Confined Disposal Facilities

Function, Design, Management and Environmental Evaluation Procedures

Trudy J. Estes
US Army Engineer Research and Development Center
Vicksburg, MS
Topics

• General processes and procedures
 ➢ Confined Disposal Facilities – Function, Design and Management

• Contaminants
 ➢ Metals vs. organics in the environment
 ➢ Sediment characteristics vs. bioavailability

• Environmental assessment process
 ➢ Evaluating potential environmental impacts of confined disposal
 ➢ Tiered approach
 ➢ Relevant contaminant pathways
 ➢ Physical modeling and testing
 ➢ Interpretation of test data
What is confined disposal?

- Any placement of dredged material (DM) in a containment area

- When do we use confined disposal?
 - Open water disposal site unavailable
 - Material is unsuitable for open water disposal

- Confined disposal facilities are engineered structures
 - Design to contain sediment solids
 - Procedures set forth in engineering manuals
Types of Confined Disposal Facilities

- Upland
- Island
- Nearshore
How “proven” is confined disposal?

- Confined disposal is a mature and well-established management alternative.
- Relative volume of upland and confined disposal vs. total volume dredged.

National dredging volumes IWR database

- Total 2011 Dredging Volume (cy)
- Confined & Upland Disposal (cy)
Craney Island

- Craney Island
 - Norfolk, VA
 - Constructed 1956
 - ~2500 acre CDF
 - Eastward expansion - future marine terminal (2017)
Poplar Island – Chesapeake Bay

- Early 1600’s
 - ~1000 acres
- By 1990
 - Main island <10 acres
- Restoration effort
 - 1998-2027
 - 68M cy DM
 - Baltimore Harbor and channels
What happens during hydraulic disposal?

- Floating discharge pipeline
- Sediment slurry ≈ 4/1 water/solids
- Dredge discharge
- Clarified effluent
- Coarser Finer
- Course Grained Material
- Fine Grained Material
- Low permeability materials
What happens to the material in the CDF?

- Estuarine and saline sediments more rapid than freshwater sediments
- Informs CDF design and environmental analysis
Planning & Design of Confined Disposal Facilities

• Design objectives
 ➢ Retain solids
 ➢ Manage water
 ➢ Material recovery

• Structured process
 ➢ Siting
 ➢ Capacity evaluation
 ➢ Conceptual design
 ➢ Detailed engineered design
Environmental Evaluation of Confined Disposal

- **Structured evaluation process**
 - Tiered approach - detailed in the UTM
 - Estimate magnitude of contaminant releases
 - Assess potential environmental impact

- **Multiple lines of evidence support decision-making**
 - Will water quality criteria be exceeded?
 - Is off-site exposure a concern?
 - Is plant and animal uptake acceptable?

- **Evaluation of risk informs**
 - Need for engineering controls – risk management
UTM – Tiered Approach

<table>
<thead>
<tr>
<th>Tier</th>
<th>Work Package</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tier I</td>
<td>Existing Info</td>
</tr>
<tr>
<td>Tier II</td>
<td>Screening Evaluations</td>
</tr>
<tr>
<td>Tier III</td>
<td>Effects-Based Testing and Evaluations</td>
</tr>
<tr>
<td>Tier IV</td>
<td>Case Specific Studies/Risk Assessment</td>
</tr>
</tbody>
</table>
Tier I – Existing Information

• “Reason to believe”
 - Need for “Pathway” Evaluations
• Compile
 - Available sediment and water chemistry
 - Sediment physical characterization
 - Municipal, industrial, surface water inputs
 - Available data from other agencies
• Establish relevant “Exposure Pathways” and “Contaminants of Concern” (COCs)

Proceed to Tier II for relevant pathways
6 Potential Contaminant Pathways

- Volatilization
 - Losses to air from DM surface and ponded water
- Plant and animal uptake
 - From sediment as well as site and pore water
- Effluent
 - Water discharged during disposal operations
- Runoff
 - Water discharged following precipitation
- Leachate
 - Water (precipitation) filtering through the DM and into the underlying soils
Exposure Pathway Concepts

• Risk considers
 - Exposure concentrations
 - Likelihood of exposure
 - Manner of exposure
 - Frequency/duration of exposure
 - Demonstrated “effects”

• Exposure requires a “complete” pathway
 - e.g. no volatile compounds = no inhalation pathway
Sediment Characterization

• Objectives
 ➢ Determine physical (geotechnical) characteristics
 ➢ Identify contaminants of concern
 ➢ Evaluate variability

• Sediment sampling plan
 ➢ Anecdotal data
 ➢ Industry/outfalls

• Obtain representative samples
 ➢ All sediment types in project area
 ➢ All contaminants and contaminant levels
Tier II – Screening Analysis

