APPROVED JURISDICTIONAL DETERMINATION FORM U.S. Army Corps of Engineers

This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD): 3 March 2017

B. DISTRICT OFFICE, FILE NAME, AND NUMBER: CESWG, SWG-1998-01952, Warren Hoover, Wet 1 & 2

C. PROJECT LOCATION AND BACKGROUND INFORMATION:

 State:Texas
 County/parish/borough: Harris
 City: Houston

 Center coordinates of site (lat/long in degree decimal format):
 Lat. See Table ° N, Long.
 ° W.

 Universal Transverse Mercator:
 See Table
 ° N, Long.
 ° W.

Name of nearest waterbody: Clear Creek

Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows: None

Name of watershed or Hydrologic Unit Code (HUC): 12040204, West Galveston Bay

Check if map/diagram of review area and/or potential jurisdictional areas is/are available upon request.

Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY):

Office (Desk) Determination. Date: 01/13/2017

Field Determination. Date(s): 02/01/2017

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION.

There Are no "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area. [Required]

Waters subject to the ebb and flow of the tide.

Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce. Explain:

B. CWA SECTION 404 DETERMINATION OF JURISDICTION.

There Are no "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area. [Required]

- 1. Waters of the U.S.
 - a. Indicate presence of waters of U.S. in review area (check all that apply): ¹
 - TNWs, including territorial seas
 - Wetlands adjacent to TNWs
 - Relatively permanent waters² (RPWs) that flow directly or indirectly into TNWs
 - Non-RPWs that flow directly or indirectly into TNWs
 - Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 - Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 - Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 - Impoundments of jurisdictional waters
 - Isolated (interstate or intrastate) waters, including isolated wetlands
 - b. Identify (estimate) size of waters of the U.S. in the review area: Non-wetland waters: linear feet: width (ft) and/or acres. Wetlands: acres.
 - **c. Limits (boundaries) of jurisdiction** based on: **Pick List** Elevation of established OHWM (if known):
- 2. Non-regulated waters/wetlands (check if applicable):³
 - Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined to be not jurisdictional. Explain: There are two isolated wetlands on the project site. Wet 1 is approximately 0.11 acre in size. Wet 2 is approximately 0.06 acre in size. The nearest water of the United States is Clear Creek, an RPW. Clear Creek is located

¹ Boxes checked below shall be supported by completing the appropriate sections in Section III below.

² For purposes of this form, an RPW is defined as a tributary that is not a TNW and that typically flows year-round or has continuous flow at least "seasonally" (e.g., typically 3 months).

³ Supporting documentation is presented in Section III.F.

approximately 0.4 mile south of the tract. The nearest Traditional Navigable Water is the navigable portion of Clear Creek located approximately 13.6 aerial miles and 25.2 river miles southeast of the project site. Wet 1 is a depressional, ponded wetland located approximately 0.6 mile north of Clear Creek. Wet 2 is a depressional, ponded wetland located approximately 0.6 mile north of Clear Creek. Based on the site visit conducted 1 February 2017, there are no known hydrological connections between Clear Creek and Wet 1 & 2. There are no confined hydrologic connections between Wet 1 & 2 and any water of the United States. Wet 1 & 2 are isolated and are not waters of the United States, as defined in 33 CFR 328.3(a). Wet 1 & 2 are not currently used, were not used in the past, nor are they susceptible to use for interstate or foreign commerce. Wet 1 & 2 are not subject to the ebb and flow of the daily tide. Wet 1 & 2 do not cross interstate or tribal boundaries. The destruction of Wet 1 & 2 (intrastate wetland) would not affect interstate or foreign travelers for recreational or other purposes, would not affect fish or shellfish that could be taken and sold in interstate or foreign commerce, and would not affect the current use or potential use for industrial purposes by industries in interstate commerce. Wet 1 & 2 are not impoundments of a water of the United States. Wet 1 & 2 are not part of a surface tributary system of any of the above. Wet 1 & 2 are not part of the territorial seas. Wet 1 & 2 are not adjacent to waters identified in any of the above. Wet 1 & 2 have been determined by the Galveston District to NOT be adjacent, (bordering, contiguous, or neighboring) as defined by 33CFR 328.3(c). Wet 1 & 2 are located outside of the 100-year floodplain of any water of the United States and do not have a confined hydrological surface connection to any water of the United States. Wet 1 & 2 are isolated wetlands as defined in 33 CFR 330.2(e): those non-tidal waters of the United States that are not part of a surface tributary system to interstate or navigable waters of the United States, and are not adjacent to such tributary waterbodies. Wet 1 & 2 have been determined not to be "ecologically adjacent", as defined in the Rapanos guidance as being "reasonably close" such that an ecologic interconnectivity is beyond speculation or insubstantial. There are no known species in this georegion that require both the subject wetlands and the nearest waterbody (a water of the United States other than an adjacent wetland) to fulfill spawning and/or life cvcle requirements. The wetlands were identified using the Atlantic and Gulf Coastal Plain Region Supplement of the 1987 Corps of Engineers Wetland Delineation Manual which under normal circumstances exhibits a dominance of hydrophytic vegetation, wetland hydrology indicators, and hydric soils.

SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW

Identify TNW: .

Summarize rationale supporting determination:

2. Wetland adjacent to TNW

Summarize rationale supporting conclusion that wetland is "adjacent":

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY):

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under *Rapanos* have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are "relatively permanent waters" (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting a tributary with perennial flow, skip to Section III.D.4.

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody⁴ is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW

(i) General Area Conditions:

Watershed size:	Pick List	
Drainage area:	Pick List	
Average annual rainfa	ll: inche	es
Average annual snowf	all: incl	hes

(ii) Physical Characteristics:

(a) <u>Relationship with TNW:</u>

 ☐ Tributary flows directly into TNW.
 ☐ Tributary flows through **Pick List** tributaries before entering TNW.

Project waters are Pick List river miles from TNW.
Project waters are Pick List river miles from RPW.
Project waters are Pick List aerial (straight) miles from TNW.
Project waters are Pick List aerial (straight) miles from RPW.
Project waters cross or serve as state boundaries. Explain:

Identify flow route to TNW⁵: . Tributary stream order, if known:

⁴ Note that the Instructional Guidebook contains additional information regarding swales, ditches, washes, and erosional features generally and in the arid West.

⁵ Flow route can be described by identifying, e.g., tributary a, which flows through the review area, to flow into tributary b, which then flows into TNW.

(b) <u>G</u>	eneral Tributary Characteristics (check all that apply):
T	ributary is: 🗌 Natural
	Artificial (man-made). Explain:
	Manipulated (man-altered). Explain:
T	ributary properties with respect to top of bank (estimate): Average width: feet Average depth: feet Average side slopes: Pick List .
Pı	rimary tributary substrate composition (check all that apply): Silts Sands Concrete Cobbles Gravel Muck Bedrock Vegetation. Type/% cover: Other. Explain: .
Pı Tı	ributary condition/stability [e.g., highly eroding, sloughing banks]. Explain: . resence of run/riffle/pool complexes. Explain: . ributary geometry: Pick List ributary gradient (approximate average slope): %
Tı Es	low: ributary provides for: Pick List stimate average number of flow events in review area/year: Pick List Describe flow regime: ther information on duration and volume:
Sı	urface flow is: Pick List. Characteristics:
Sı	ubsurface flow: Pick List . Explain findings:
Tı	ributary has (check all that apply): Bed and banks OHWM ⁶ (check all indicators that apply): clear, natural line impressed on the bank changes in the character of soil shelving vegetation matted down, bent, or absent leaf litter disturbed or washed away sediment deposition water staining other (list): Discontinuous OHWM. ⁷ Explain:
If	factors other than the OHWM were used to determine lateral extent of CWA jurisdiction (check all that apply): High Tide Line indicated by: Mean High Water Mark indicated by: oil or scum line along shore objects survey to available datum; fine shell or debris deposits (foreshore) physical markings/characteristics tidal gauges other (list):
Chemi	cal Characteristics:

Characterize tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc.). Explain:

Identify specific pollutants, if known:

(iii)

⁶A natural or man-made discontinuity in the OHWM does not necessarily sever jurisdiction (e.g., where the stream temporarily flows underground, or where the OHWM has been removed by development or agricultural practices). Where there is a break in the OHWM that is unrelated to the waterbody's flow regime (e.g., flow over a rock outcrop or through a culvert), the agencies will look for indicators of flow above and below the break. ⁷Ibid.

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian corridor. Characteristics (type, average width):
- Wetland fringe. Characteristics:
- Habitat for:
 - Federally Listed species. Explain findings:
 - Fish/spawn areas. Explain findings:
 - Other environmentally-sensitive species. Explain findings:
 - Aquatic/wildlife diversity. Explain findings:

Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW 2.

(i) **Physical Characteristics:**

- (a) General Wetland Characteristics: Properties: Wetland size: acres Wetland type. Explain: Wetland quality. Explain: Project wetlands cross or serve as state boundaries. Explain:
- (b) General Flow Relationship with Non-TNW: Flow is: **Pick List**. Explain:

Surface flow is: **Pick List** Characteristics:

Subsurface flow: Pick List. Explain findings: Dye (or other) test performed:

- (c) Wetland Adjacency Determination with Non-TNW:
 - Directly abutting
 - □ Not directly abutting
 - Discrete wetland hydrologic connection. Explain:
 - Ecological connection. Explain:
 - Separated by berm/barrier. Explain:

(d) Proximity (Relationship) to TNW

Project wetlands are **Pick List** river miles from TNW. Project waters are **Pick List** aerial (straight) miles from TNW. Flow is from: **Pick List.** Estimate approximate location of wetland as within the **Pick List** floodplain.

