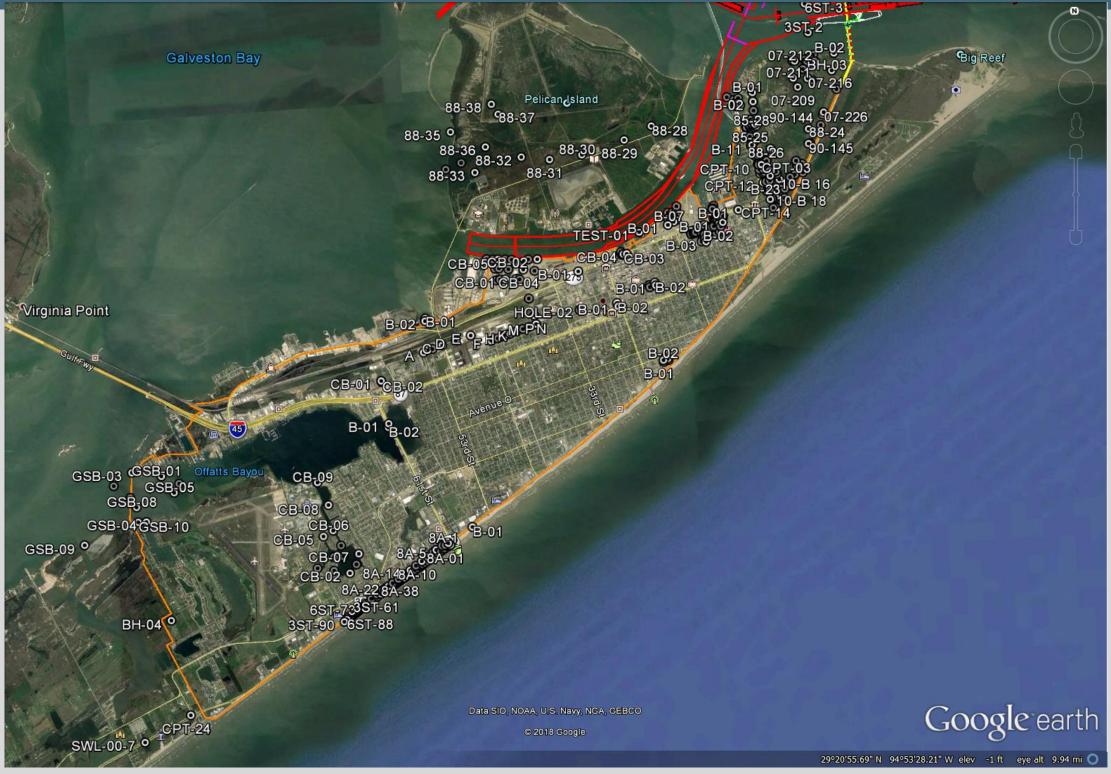
Sample Lab Results from Texas Coast Hurricane Study Galveston Harbor Channel Crossing October 31, 1967