- Desktop analysis
- Predict effluent, runoff, leachate concentrations and volatile losses
 - Contaminant properties and behavior
- Predict plant and animal uptake
 - Theoretical bioaccumulation (TBP)
 - Plant uptake (PUP and DTPA)
- Determine need for further testing (Tier III)
- Refine Contaminants of Concern (COC’s)
Contaminant Partitioning

Partitioning coefficient (K_d)

- Contaminants “distribute” between dissolved phases and solid phases
- Ratio sorbed to dissolved contaminant
 - $K_d = \frac{C_{sorbed}}{C_{dissolved}}$
- Literature or direct measurement
- Contaminant specific
- Function of sediment characteristics
Sediment Characteristics – Grain Size

Fine fraction
<75µm

Coarse fraction
75µm – 4.75mm

>4.75mm gravel and cobbles
Coarse Fraction Characteristics

• Contains
 - Large fragments of primary minerals such as quartz
 - Natural organic materials – detritus
 - Coatings of fine materials – e.g. organic matter, soot, clay
 - Possibly coarse carbon containing materials – e.g. coal fragments

• Coarse minerals
 - Lower surface area
 - Non-reactive surfaces

High contaminant sorption potential
Low contaminant sorption potential
Fine Fraction Characteristics

- Contains
 - Fine fragments of same minerals as coarse fraction
 - Very fine natural organic materials, and condensed carbon e.g. soot
 - Clay minerals

- Clay minerals
 - Interlayers (some forms)
 - High surface area
 - Negatively charged surfaces
 - High contaminant sorption potential
 - High ion exchange potential
Metal Contaminants

- Most are cationic (positive charge)
 - E.g. Lead, copper, zinc, etc.
- Attracted to negatively charged clays
- Some sorption to carbon (e.g. soot, coal)
- Form precipitates (insoluble solids)
 - Metal sulfides – reducing conditions
 - Metal hydroxides – oxidizing conditions
- Wetting and drying cycles promote release
 - Metals release from runoff > from effluent
- Not biodegradable
Organic Contaminants

• Most non-polar, highly hydrophobic
 - Low solubility
 - High affinity for organic sediment fractions, esp. condensed carbon phases

• Strongly held by solids
 - K_d dioxins - 1 to 2 orders of magnitude higher than common metals
 - Slow desorption or irreversible sorption

• Some biodegradable

• Generally not very mobile in the environment
 - Solids containment generally effective in limiting mobility
Tier II Outcomes

• Definitive
 ➢ WQC met with attainable dilutions/attenuation
 ➢ Volatilization exposures acceptable
 ➢ Plant and animal uptake levels acceptable

• Not definitive
 ➢ Contaminants present have no WQC
 ➢ Predicted exposures potentially unacceptable
 ➢ Data or model inconsistency

Resolve specific issues with Tier III Testing and Evaluations
Tier III Testing

- Effects Based Testing and Evaluations
 - Physical/chemical testing to evaluate contaminant releases
 - Biological testing to evaluate exposure effects
- Models for Mixing, Attenuation, Dispersion
 - Refine exposure predictions
 - Extrapolate to site specific conditions
Column Settling Tests

- 15-day procedure
 - Slurry sediment

- At intervals
 - Monitor interface
 - Measure TSS in supernatant

- Informs
 - Ponding req.
 - Predicted effluent TSS and total COC concentrations
Effluent Elutriate Test

1. Mix sediment and water to expected influent concentration
2. Aerate in 4L cylinder for 1 hr
3. Settle for expected mean field retention time up to 24 hr maximum
4. Extract sample and split
5. Centrifugation or 0.45um filtration

- Suspended Solids Determination
- Chemical Analysis Total Concentration
- Chemical Analysis Dissolved Concentration
Modified Elutriate Test Setup
Runoff Physical Testing (Lab)

• **Simplified Laboratory Runoff Procedure (SLRP)**
 - Models runoff from wet and dry sediment

• **Conducted at representative TSS**
 - Wet: 500, 5,000, 50,000 mg/L
 - Dry: 50, 500, 5,000 mg/L

• **Total and dissolved contaminants measured**
SLRP Procedures

Unoxidized (Wet)

- Sediment
- DI Water

1. Air dry
2. Grind

Dried Sediment

1. Add H_2O_2
2. Dry, Regrind

Oxidized Sediment

1. Agitate 1 hr
2. Filter
3. Split Sample

Dissolved Chemical Analysis

Total Chemical Analysis

TSS Analysis

Dissolved Chemical Analysis

Total Chemical Analysis

TSS Analysis

1For Nutrients/Organics; 2For Metals
Mixing/Dilution – Effluent/Runoff

- Estimate dilution required to meet WQC outside the mixing zone

 Relative flow and background concentrations

\[D = \frac{V_{\text{RecWater}}}{V_{\text{Eff}}} = \frac{\left(C_{\text{Eff}} - C_{\text{WQC}} \right)}{\left(C_{\text{WQC}} - C_{\text{RecWater}} \right)} \]