(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics; etc.). Explain:

Identify specific pollutants, if known:

(iii) Biological Characteristics. Wetland supports (check all that apply):

- Riparian buffer. Characteristics (type, average width):
- Vegetation type/percent cover. Explain: П
- Habitat for:
 - Federally Listed species. Explain findings:
 - Fish/spawn areas. Explain findings:
 - Other environmentally-sensitive species. Explain findings:
 - Aquatic/wildlife diversity. Explain findings:

Characteristics of all wetlands adjacent to the tributary (if any) 3.

All wetland(s) being considered in the cumulative analysis: Pick List) acres in total are being considered in the cumulative analysis. Approximately (

For each wetland, specify the following:

Directly abuts? (Y/N) Size (in acres)

Directly abuts? (Y/N)

Size (in acres)

Summarize overall biological, chemical and physical functions being performed:

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the *Rapanos* Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below:

- 1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNWs. Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to Section III.D:
- 2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNWs. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:
- 3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY):

- TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:
 TNWs: linear feet width (ft), Or, acres.
 Wetlands adjacent to TNWs: acres.
- 2. <u>RPWs that flow directly or indirectly into TNWs.</u>
 - Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and rationale indicating that tributary is perennial:
 - Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:

acres.

Tributary waters: linear feet width (ft).

- Other non-wetland waters:
 - Identify type(s) of waters:
- 3. Non-RPWs⁸ that flow directly or indirectly into TNWs.
 - Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has a significant nexus with a TNW is jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide estimates for jurisdictional waters within the review area (check all that apply):

acres.

- Tributary waters: linear feet width (ft).
- Other non-wetland waters:

Identify type(s) of waters:

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.

Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.

- Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting an RPW:
- Wetlands directly abutting an RPW where tributaries typically flow "seasonally." Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting an RPW:

Provide acreage estimates for jurisdictional wetlands in the review area: acres.

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNWs.

Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisidictional. Data supporting this conclusion is provided at Section III.C.

Provide acreage estimates for jurisdictional wetlands in the review area: acres.

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.

Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide estimates for jurisdictional wetlands in the review area: acres.

- 7. Impoundments of jurisdictional waters.⁹
 - As a general rule, the impoundment of a jurisdictional tributary remains jurisdictional.
 - Demonstrate that impoundment was created from "waters of the U.S.," or
 - Demonstrate that water meets the criteria for one of the categories presented above (1-6), or
 - Demonstrate that water is isolated with a nexus to commerce (see E below).

E. ISOLATED [INTERSTATE OR INTRA-STATE] WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE, INCLUDING ANY SUCH WATERS (CHECK ALL THAT APPLY):¹⁰

- which are or could be used by interstate or foreign travelers for recreational or other purposes.
- from which fish or shellfish are or could be taken and sold in interstate or foreign commerce.
- which are or could be used for industrial purposes by industries in interstate commerce.
- Interstate isolated waters. Explain:
- Other factors. Explain:

Identify water body and summarize rationale supporting determination:

⁸See Footnote # 3.

⁹ To complete the analysis refer to the key in Section III.D.6 of the Instructional Guidebook.

¹⁰ Prior to asserting or declining CWA jurisdiction based solely on this category, Corps Districts will elevate the action to Corps and EPA HQ for review consistent with the process described in the Corps/EPA *Memorandum Regarding CWA Act Jurisdiction Following Rapanos*.

.

Tributary waters: linear feet width (ft).

Other non-wetland waters: acres.

- Identify type(s) of waters:
- Wetlands: acres.

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS (CHECK ALL THAT APPLY):

- If potential wetlands were assessed within the review area, these areas did not meet the criteria in the 1987 Corps of Engineers Wetland Delineation Manual and/or appropriate Regional Supplements.
- Review area included isolated waters with no substantial nexus to interstate (or foreign) commerce.
 - Prior to the Jan 2001 Supreme Court decision in *"SWANCC*," the review area would have been regulated based <u>solely</u> on the *"Migratory Bird Rule"* (MBR).
 - Waters do not meet the "Significant Nexus" standard, where such a finding is required for jurisdiction. Explain:

Other: (explain, if not covered above):

Provide acreage estimates for non-jurisdictional waters in the review area, where the <u>sole</u> potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

Non-wetland waters (i.e., rivers, streams): linear feet width (ft).

Lakes/ponds: acres.

Other non-wetland waters: acres. List type of aquatic resource:

Wetlands: Approximately 0.17 acres.

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the "Significant Nexus" standard, where such a finding is required for jurisdiction (check all that apply):

Non-wetland waters (i.e., rivers, streams): linear feet, width (ft).

Lakes/ponds: acres.

- Other non-wetland waters: acres. List type of aquatic resource:
- Wetlands: acres.

SECTION IV: DATA SOURCES.