PR LO	OJECT: 7	Texas coast Hurricane st	Cre	953	sin	test	DATA	SUM	MARY							Ma	<u>r 19</u>	66	
				CV	TER	(2).		T.I.					2	SIE	VE A	NALY	SIS		
NO.	H	CLASSIFICATION	SYMBOL	STEN	ET () ROME	FENET /FT (2)	TURE NT 7	ENS]	r'	r,	es es	PE	RCEN		WT.		WT.		
FIELD	DEPTH	ELEVATION TOP BORING	SYM	CONSISTENCY	POCKET (1) PENETROMETER	STAN. BLOWS/	MOISTURE CONTENT %	DRY DENSITY P. c. f.	L.L	P.L	BAR L.S.	GRVL	SAND	FINES	INIT.		EVE 1		1
	00-70400	Water	End				1						-					-	4
-1	402 to 415	Gray silty sand 40-43	SMP				25.3				0.0	0	94	6	50	0	0	1	17
2	41210459 USE-10478	Grav claversild sand 43-48	SCM	5	1.25		37.1	84			3.0	0	56	44	50	0	0	0	2
<	470+0509	Grey chapty and 10 14	SIA			.t									-				
-2	500 10.520			VS	0.0		25.9	1		-	0.0	5	86	9	701	38	92	173	4
5	528-10.558	En clair at 11 Comments	CH	m	0.75		61.2	1=	-	-	26.0	0	0	100	50	0	0	0	t
3		Gray Clay shell fragments	GH	IVI	6175		10112	62			- F.	-	×	100					T
-11	572+0602 602+0622	3.2 - 18:3		57	10		60.6	63			250	0	0	100	50	0	0	0	Γ
2	62240659			-	1000														I
-:5	652+2670			ST	10		61.9	62			25.0	0	0	100	50	0	U	0	1
\leq	672+0700		-			1	87 2	14		-	0.00	-	-	100	100	0		0	┝
-6	708+0722		-	ST	10		63.2	62	-		250	0	0	100	30	0	0	0	t
~	752+0752			24	1:0		61.2	62			23.0	13	4	96	50	0	0	0	t
1	772+0900				1								1		1		1 - 6		T
1.9		Gray Sandy MAN TO.S.85	CL	m	0.75		25.5	84			9.8	0	47	56	50	0	0	0	1
\leq	822+0850		-							-		-		-				-	
1-9	852 10 9.72	Gray Sandy Claver Silt	- SMIL	m	0.75		22.1	104			40	0	42	58	50	0	0	0	ł
~		856 30	1000	100	A -20	-	20.4	105		-	0.0	0	-70	22	50	0	0	0	1
-11	90 40 92 - 92 - 92 - 92 - 92 - 92 - 92 - 92	Gray SILty Sand 20-25	SM	111	0.00			102			1.	10	100	LE		12			T
=11		Frav claver siller same 25-100	Sen	M	0.5		24.2	98			4.0	0	50	50	50	0	0	0	1
×	972+01002								-										+
-12	1002+21029	Gray 51/1 sand 100-105	SOF	M	0.5		21.0	105	-	-	0.0	0	88	12	50	0	0	0	ť
25	1020-1056	a shi in the	55	1	10.30	-	27 E	07		14	70	1	10	40	1.11	25	85	137	-
5	1058-1078	Gray clayey sand, wishell	SEM	S	0.05	-	24.2	87			10	4	00	40	010	20	05	151	t
12	1078-110-	Grav silly sand 110-124	SN	D	-	24	21.5	-	-	1	0,0	0	74	26	50	0	1	4	t

Galveston Entrance Channel Structure1972

8

Surge Barrier System - Geotechnical Subsurface Profile & Geotechnical Parameters



COASTAL TEXAS STUDY

RISK ASSESSMENT ON ADEQUACY OF AVAILABLE GEOTECHNICAL DATA & MITIGATION STRATEGY BASED ON ADOPTING APPROPRIATE ENGINEERING ASSUMPTIONS AND CONSIDERATIONS FOR THE STUDY LEVEL GEOTECHNICAL DESIGN

Geotechnical Soil Borings including Laboratory Results are available from the following sources. a) CPTs, Appendix H (FUGRO 2017) of the GCCPRD Phase 4 Report dated October 18, 2017, Depths up to 60-foot

Ring Levee System – Available Geotechnical Borings and CPTs

COASTAL TEXAS STUDY

RISK ASSESSMENT ON ADEQUACY OF AVAILABLE GEOTECHNICAL DATA & MITIGATION STRATEGY BASED ON ADOPTING APPROPRIATE ENGINEERING ASSUMPTIONS AND CONSIDERATIONS FOR THE STUDY LEVEL GEOTECHNICAL DESIGN

Geotechnical Soil Borings including Laboratory Results are available from the following sources. a) CPTs, Appendix H (FUGRO 2017) of the GCCPRD Phase 4 Report dated October 18, 2017, Depths up to 60-foot

