### HOUSTON SHIP CHANNEL EXPANSION CHANNEL IMPROVEMENT PROJECT (HSC ECIP)

### Public Meeting 19 October 2017

### Andrea Catanzaro Project Manager

"The views, opinions and findings contained in this report are those of the authors(s) and should not be construed as an official Department of the Army position, policy or decision, unless so designated by other official documentation."





#### US Army Corps of Engineers.



U.S.AR

05 (GAS) 16054/12

## **STUDY PURPOSE & AUTHORITY**

### **STUDY PURPOSE: NAVIGATION**

Reduce transportation costs while providing for safe, reliable navigation on the Houston Ship Channel (HSC) system

### **NON-FEDERAL SPONSOR**:

**Port of Houston Authority** 





### **STUDY AUTHORITY:**

Section 216 of The Flood Control Act of 1970, P.L. 91-611 Dated December 31, 1970 (33 U.S.C. 569a)





US Army Corps of Engineers



### HOUSTON SHIP CHANNEL SYSTEM

| Segment                              | Existing Channel Characteristics & Problems                                                                                                                                                                                                     | -      |
|--------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| Boggy Bayou<br>to Turning            | <ul> <li>Narrow Channel,</li> <li>Insufficient channel depth</li> <li>Constrained vessel size</li> <li>Light loading, one-way traffic</li> </ul>                                                                                                |        |
| Basin                                |                                                                                                                                                                                                                                                 |        |
| Barbours Cut                         | <ul> <li>Narrow channel</li> <li>Challenging configurations (flare)</li> </ul>                                                                                                                                                                  | -      |
|                                      |                                                                                                                                                                                                                                                 |        |
|                                      |                                                                                                                                                                                                                                                 |        |
| Bayport Ship<br>Channel              | <ul> <li>Narrow channel</li> <li>challenging configurations (flare)</li> <li>High shoaling</li> </ul>                                                                                                                                           | _      |
| Bayport Ship<br>Channel              | <ul> <li>Narrow channel</li> <li>challenging configurations (flare)</li> <li>High shoaling</li> </ul>                                                                                                                                           | Segmen |
| Bayport Ship<br>Channel<br>Bay Reach | <ul> <li>Narrow channel</li> <li>challenging configurations (flare)</li> <li>High shoaling</li> <li>Narrow channel</li> <li>Challenging configurations (bends)</li> <li>Congestion</li> <li>Constrained vessel size, one-way traffic</li> </ul> | Segmen |

## THE STUDY AREA



| Segment | Туре            | Class           | LOA   | Beam | Draft |
|---------|-----------------|-----------------|-------|------|-------|
|         | Bulk Carrier    | 70k-110k Bulker | 750   | 106  | 45    |
|         | Tanker          | Panamax size    | 610   | 106  | 44    |
|         | Vehicle Carrier | Ro-Ro           | 640   | 106  | 34    |
|         | Bulk Carrier    | Panamax         | 810   | 106  | 44    |
|         | Tanker          | Suezmax         | 935   | 164  | 54    |
|         | Tanker          | Aframax         | 850   | 138  | 54    |
|         | Containership   | Gen III         | 1,100 | 158  | 49    |
|         | Containership   | Gen III         | 1,200 | 140  | 49    |

## **FUTURE WITHOUT PROJECT FORECASTS**



## SCREENING



### **ALTERNATIVES 1 – 4**

### Alternative 1

0

"Minumum System-Wide Plan" (No Bay Widening) Minimum plan that benefits all target vessels

# Alternative 3 "Suezmax Plan" Targets increased use of Suezmax-sized bulk liquid tankers

### Alternative 2

"Bay Plan" Addresses container ships more completely and efficiently

C

### Alternative 4

"Aframax Plan" For future increased use of Aframax tankers in upper channel

Turning Basin ----- Channel Deepening — Channel Widening Mooring Bend Easing Additional Flare Modifications

### **ALTERNATIVES 5 – 8**

100

### Alternative 5

蓟

400

ŵ

"Bulkers, Tankers, & Vehicle Carrier Plan" Targets more efficient use of the uppermost part of the HSC by these vessels

### Alternative 6

"Bay Mooring Plan" Reduces frequent tanker trips back out to Gulf anchorages & refuge for disabled ships

### Alternative 7

"Upper Channel Mooring Plan" Same as Alternative 6, but closer to source of most trips to further reduce total trip distance Alternative 8 "Comprehensive Plan" The best parts of Alternatives 1-7