- Mixing & transport models

 Cornell Mixing Zone Expert System (CORMIX) et al

 Determine “where in the receiving water” criteria will be met
Mixing/Dilution – Effluent & Runoff

• Mixing zone
 ➢ The area contiguous to a discharge where mixing with receiving waters takes place and where specified criteria, as listed in §307.8(b)(1) of this title (relating to Application of Standards), can be exceeded.
 ➢ Mixing zone allowance and dimensions codified
 ➢ Zone of Initial Dilution
 – Acute criteria may be exceeded
 ➢ Mixing zone
 – Chronic criteria may be exceeded
Mixing/Dilution – Effluent/Runoff

Zone of Initial Dilution

Mixing Zone

Receiving Water

Effluent

Current
Effluent and/or Runoff Toxicity Testing

• May be needed if
 ➢ Contaminants without WQC present
 ➢ Anticipated WQC exceedances

• **Effluent elutriate & SLRP used as test mediums**
 ➢ Expose test organisms to dilution series of whole effluent elutriate
 ➢ End result is LC50 or EC50 expressed as percentage of original effluent elutriate concentration

• **Compare with effluent & runoff concentrations at the boundary of the allowable mixing zone**
 ➢ Must not exceed 0.01 of LC50 or EC50
Leachate Physical Testing

- Sequential Batch Leach Test (SBLT)
 - Freshwater sediments

- Procedure
 - Load sediment in a 4:1 water-to-sediment ratio under anaerobic (nitrogen atmosphere) conditions.
 - Shake for 24 hours, centrifuge, and filter leachate.
 - Add water to sediment to make up that removed.
 - Repeat steps 1 and 2.
 - Repeat for at least four cycles.
Physical Modeling - Leachate

- Model transport and attenuation of contaminants in subsurface
 - Sorption and degradation
 - Mixing and dilution
 - Transport – diffusion, advection
- Compare predicted concentrations at point of compliance to:
 - Applicable GW standards
 - Applicable SW standards if appropriate
Volatilization Physical Testing (Lab)

- Flux chamber
 - Carrier air passes over the sediment
 - Contaminant traps capture contaminants in the offgases
Example Sampling Protocol

- **Sampling times / intervals:**
 - 6, 24, 48, 72 hours, 5, 7, 10, and 14 days
 - Sample continuously (replace trap at each sample interval)

- **Experimental conditions:**
 - Initiate with field moist sediment and dry air over sediment surface (14-day experiment)
 - Apply humid air over sediment surface for 7 days
 - Rework sediment and repeat with dry air
Physical Modeling - Volatilization

• Calculate flux (contaminant mass release rate)
 - Input parameter to model contaminant concentration at a point of exposure
 - Considering dispersion (transport) of the contaminants

• Compare predicted exposure concentrations to end points
 - OSHA Human Exposure Standards after factoring in dispersion
 - Health-Based Air Concentrations for acceptable level of risk after factoring in dispersion
Animal Uptake Testing

• Earthworm Bioaccumulation Test
 ➢ Based on ASTM Method E-1676-04
 ➢ Approximately 30g biomass
 ➢ 28-day exposure to reference soil & dredge materials
Animal Uptake Modeling

• Compare results between reference soil & dredging material
 - Survival, growth, reproduction
 - COC bioaccumulation
 - Accounts for bioavailability of contaminants

• Extrapolate to conceptual site model
 - Evaluate risk to receptors of concern
Plant Uptake Testing

• **Cyperus** plant bioaccumulation test
 - Saltwater terrestrial, freshwater wetland, and freshwater terrestrial habitat
 - 45-day exposure to reference soil & dredge material

• **Spartina** plant bioaccumulation test
 - Saltwater wetland habitat
 - 90-day exposure to reference soil and dredged material
Plant Uptake Modeling

- Compare results between reference soil & dredge material
 - Survival & growth
 - COC bioaccumulation
- Extrapolate to site conceptual model
 - Evaluate risk to receptors of concern
Tier IV Case Specific Studies

• Formal quantitative risk assessment
• Addresses specific, well-defined questions
• Rarely necessary for navigation dredging
• Useful if
 ➢ Contamination is substantial
 ➢ Decision-making information not otherwise available
 ➢ The evaluation will provide essential information
• Unnecessary use of resources when
 ➢ Merely a refinement of Tier III
 ➢ Definitive determination unchanged
Summary

• Overview
 - Confined disposal process
 - Contaminant partitioning
 - Environmental evaluation processes

• Corps wide procedures
 - Relevant pathways and COCs will be site specific

• Modeling assumptions and test conditions
 - Conservative, but representative
 - Protective

• Risk assessment
 - May be used for final resolution where necessary
 - Resource intensive
 - Useful only if it informs the final decision
References