10 Southern Dune System – Available Geotechnical Borings and CPTs

of Engineers

COASTAL TEXAS STUDY

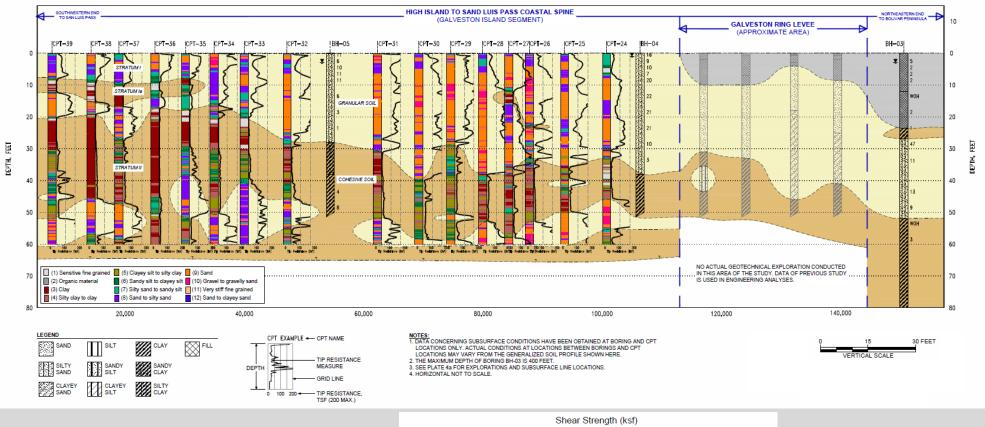
RISK ASSESSMENT ON ADEQUACY OF AVAILABLE GEOTECHNICAL DATA & MITIGATION STRATEGY BASED ON ADOPTING APPROPRIATE ENGINEERING ASSUMPTIONS AND CONSIDERATIONS FOR THE STUDY LEVEL GEOTECHNICAL DESIGN

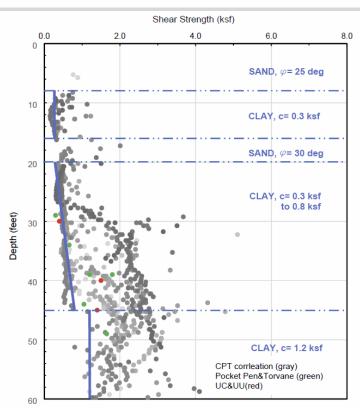
		Flo	odwall Reacl	h and Wes		sland Reach			
		Total	Short-term (U	Undrained)	Long-term	n (Drained)	Rapid Drawdown		
Depth (feet)	Soil	Unit Weight (pcf)	Cohesion (psf)	Friction Angle (degrees)	Cohesion (psf)	Friction Angle (degrees)	Cohesion (psf)	Friction Angle (degrees)	
0 to 8	Sand	115	0	25	0	25	0	25	
8 to 16	Soft Clay	105	300	0	50	17	75	12	
16 to 20	Sand	115	0	30	0	30	0	30	
20 to 45	Soft to Firm Clay	105	Top: 300 Bottom: 800	0	Top: 50 Bottom: 200	Top: 17 Bottom: 21	Top: 75 Bottom: 250	Top: 12 Bottom: 16	
45 to 60	Stiff Clay	125	1,200	0	250	21	300	16	

Soil Parameters for Slope Stability Analysis - Galveston Ring Levee/

Soil Parameters for Slope Stability Analysis - Compacted Clay (Fat Clay or Lean Clay) Fill

	Total	Short-term (Undrained)	Long-term	(Drained)	Rapid Dr	awdown
	Unit		Friction		Friction		Friction
Depth	Weight	Cohesion	Angle	Cohesion	Angle	Cohesion	Angle
(feet)	(pcf)	(psf)	(degrees)	(psf)	(degrees)	(psf)	(degrees)
Varies	115	600	0	120	20	170	15


Soil Parameters for Settlement Analysis - Galveston Ring Levee/ Floodwall Reach and West Galveston Island Reach


		Total Unit	Con	pressibilit	y Parameter	rs
Depth (feet)	Soil Description	Weight (pcf)	CR^1	RR ²	OCR ³	Cv ⁴ (feet/year)
0 to 8	Loose Sand	115	E ⁵ : 300 ksf			300
8 to 16	Soft Clay	105	0.15	0.03	10	7
16 to 20	Medium Dense Sand	115	E ⁵ : 450 ksf			300
20 to 45	Soft to Firm Clay	105	0.20	0.02	3	7
45 to 60	Stiff Clay	125	0.20	0.02	3	7