Turning Basin ----- Channel Deepening — Channel Widening Mooring Bend Easing Additional Flare Modifications

## **BENEFIT-COST ANALYSIS (\$000)**

| Alt                   | First Cost                                                                                                                                                                                           | Project Cost +<br>OMRR&R | AAEQ Costs | AAEQ Benefits | Net Benefits | BCR<br>≥1.0 |
|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|------------|---------------|--------------|-------------|
| No Action             | <ul> <li>Future Without Project</li> <li>Does not meet the study objectives.</li> <li>Baseline scenario against which benefits, costs and impacts of all other alternatives are compared.</li> </ul> |                          |            |               |              |             |
| 1                     | \$513,900                                                                                                                                                                                            | \$848,900                | \$27,700   | \$59,700      | \$32,000     | Yes         |
| 2                     | \$706,300                                                                                                                                                                                            | \$1,304,300              | \$40,800   | \$47,700      | \$6,900      | Yes         |
| 3                     | \$527,000                                                                                                                                                                                            | \$1,018,300              | \$31,300   | \$26,100      | \$(5,200)    | No          |
| 4                     | \$129,900                                                                                                                                                                                            | \$312,100                | \$8,500    | \$60,700      | \$52,200     | Yes         |
| 5                     | \$98,400                                                                                                                                                                                             | \$126,700                | \$4,600    | \$36,800      | \$32,200     | Yes         |
| 6                     | \$94,600                                                                                                                                                                                             | \$164,100                | \$5,200    | \$2,100       | \$(3,100)    | No          |
| 7                     | \$47,600                                                                                                                                                                                             | \$116,200                | \$3,300    | \$3,300       | \$-          | Yes         |
| 8 (650′)¹             | \$950,000                                                                                                                                                                                            | \$1,849,700              | \$56,800   | \$123,100     | \$66,300     | Yes         |
| 8 (820') <sup>2</sup> | \$1,451,800                                                                                                                                                                                          | \$2,727,200              | \$84,700   | \$123,100     | \$38,400     | Yes         |

<sup>1</sup> Alternative 8 includes bay widening to 650 feet plus measures for further evaluation; lower range.

<sup>2</sup> Alternative 8 includes bay widening to 820 feet plus measures for further evaluation; higher range.



## THE TENTATIVELY SELECTED PLAN

10

# **Alternative 8**

10

## "Comprehensive Plan" The best parts of Alternatives 1-7

Turning Basin ----- Channel Deepening — Channel Widening

610

45

Mooring Bend Easing Additional Flare Modifications

★ Shoaling Attenuation Feature (location and type TBD)

## FUTURE WITHOUT PROJECT VS. WITH PROJECT VESSEL CALLS



| Potential Time Reduction<br>Per Vessel (hrs) |      |      |      |  |
|----------------------------------------------|------|------|------|--|
| 2029                                         | 2034 | 2039 | 2044 |  |
| 2.3                                          | 2.6  | 3.0  | 3.2  |  |











- Temporary impacts from deepening unvegetated estuarine bay/river bottom
- Salinity, surge & other hydrodynamic effects (being modeled by ERDC)
- **Threatened and Endangered Sea Turtles** 
  - potential impacts from limited use of hopper dredging
  - standard BMPs would help in an effort to minimize adverse impacts
- Impacts to seagrasses, wetlands or ther T&E Species not anticipated

## **NEXT STEPS**

- Public Participation
  - 25 October 2017 2<sup>nd</sup> Public Meeting (Galena Park High School)
  - 13 November 2017 written comments due on Draft Report EIS
- Dec 2017 through May 2019
  - Detailed Engineering and Environmental Analysis and Further Refinement of TSP
  - Development of Dredged Material Placement Plan
- > May 2019 Final Feasibility Study and Environmental Impact Statement
- October 2019 Chief of Engineer's Report



## PUBLIC PARTICIPATION AND COMMENTS:

Who do I contact for more information or to provide comments?

MAIL: U.S. Army Corps of Engineers, Galveston District Attn: Dr. Kelly Burks-Copes, Coastal Section, Regional Planning & Environmental Center P.O. Box 1229 Galveston, Texas 77553 1229

E-MAIL: HSC-ECIP@usace.army.mil

All comments must be received or postmarked by November 13, 2017

More information available online at:

http://www.swg.usace.army.mil/Missions/Projects/HoustonShipChannelExpansion.aspx