- A. SUPPORTING DATA. Data reviewed for JD (check all that apply checked items shall be included in case file and, where checked and requested, appropriately reference sources below):
 Maps, plans, plots or plat submitted by or on behalf of the applicant/consultant: Lone Star Engineering & Inspections, dated 16
 - December 2016.
 - Data sheets prepared/submitted by or on behalf of the applicant/consultant.
 - Office concurs with data sheets/delineation report.
 - Office does not concur with data sheets/delineation report.
 - Data sheets prepared by the Corps: 3 February 2017.
 - Corps navigable waters' study: Galveston District navigable waters list.
 - U.S. Geological Survey Hydrologic Atlas: 12040204, West Galveston Bay.
 - 🔟 USGS NHD data.
 - \boxtimes USGS 8 and 12 digit HUC maps.

U.S. Geological Survey map(s). Cite scale & quad name:1:24,000 USGS Almeda, TX (1944, 1955, 1969, 1982, 1995, 2009, and 2016).

- USDA Natural Resources Conservation Service Soil Survey. Citation: USDA Web Soil Survey with survey data from 15 September 2016.
- National wetlands inventory map(s). Cite name: USFWS NWI.
- State/Local wetland inventory map(s):
- FEMA/FIRM maps: Panel 48201C1010L.
- 100-year Floodplain Elevation is: 59 feet(National Geodectic Vertical Datum of 1929)
- Photographs: Aerial (Name & Date):Google Earth Pro Aerials (1943-2017) and Digial Globe (2017).
 - or 🛛 Other (Name & Date):Site Visit Photographs, 1 February 2017.
- Previous determination(s). File no. and date of response letter: D-10031, 21 May 1999.
- Applicable/supporting case law:
- Applicable/supporting scientific literature:
- Other information (please specify): 2001 HCFCD Lidar: Harris County.

B. ADDITIONAL COMMENTS TO SUPPORT JD:

There are two isolated wetlands on the project site. Wet 1 is approximately 0.11 acre in size. Wet 2 is approximately 0.06 acre in size. The nearest water of the United States is Clear Creek, an RPW. Clear Creek is located approximately 0.4 mile south of the tract. The nearest Traditional Navigable Water is the navigable portion of Clear Creek located approximately 13.6 aerial miles and 25.2 river miles southeast of the project site. Wet 1 is a depressional, ponded wetland located approximately 0.6 mile north of Clear Creek. Wet 2 is a depressional, ponded wetland located approximately 0.6 mile north of Clear Creek. Based on the site visit conducted 1 February 2017, there are no known hydrological connections between Clear Creek and Wet 1 & 2. There are no confined hydrologic connections between Wet 1 & 2 and any water of the United States. Wet 1 & 2 are isolated and are not waters of the United States, as defined in 33 CFR 328.3(a). Wet 1 & 2 are not currently used, were not used in the past, nor are they susceptible to use for interstate or foreign commerce. Wet 1 & 2 are not subject to the ebb and flow of the daily tide. Wet 1 & 2 do not cross interstate or tribal boundaries. The destruction of Wet 1 & 2 (intrastate wetland) would not affect interstate or foreign travelers for recreational or other purposes, would not affect fish or shellfish that could be taken and sold in interstate or foreign commerce, and would not affect the current use or potential use for industrial purposes by industries in interstate commerce. Wet 1 & 2 are not impoundments of a water of the United States. Wet 1 & 2 are not part of a surface tributary system of any of the above. Wet 1 & 2 are not part of the territorial seas. Wet 1 & 2 are not adjacent to waters identified in any of the above. Wet 1 & 2 have been determined by the Galveston District to NOT be adjacent, (bordering, contiguous, or neighboring) as defined by 33CFR 328.3(c). Wet 1 & 2 are located outside of the 100-year floodplain of any water of the United States and do not have a confined hydrological surface connection to any water of the United States. Wet 1 & 2 are isolated wetlands as defined in 33 CFR 330.2(e): those non-tidal waters of the United States that are not part of a surface tributary system to interstate or navigable waters of the United States, and are not adjacent to such tributary waterbodies. Wet 1 & 2 have been determined not to be "ecologically adjacent", as defined in the Rapanos guidance as being "reasonably close" such that an ecologic interconnectivity is beyond speculation or insubstantial. There are no known species in this georegion that require both the subject wetlands and the nearest waterbody (a water of the United States other than an adjacent wetland) to fulfill spawning and/or life cycle requirements. The wetlands were identified using the Atlantic and Gulf Coastal Plain Region Supplement of the 1987 Corps of Engineers Wetland Delineation Manual which under normal circumstances exhibits a dominance of hydrophytic vegetation, wetland hydrology indicators, and hydric soils.

In conclusion, it is SWG's draft determination that there are two wetlands on the tract totaling approximately 0.17 acre that are "isolated" and lack a nexus to interstate commerce. As such, these aquatic features are not waters of the United States subject to Section 404 of the Clean Water Act.