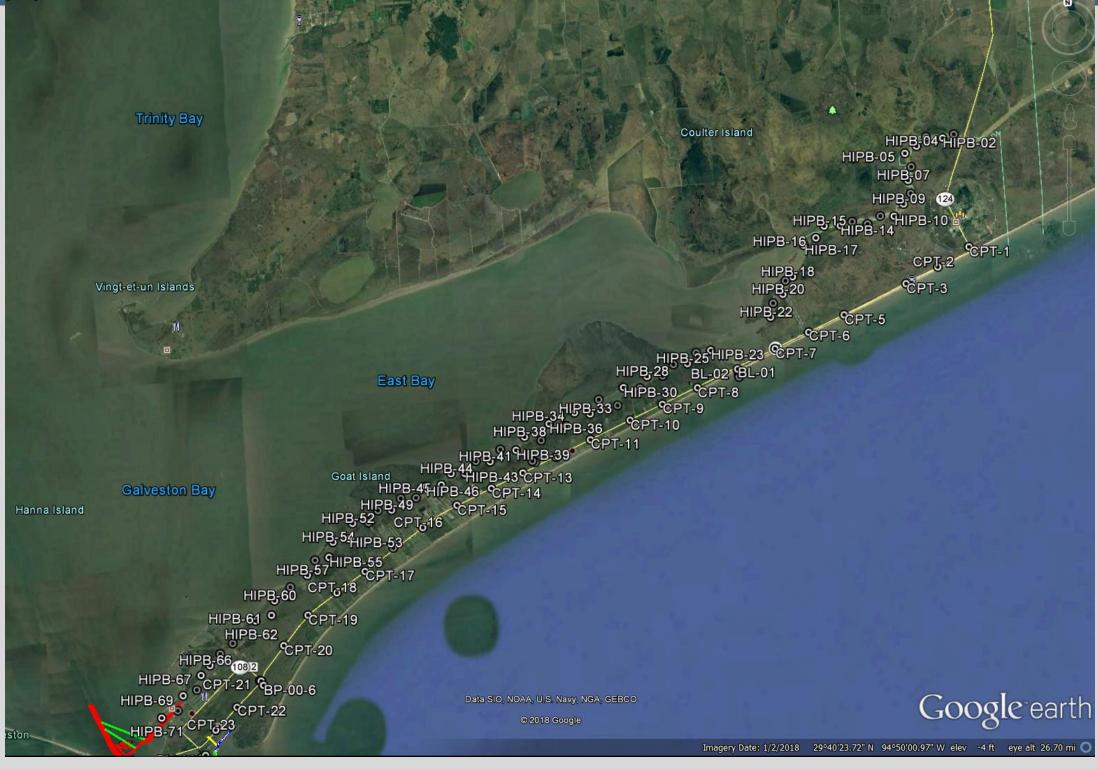
³ Over-consolidation ratio

⁴ Coefficient of Consolidation

5 Modulus of Elasticity

Appendix H (FUGRO 2017) of the GCCPRD Phase 4 Report dated October 18, 2017

11


Ring Levee & Southern Dune System – Geotechnical Subsurface Profile & Geotechnical Parameters

COASTAL TEXAS STUDY

RISK ASSESSMENT ON ADEQUACY OF AVAILABLE GEOTECHNICAL DATA & MITIGATION STRATEGY BASED ON ADOPTING APPROPRIATE ENGINEERING ASSUMPTIONS AND CONSIDERATIONS FOR THE STUDY LEVEL GEOTECHNICAL DESIGN

Geotechnical Soil Borings including Laboratory Results are available from the following sources. a) CPTs, Appendix H (FUGRO 2017) of the GCCPRD Phase 4 Report dated October 18, 2017, Depths up to 60-foot

12

Northern Dune System – Available Geotechnical Borings and CPTs

COASTAL TEXAS STUDY

RISK ASSESSMENT ON ADEQUACY OF AVAILABLE GEOTECHNICAL DATA & MITIGATION STRATEGY BASED ON ADOPTING APPROPRIATE ENGINEERING ASSUMPTIONS AND CONSIDERATIONS FOR THE STUDY LEVEL GEOTECHNICAL DESIGN