#	Cowardin	Latitude	Longitude	Easting	Northing	Zone	Approximate Amount
Wet 1	Palustrine	29.591364°N	-95.415637°W	266033	3275943	15	0.11 acre
Wet 2	Palustrine	29.591350°N	-95.415455°W	266050	3275941	15	0.06 acre

APPROVED JURISDICTIONAL DETERMINATION FORM U.S. Army Corps of Engineers

This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD): 1 June 2017

B. DISTRICT OFFICE, FILE NAME, AND NUMBER: CESWG, SWG-1998-01952, Warren Hoover, Wet 3

C. PROJECT LOCATION AND BACKGROUND INFORMATION:

 State:Texas
 County/parish/borough: Harris
 City: Houston

 Center coordinates of site (lat/long in degree decimal format):
 Lat. 29.5898° N, Long. -95.415922° W.

Universal Transverse Mercator: UTM: 15 3275770.2 N., 266001.8 E., NAD: 83

Name of nearest waterbody: Clear Creek

Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows: None

- Name of watershed or Hydrologic Unit Code (HUC): 12040204, West Galveston Bay
- Check if map/diagram of review area and/or potential jurisdictional areas is/are available upon request.
- Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. <u>REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY):</u>

Office (Desk) Determination. Date: 01/13/2017

Field Determination. Date(s): 02/01/2017

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION.

There **Are no** *"navigable waters of the U.S."* within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area. [*Required*]

Waters subject to the ebb and flow of the tide.

Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce. Explain:

B. CWA SECTION 404 DETERMINATION OF JURISDICTION.

There Are no "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area. [Required]

- 1. Waters of the U.S.
 - a. Indicate presence of waters of U.S. in review area (check all that apply): ¹
 - TNWs, including territorial seas
 - Wetlands adjacent to TNWs
 - Relatively permanent waters² (RPWs) that flow directly or indirectly into TNWs
 - Non-RPWs that flow directly or indirectly into TNWs
 - Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 - Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 - Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 - Impoundments of jurisdictional waters
 - Isolated (interstate or intrastate) waters, including isolated wetlands
 - b. Identify (estimate) size of waters of the U.S. in the review area: Non-wetland waters: linear feet: width (ft) and/or acres. Wetlands: acres.
 - **c. Limits (boundaries) of jurisdiction** based on: **Pick List** Elevation of established OHWM (if known):
- 2. Non-regulated waters/wetlands (check if applicable):³
 - Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined to be not jurisdictional. Explain: This coordination is for one isolated wetland on the project site. Wet 3 is approximately 1.9 acre in size. The wetland was identified using the Atlantic and Gulf Coastal Plain Regional Supplement of the 1987 Corps of Engineers

¹ Boxes checked below shall be supported by completing the appropriate sections in Section III below.

² For purposes of this form, an RPW is defined as a tributary that is not a TNW and that typically flows year-round or has continuous flow at least "seasonally" (e.g., typically 3 months).

³ Supporting documentation is presented in Section III.F.

Wetland Delineation Manual which under normal circumstances exhibits a dominance of hydrophytic vegetation, wetland hydrology indicators, and hydric soils. The nearest water of the United States is Clear Creek, a relatively permanent water (RPW). Clear Creek is located approximately 0.4 mile south of the project site. The nearest traditional navigable water (TNW) is the navigable portion of Clear Creek located approximately 13.6 aerial miles southeast of the project site. Wet 3 is a depressional, ponded wetland located approximately 0.4 mile north of Clear Creek. Based on the site visit conducted 1 February 2017 and survey data submitted 31 May 2017, there are no known hydrological connections between Clear Creek and Wet 3. There are no confined hydrologic connections between Wet 3 and any water of the United States. Wet 3 is isolated and is not a water of the United States, as defined in 33 CFR 328.3(a). Wet 3 is not currently used, was not used in the past, nor is it susceptible to use for interstate or foreign commerce. Wet 3 is not subject to the ebb and flow of the daily tide. Wet 3 does not cross interstate or tribal boundaries. The destruction of Wet 3 (intrastate wetland) would not affect interstate or foreign travelers for recreational or other purposes, would not affect fish or shellfish that could be taken and sold in interstate or foreign commerce, and would not affect the current use or potential use for industrial purposes by industries in interstate commerce. Wet 3 is not an impoundment of a water of the United States. Wet 3 is not part of a surface tributary system of any of the above. Wet 3 is not part of the territorial seas. Wet 3 is not adjacent to waters identified in any of the above. Wet 3 has been determined by the Galveston District to NOT be adjacent, (bordering, contiguous, or neighboring) as defined by 33CFR 328.3(c). According to survey data submitted 31 May 2017, Wet 3 is located outside of the 100-year floodplain of any water of the United States and does not have a confined hydrological surface connection to any water of the United States. Wet 3 is an isolated wetland as defined in 33 CFR 330.2(e): those nontidal waters of the United States that are not part of a surface tributary system to interstate or navigable waters of the United States, and are not adjacent to such tributary waterbodies. Wet 3 has been determined not to be "ecologically adjacent", as defined in the Rapanos guidance as being "reasonably close" such that an ecologic interconnectivity is beyond speculation or insubstantial. There are no known species in this georegion that require both the subject wetland and the nearest waterbody (a water of the United States other than an adjacent wetland) to fulfill spawning and/or life cycle requirements.

SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW

Identify TNW: .

Summarize rationale supporting determination:

2. Wetland adjacent to TNW

Summarize rationale supporting conclusion that wetland is "adjacent":

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY):

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under *Rapanos* have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are "relatively permanent waters" (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting a tributary with perennial flow, skip to Section III.D.4.

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody⁴ is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW

(i) General Area Conditions:

Watershed size:	Pick List	
Drainage area:	Pick List	
Average annual rainfa	ll: inches	
Average annual snowf	fall: inches	

(ii) Physical Characteristics:

(a) <u>Relationship with TNW:</u>

 ☐ Tributary flows directly into TNW.
 ☐ Tributary flows through **Pick List** tributaries before entering TNW.

Project waters are Pick List river miles from TNW.
Project waters are Pick List river miles from RPW.
Project waters are Pick List aerial (straight) miles from TNW.
Project waters are Pick List aerial (straight) miles from RPW.
Project waters cross or serve as state boundaries. Explain:

Identify flow route to TNW⁵: . Tributary stream order, if known:

⁴ Note that the Instructional Guidebook contains additional information regarding swales, ditches, washes, and erosional features generally and in the arid West.

⁵ Flow route can be described by identifying, e.g., tributary a, which flows through the review area, to flow into tributary b, which then flows into TNW.

(b) <u>G</u>	eneral Tributary Characteristics (check all that apply):
T	ributary is: 🗌 Natural
	Artificial (man-made). Explain:
	Manipulated (man-altered). Explain:
T	ributary properties with respect to top of bank (estimate): Average width: feet Average depth: feet Average side slopes: Pick List .
Pı	rimary tributary substrate composition (check all that apply): Silts Sands Concrete Cobbles Gravel Muck Bedrock Vegetation. Type/% cover: Other. Explain: .
Pı Tı	ributary condition/stability [e.g., highly eroding, sloughing banks]. Explain: . resence of run/riffle/pool complexes. Explain: . ributary geometry: Pick List ributary gradient (approximate average slope): %
Tı Es	low: ributary provides for: Pick List stimate average number of flow events in review area/year: Pick List Describe flow regime: ther information on duration and volume:
Sı	urface flow is: Pick List. Characteristics:
Sı	ubsurface flow: Pick List . Explain findings:
Tı	ributary has (check all that apply): Bed and banks OHWM ⁶ (check all indicators that apply): clear, natural line impressed on the bank changes in the character of soil shelving vegetation matted down, bent, or absent leaf litter disturbed or washed away sediment deposition water staining other (list): Discontinuous OHWM. ⁷ Explain:
If	factors other than the OHWM were used to determine lateral extent of CWA jurisdiction (check all that apply): High Tide Line indicated by: Mean High Water Mark indicated by: oil or scum line along shore objects survey to available datum; fine shell or debris deposits (foreshore) physical markings/characteristics tidal gauges other (list):
Chemi	cal Characteristics:

Characterize tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc.). Explain:

Identify specific pollutants, if known:

(iii)

⁶A natural or man-made discontinuity in the OHWM does not necessarily sever jurisdiction (e.g., where the stream temporarily flows underground, or where the OHWM has been removed by development or agricultural practices). Where there is a break in the OHWM that is unrelated to the waterbody's flow regime (e.g., flow over a rock outcrop or through a culvert), the agencies will look for indicators of flow above and below the break. ⁷Ibid.

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian corridor. Characteristics (type, average width):
- Wetland fringe. Characteristics:
- Habitat for:
 - Federally Listed species. Explain findings:
 - Fish/spawn areas. Explain findings:
 - Other environmentally-sensitive species. Explain findings:
 - Aquatic/wildlife diversity. Explain findings:

Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW 2.

(i) **Physical Characteristics:**

- (a) General Wetland Characteristics: Properties: Wetland size: acres Wetland type. Explain: Wetland quality. Explain: Project wetlands cross or serve as state boundaries. Explain:
- (b) General Flow Relationship with Non-TNW: Flow is: **Pick List**. Explain:

Surface flow is: **Pick List** Characteristics:

Subsurface flow: Pick List. Explain findings: Dye (or other) test performed:

- (c) Wetland Adjacency Determination with Non-TNW:
 - Directly abutting
 - □ Not directly abutting
 - Discrete wetland hydrologic connection. Explain:
 - Ecological connection. Explain:
 - Separated by berm/barrier. Explain:

(d) Proximity (Relationship) to TNW

Project wetlands are **Pick List** river miles from TNW. Project waters are **Pick List** aerial (straight) miles from TNW. Flow is from: **Pick List.** Estimate approximate location of wetland as within the **Pick List** floodplain.