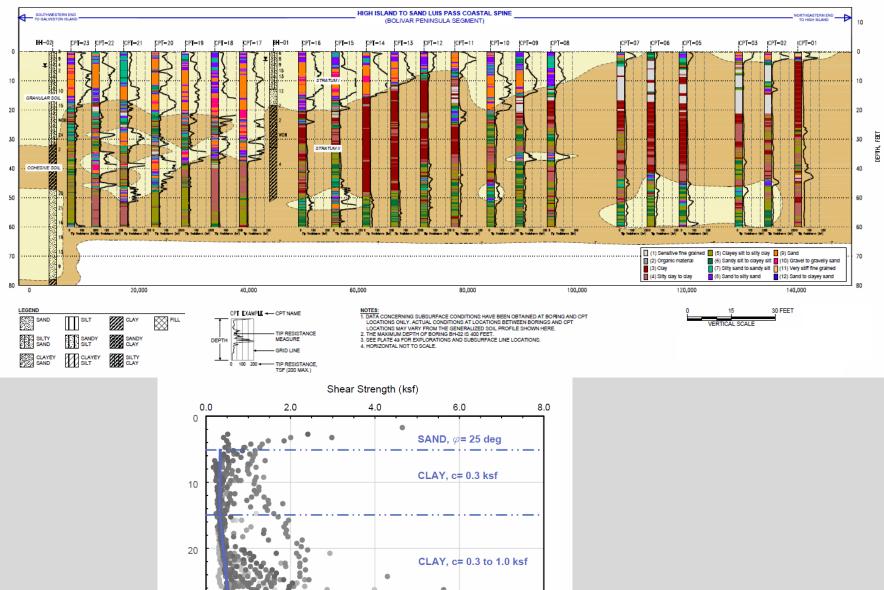
	S	oil Param	eters for Slope	Stability An	alysıs – Bolı	var Peninsula	Reach	
		Total	Short-term (U	Undrained)	Long-term	ı (Drained)	Rapid Dr	awdown
Depth (feet)	Soil	Unit Weight (pcf)	Cohesion (psf)	Friction Angle (degrees)	Cohesion (psf)	Friction Angle (degrees)	Cohesion (psf)	Friction Angle (degrees)
0 to 5	Sand	115	0	25	0	25	0	25
5 to 15	Soft Clay	105	300	0	50	17	75	12
15 to 60	Soft to Stiff Clay	125	Top: 300 Bottom: 1,000	0	Top: 50 Bottom: 200	Top: 17 Bottom: 21	Top: 75 Bottom: 250	Top: 12 Bottom: 16

Soil Parameters for Slope Stability Analysis - Compacted Clay (Fat Clay or Lean Clay) Fill

	Total	Short-term (Undrained)	Long-term	n (Drained)	Rapid Dr	awdown
	Unit		Friction		Friction		Friction
Depth	Weight	Cohesion	Angle	Cohesion	Angle	Cohesion	Angle
(feet)	(pcf)	(psf)	(degrees)	(psf)	(degrees)	(psf)	(degrees)
Varies	115	600	0	120	20	170	15

Soil Parameters for Settlement Analysis – Bolivar Peninsula Reach

		Total Unit	Con	npressibilit	y Paramete	rs
Depth (feet)	Soil Description	Weight (pcf)	CR^1	RR ²	OCR ³	Cv ⁴ (feet/year)
0 to 5	Loose Sand	115	E ⁵ : 300 ksf			300
5 to 15	Soft Clay	105	0.15	0.03	10	7
15 to 60	Soft to Stiff Clay	125	0.20	0.02	3	7


¹ Strained-based compression index.


² Strained-based re-compression index.