(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics; etc.). Explain:

Identify specific pollutants, if known:

(iii) Biological Characteristics. Wetland supports (check all that apply):

- Riparian buffer. Characteristics (type, average width):
- Vegetation type/percent cover. Explain: П
- Habitat for:
 - Federally Listed species. Explain findings:
 - Fish/spawn areas. Explain findings:
 - Other environmentally-sensitive species. Explain findings:
 - Aquatic/wildlife diversity. Explain findings:

Characteristics of all wetlands adjacent to the tributary (if any) 3.

All wetland(s) being considered in the cumulative analysis: Pick List) acres in total are being considered in the cumulative analysis. Approximately (

For each wetland, specify the following:

Directly abuts? (Y/N) Size (in acres)

Directly abuts? (Y/N)

Size (in acres)

Summarize overall biological, chemical and physical functions being performed:

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the *Rapanos* Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below:

- 1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNWs. Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to Section III.D:
- 2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNWs. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:
- 3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY):

- TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:
 TNWs: linear feet width (ft), Or, acres.
 Wetlands adjacent to TNWs: acres.
- 2. <u>RPWs that flow directly or indirectly into TNWs.</u>
 - Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and rationale indicating that tributary is perennial:
 - Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:

acres.

Tributary waters: linear feet width (ft).

- Other non-wetland waters:
 - Identify type(s) of waters:
- 3. Non-RPWs⁸ that flow directly or indirectly into TNWs.
 - Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has a significant nexus with a TNW is jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide estimates for jurisdictional waters within the review area (check all that apply):

acres.

- Tributary waters: linear feet width (ft).
- Other non-wetland waters:

Identify type(s) of waters:

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.

Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.

- Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting an RPW:
- Wetlands directly abutting an RPW where tributaries typically flow "seasonally." Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting an RPW:

Provide acreage estimates for jurisdictional wetlands in the review area: acres.

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNWs.

Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisidictional. Data supporting this conclusion is provided at Section III.C.

Provide acreage estimates for jurisdictional wetlands in the review area: acres.

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.

Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide estimates for jurisdictional wetlands in the review area: acres.

- 7. Impoundments of jurisdictional waters.⁹
 - As a general rule, the impoundment of a jurisdictional tributary remains jurisdictional.
 - Demonstrate that impoundment was created from "waters of the U.S.," or
 - Demonstrate that water meets the criteria for one of the categories presented above (1-6), or
 - Demonstrate that water is isolated with a nexus to commerce (see E below).

E. ISOLATED [INTERSTATE OR INTRA-STATE] WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE, INCLUDING ANY SUCH WATERS (CHECK ALL THAT APPLY):¹⁰

- which are or could be used by interstate or foreign travelers for recreational or other purposes.
- from which fish or shellfish are or could be taken and sold in interstate or foreign commerce.
- which are or could be used for industrial purposes by industries in interstate commerce.
- Interstate isolated waters. Explain:
- Other factors. Explain:

Identify water body and summarize rationale supporting determination:

⁸See Footnote # 3.

⁹ To complete the analysis refer to the key in Section III.D.6 of the Instructional Guidebook.

¹⁰ Prior to asserting or declining CWA jurisdiction based solely on this category, Corps Districts will elevate the action to Corps and EPA HQ for review consistent with the process described in the Corps/EPA *Memorandum Regarding CWA Act Jurisdiction Following Rapanos*.

.

Tributary waters: linear feet width (ft).

Other non-wetland waters: acres.

- Identify type(s) of waters:
- Wetlands: acres.

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS (CHECK ALL THAT APPLY):

- If potential wetlands were assessed within the review area, these areas did not meet the criteria in the 1987 Corps of Engineers Wetland Delineation Manual and/or appropriate Regional Supplements.
- Review area included isolated waters with no substantial nexus to interstate (or foreign) commerce.
 - Prior to the Jan 2001 Supreme Court decision in *"SWANCC*," the review area would have been regulated based <u>solely</u> on the *"Migratory Bird Rule"* (MBR).
 - Waters do not meet the "Significant Nexus" standard, where such a finding is required for jurisdiction. Explain:

Other: (explain, if not covered above):

Provide acreage estimates for non-jurisdictional waters in the review area, where the <u>sole</u> potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

Non-wetland waters (i.e., rivers, streams): linear feet width (ft).

Lakes/ponds: acres.

Other non-wetland waters: acres. List type of aquatic resource:

Wetlands: Approximately 1.9 acres.

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the "Significant Nexus" standard, where such a finding is required for jurisdiction (check all that apply):

Non-wetland waters (i.e., rivers, streams): linear feet, width (ft).

Lakes/ponds: acres.

- Other non-wetland waters: acres. List type of aquatic resource:
- Wetlands: acres.

SECTION IV: DATA SOURCES.

- A. SUPPORTING DATA. Data reviewed for JD (check all that apply checked items shall be included in case file and, where checked and requested, appropriately reference sources below):
 - Maps, plans, plots or plat submitted by or on behalf of the applicant/consultant: Lone Star Engineering & Inspections, dated 16 December 2016.
 - Data sheets prepared/submitted by or on behalf of the applicant/consultant.
 - Office concurs with data sheets/delineation report.
 - Office does not concur with data sheets/delineation report.
 - Data sheets prepared by the Corps: 3 February 2017.
 - Corps navigable waters' study: Galveston District navigable waters list.
 - U.S. Geological Survey Hydrologic Atlas: 12040204, West Galveston Bay.
 - 🔀 USGS NHD data.
 - \boxtimes USGS 8 and 12 digit HUC maps.

U.S. Geological Survey map(s). Cite scale & quad name:1:24,000 USGS Almeda, TX (1944, 1955, 1969, 1982, 1995, 2009, and 2016).

- USDA Natural Resources Conservation Service Soil Survey. Citation: USDA Web Soil Survey with survey data from 15 September 2016.
- National wetlands inventory map(s). Cite name: USFWS NWI.
- State/Local wetland inventory map(s):
- FEMA/FIRM maps: Panel 48201C1010L.
- 100-year Floodplain Elevation is: 59 feet(National Geodectic Vertical Datum of 1929)
- Photographs: 🖾 Aerial (Name & Date):Google Earth Pro Aerials (1943-2017) and Digial Globe (2017).
 - or 🛛 Other (Name & Date):Site Visit Photographs, 1 February 2017.
- Previous determination(s). File no. and date of response letter: D-10031, 21 May 1999.
- Applicable/supporting case law:
- Applicable/supporting scientific literature:
- Other information (please specify): Survey data submitted 31 May 2017 by Lone Star Engineering & Inspections.

B. ADDITIONAL COMMENTS TO SUPPORT JD:

This coordination is for one isolated wetland on the project site. Wet 3 is approximately 1.9 acre in size. The wetland was identified using the Atlantic and Gulf Coastal Plain Regional Supplement of the 1987 Corps of Engineers Wetland Delineation Manual which under normal circumstances exhibits a dominance of hydrophytic vegetation, wetland hydrology indicators, and hydric soils. The nearest water of the United States is Clear Creek, an RPW. Clear Creek is located approximately 0.4 mile south of the project site. The nearest TNW is the navigable portion of Clear Creek located approximately 13.6 aerial miles southeast of the project site. Wet 3 is a depressional, ponded wetland located approximately 0.4 mile north of Clear Creek. Based on the site visit conducted 1 February 2017 and survey data submitted 31 May 2017, there are no known hydrological connections between Clear Creek and Wet 3. There are no confined hydrologic connections between Wet 3 and any water of the United States. Wet 3 is isolated and is not a water of the United States, as defined in 33 CFR 328.3(a). Wet 3 is not currently used, was not used in the past, nor is it susceptible to use for interstate or foreign commerce. Wet 3 is not subject to the ebb and flow of the daily tide. Wet 3 does not cross interstate or tribal boundaries. The destruction of Wet 3 (intrastate wetland) would not affect interstate or foreign travelers for recreational or other purposes, would not affect fish or shellfish that could be taken and sold in interstate or foreign commerce, and would not affect the current use or potential use for industrial purposes by industries in interstate commerce. Wet 3 is not an impoundment of a water of the United States. Wet 3 is not part of a surface tributary system of any of the above. Wet 3 is not part of the territorial seas. Wet 3 is not adjacent to waters identified in any of the above. Wet 3 has been determined by the Galveston District to NOT be adjacent, (bordering, contiguous, or neighboring) as defined by 33CFR 328.3(c). According to survey data submitted 31 May 2017, Wet 3 is located outside of the 100-year floodplain of any water of the United States and does not have a confined hydrological surface connection to any water of the United States. Wet 3 is an isolated wetland as defined in 33 CFR 330.2(e): those nontidal waters of the United States that are not part of a surface tributary system to interstate or navigable waters of the United States, and are not adjacent to such tributary waterbodies. Wet 3 has been determined not to be "ecologically adjacent", as defined in the Rapanos guidance as being "reasonably close" such that an ecologic interconnectivity is beyond speculation or insubstantial. There are no known species in this georegion that require both the subject wetland and the nearest waterbody (a water of the United States other than an adjacent wetland) to fulfill spawning and/or life cycle requirements.

In conclusion, it is SWG's draft determination that there is one wetland on the tract totaling approximately 1.9 acre that is "isolated" and lacks a nexus to interstate commerce. As such, this aquatic feature is not a water of the United States subject to Section 404 of the Clean Water Act.