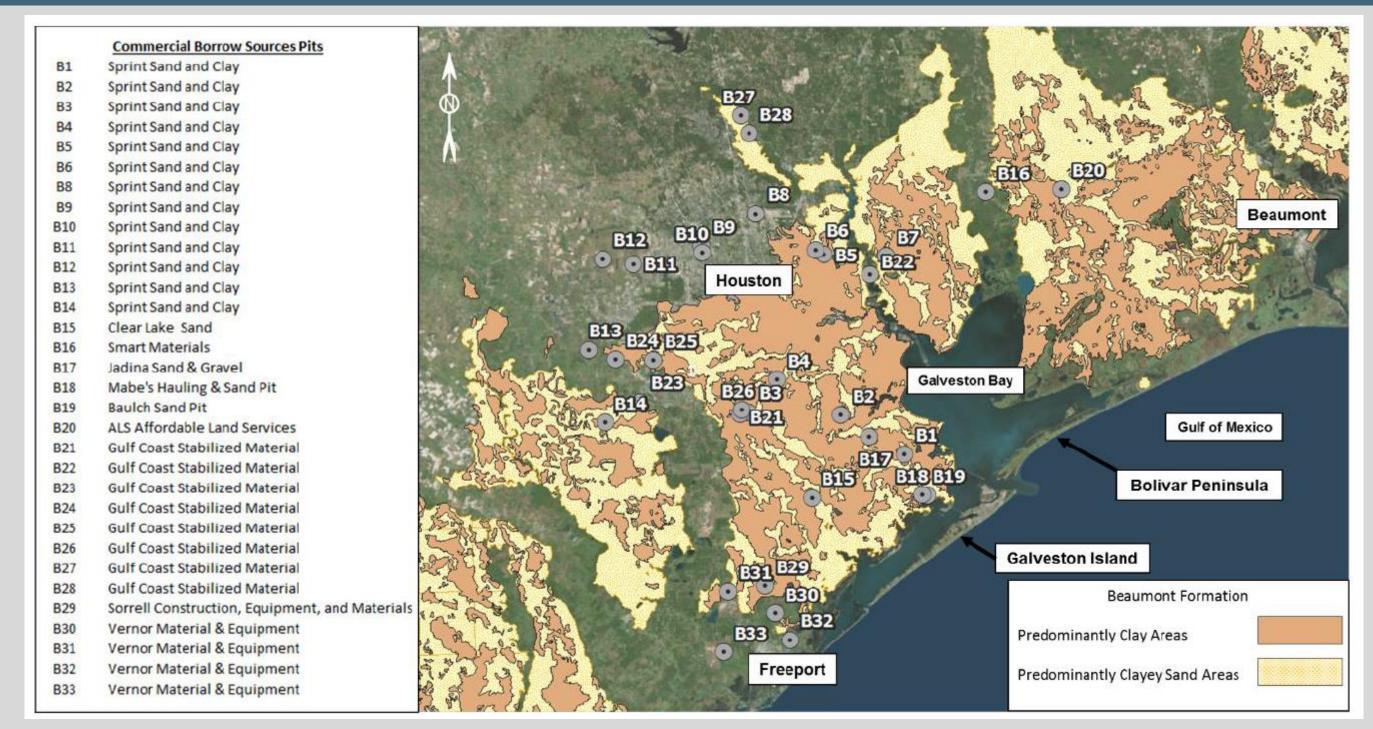
³ Over-consolidation ratio

⁴ Coefficient of Consolidation

⁵ Modulus of Elasticity

Appendix H (FUGRO 2017) of the GCCPRD Phase 4 Report dated October 18, 2017

Northern Dune System – Geotechnical Subsurface Profile & Geotechnical Parameters


13

COASTAL TEXAS STUDY

RISK ASSESSMENT ON ADEQUACY OF AVAILABLE GEOTECHNICAL DATA & MITIGATION STRATEGY BASED ON ADOPTING APPROPRIATE ENGINEERING ASSUMPTIONS AND CONSIDERATIONS FOR THE STUDY LEVEL GEOTECHNICAL DESIGN

CSRM – Potential Commercial Borrow Sources

Note: Off-shore borrow sources are not shown in this slide.

US Army Corps

of Engineers

COASTAL TEXAS STUDY

RISK ASSESSMENT ON ADEQUACY OF AVAILABLE GEOTECHNICAL DATA & MITIGATION STRATEGY BASED ON ADOPTING APPROPRIATE ENGINEERING ASSUMPTIONS AND CONSIDERATIONS FOR THE STUDY LEVEL GEOTECHNICAL DESIGN

Geotechnical Engineering Tasks and Study Level Limitations

Elements	Tentative Start Date	Tentative Completion Date	Details of Technical Task	
Closure at Bolivar Inlet - Combi-				
Wall	6/10/2019	8/9/2019		
Closure at Bolivar Inlet - Culverts	6/10/2019	11/23/2019	Developing sub-surface profiles	
Closure at Bolivar Inlet - Vertical Lift Gates	6/10/2019	9/14/2019	and geotechnical parameters for analyses including deep	Uncertainties decision on CS
Closure at Bolivar Inlet - 125-foot Recreation Navigation Sector Gate	6/10/2019	10/5/2019	foundation and stability evaluation for foundation piles, sheet piles for cofferdams, assessing the	
Closure at Bolivar Inlet - 650-foot Deep Draft Gate			constructability of foundation elements, selection of suitable foundation types, developing the quantity spreadsheet to support	live), subsurfa developed bas the vicinity of locations.
Galveston Ring Levee - Levees & Flood Walls, Offats Gate design			project Cost Estimate.	
	6/10/2019	11/7/2019		

Limitations

s associated with preliminary level CSRM alignment, proposed structural uction assumptions, foundation ns (pile cap, footing size, cutoff structural loads (dead, wind, wave, ace geotechnical parameters ased on available soil borings within f the proposed foundation elements'

of Engineers

COASTAL TEXAS STUDY RISK ASSESSMENT ON ADEQUACY OF AVAILABLE GEOTECHNICAL DATA & MITIGATION STRATEGY BASED ON ADOPTING APPROPRIATE

ENGINEERING ASSUMPTIONS AND CONSIDERATIONS FOR STUDY LEVEL GEOTECHNICAL DESIGN

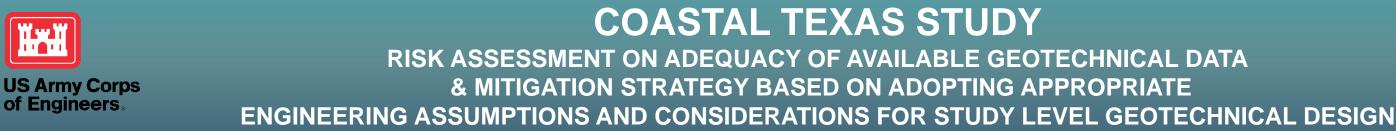
SUMMARY OF GEOTECHNICAL RISK ASSESSMENT AND RISK MITIGA						
Major Components	Level of Geotechnical Risk on Project Cost Estimate based on available soil b parameters					
Surge Barrier System	 Medium level risk – Adequate number of deep soil borings (seven) including geotechnical lat the vicinity of Surge Barrier System. The potential risk on study level geotechnical design can nature of the deep foundation system and size of the project. Risk mitigation strategies will be as follows: a) adopting the lower-bound soil strength data from available soil borings within the vicinity of capacity estimate. b) Pile type selection will consider the upper bound evaluation of potential hard-driving conditients. d) Sensitivity analysis on using upper - and lower – bound geotechnical parameters for pile for estimate the potential change in final pile length to support the project cost estimate at the stuper study level design lengths of the piles will be longer than detail design/ actual construction pile optimized by obtaining comprehensive level geotechnical investigation data during detail leve Study level pile numbers will be higher than the detail level design/ actual construction pile optimized by obtaining PED phase based on comprehensive level geotechnical piles. 					
Dune System	Low – Adequate number of soil borings and CPTs are available along the alignment of the Dudeveloping geotechnical parameters for shallow foundation system can be classified as low less system. Projected Risk Management Results: The actual foundation cost will be within the acceptate					
Ring Levee System	Medium level risk : Adequate number of soil borings and CPTs are available along the align development of geotechnical parameters for deep foundation system will be associated with r deep foundation system and size of the project. Risk Mitigation Strategy: Same as Surge Barrier System. Projected Risk Management Results: Same & Surge Barrier System.					

TION STRATEGY

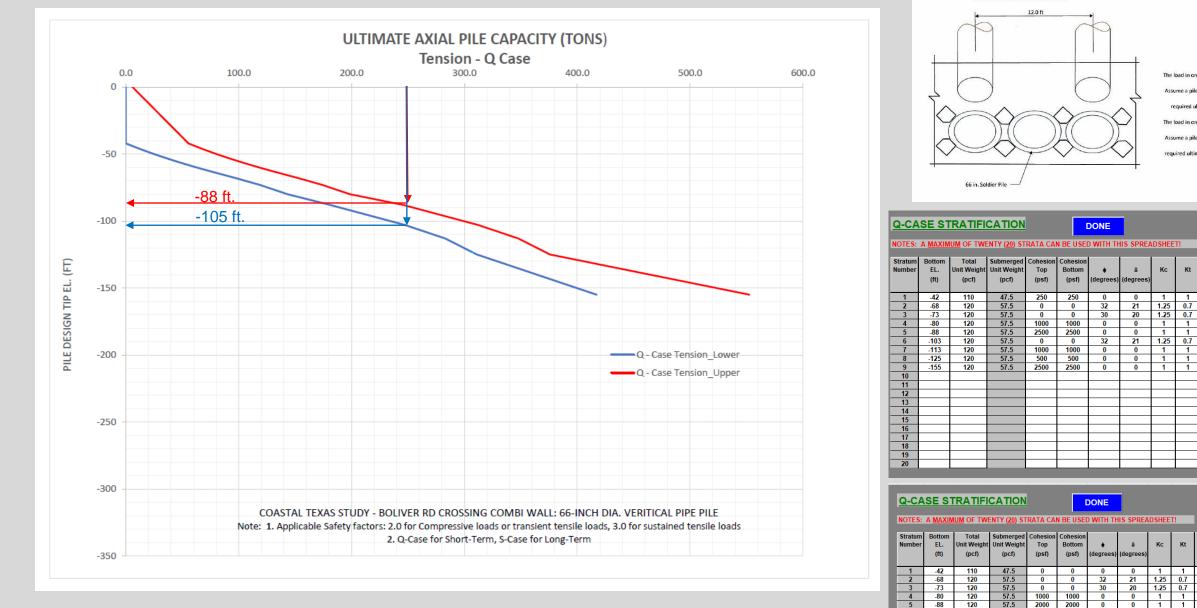
borings & subsurface geotechnical

aboratory testing data are available within n be classified as medium level due to the

f the proposed structure for Axial pile


tions.

oundation design will be performed to udy level. (See example on next slide). eptable study level cost estimate. pile length. Study level Pile lengths will be el (PED phase) design. numbers. Lateral resistance of the vertical he additional lateral resistance


une System. The potential risk on level due to nature of shallow foundation

able study level cost estimate.

nment of the Ring Levee System. The medium level of risk due to nature of the

EXAMPLE: SENSITIVITY ANALYSIS USING UPPER - AND LOWER – BOUND GEOTECHNICAL PARAMETERS OR PILE FOUNDATION DESIGN TO ESTIMATE THE POTENTIAL CHANGE IN FINAL PILE LENGTH @ Boliver Road Crossing Combiwall 66 in. Soldier Pile

Estimated Potential Pile Length Changes to 66-inch Dia. Pile:

Required Pile length using Lower-bound design parameters = Pile tip at -105 ft EL. Required Pile length using Lower-bound design parameters = Pile tip at -88 ft EL. Potential Pile Length change percentage = $(105-88)/105 \times 100\% = 16.2\%$

Fill Kc, Kt, Nc, Nq					Fills Table with HSDRRSG value		
		Cle	ar Cont	tents	Clears Table Contents.		
Kt	Nc	Nq	End Bearing?	Soil Type	Maximum Unit Friction* (psf)	Maximum Unit End Bearing* (psf)	
1	9	1		CL			
0.7	0	22.5		SP			
0.7	0	22.5		SP			
1 1	9	1		CH			
1	9	1		CH			
0.7	0	22.5		SP			
1	9	1		CH			
1	9	1		CL			
1	9	1	>	CH			

UPPER-BOUND GEOTECHNICAL PARAMETERS.

	Fill Kc	, Kt, No	:, Nq	Fills Table	with HSDRR	SG values
	Cle	ar Cont	tents	Clears Tal	ole Contents.	
Nc	Nq	End Bearing?	Soil Type	Maximum Unit Friction* (psf)	Maximum Unit End Bearing* (psf)	
9	1		CL			
0	22.5		SP			
0	22.5		SP			
9	1		CH			
9	1		CH			
0	22.5		SP			
9	1		CH			
9	1		CL			
9	1	~	CH			

LOWER-BOUND **GEOTECHNICAL** PARAMETERS.

COASTAL TEXAS STUDY RISK ASSESSMENT ON ADEQUACY OF AVAILABLE GEOTECHNICAL DATA & MITIGATION STRATEGY BASED ON ADOPTING APPROPRIATE ENGINEERING ASSUMPTIONS AND CONSIDERATIONS FOR STUDY LEVEL GEOTECHNICAL DESIGN

Conclusion:

- The available geotechnical data is adequate for the subject study level design. This will allow the PDT to perform acceptable study level design and to develop an acceptable study level cost estimate.
- The current study level geotechnical design adopts appropriate risk mitigation strategies, including reasonable engineering assumptions and considerations to meet the subject study requirements.
- Comprehensive level geotechnical investigations and pile drivability/ pile load testing during the PED will be specified as mandatory requirements in the final study report.

COASTAL TEXAS STUDY

RISK ASSESSMENT ON ADEQUACY OF AVAILABLE GEOTECHNICAL DATA & MITIGATION STRATEGY BASED ON ADOPTING APPROPRIATE ENGINEERING ASSUMPTIONS AND CONSIDERATIONS FOR STUDY LEVEL GEOTECHNICAL DESIGN

US Army Corps of Engineers

QUESTIONS & COMMENTS

