

Freeport LNG

Liquefaction Project and Phase II Developments

Environmental Analysis

Permit Modification Application for Long Term Dredged Material Placement Area

SWG-2013-00147

June 2018

TABLE OF CONTENTS

1.0	INTRO	DUCTIC	DN	1-1
2.0	PROJE		RPOSE AND NEED	2-1
3.0	ALTER	NATIVE	S ANALYSIS FOR PLACEMENT OF MAINTENANCE MATERIAL	3-2
	3.1	NO AC	TION ALTERNATIVE	3-2
	3.2	BENEF	FICIAL USE	3-2
		3.2.1	Beach Nourishment Alternative	3-2
		3.2.2	Bird Island Creation and Wetland Restoration	3-2
	3.3	EXISTI	ING AND UNDEVELOPED FEDERAL DMPA	3-3
		3.3.1	Existing Federal DMPA	3-3
		3.3.2	Undeveloped Federal DMPA	3-3
	3.4	OFFSH	HORE DREDGE MATERIAL DISPOSAL SITE	3-3
	3.5	SEDIM	IENT DIVERSION	3-3
		3.5.1	Southern Dredging Alternative	3-4
		3.5.2	Locks Alternative	3-4
	3.6	PRIVA	TE DMPA DEVELOPMENT (PREFERRED ALTERNATIVE)	3-4
4.0	ALTER	NATIVE	SCREENING PROCESS	4-1
	4.1	NO AC	TION ALTERNATIVE SCREENING ANALYSIS	4-8
	4.2	BENEF	FICIAL USE SCREENING ANALYSIS	4-8
		4.2.1	Beach Nourishment	4-8
		4.2.2	Bird Island Creation and Wetland Creation/Restoration	4-8
		4.2.3	Conclusion	4-12
	4.3	EXISTI	ING FEDERAL DMPA SCREENING ANALYSIS	
		4.3.1	Developed Federal DMPA Sites	4-14
		4.3.2	Undeveloped Federal DMPA Sites	
		4.3.3	Conclusion	
	4.4	OFFSH	HORE DREDGED MATERIAL DISPOSAL SITE SCREENING ANALYSIS	4-16
		4.4.1	Conclusion	
	4.5	SEDIM	IENT DIVERSION SCREENING ANALYSIS	
		4.5.1	Southern Dredging Option Screening Analysis	
		4.5.2	Locks Alternative Screening Analysis	4-20
		4.5.3	Conclusion	
	4.6		TE DMPA DEVELOPMENT SCREENING ANALYSIS	
		4.6.1	Private DMPA Site A	
		4.6.2	Private DMPA Site B	
		4.6.3	Private DMPA Site C	
		4.6.4	Private DMPA Site D	
		4.6.5	Private DMPA Site E	
		4.6.6	Private DMPA Site F	
		4.6.7	Conclusion	
	4.7		NATIVES CONSIDERED FOR DETAILED ANALYSIS	
5.0			ITAL ANALYSIS	
	5.1			
		5.1.1	Environmental Setting	5-1

		5.1.2	Historic and Current Use	5-2
	5.2	ENVIR	ONMENTAL IMPACTS	5-2
		5.2.1	Historic and Cultural Resources	5-2
		5.2.2	Sediment and Water Quality	5-3
		5.2.3	Endangered Species	5-4
		5.2.4	Fish and Wildlife Values (including Essential Fish Habitat)	5-5
		5.2.5	Wetlands and Special Aquatic Sites	5-5
		5.2.6	Shoreline Erosion and Accretion	5-6
		5.2.7	Recreation and Aesthetics	5-7
		5.2.8	Socioeconomics and Land Use	5-8
		5.2.9	Navigation	5-9
		5.2.10	Federal Projects	5-9
		5.2.11	Mineral Needs	5-10
		5.2.12	Other Federal, State, or Local Requirements	5-10
		5.2.13	Other Factors	5-10
		5.2.14	LEDPA	5-10
	5.3	CUMUL	ATIVE AND SECONDARY IMPACTS	5-10
		5.3.1	FLNG Berth Dredging Impacts	5-12
		5.3.2	Dredged Material Placement Area Impacts	5-12
6.0				
7.0	REFER	ENCES		7-1

LIST OF TABLES

Table 1:	Wetland/Waterbody Impacts Associated with Placement Alternatives and Dredging the FLNG	
	Berth	4-2
Table 2:	County/City Zoning Restrictions Associated with Onshore Placement Alternatives	4-3
Table 3:	Infrastructure Requirements Associated with Onshore Placement Alternatives	4-3
Table 4:	Threatened and Endangered Species Habitat Assessment for Placement Alternatives and	
	Dredging the FLNG Berth	4-4
Table 5:	Selection Criteria Potential Beneficial Use Sites - Summary4	-12
Table 6:	Selection Criteria Summary for Existing Federal DMPA Site Alternatives - Summary	-13
Table 7:	Selection Criteria Summary for ODMDS Site Alternatives - Summary4	-18
Table 8:	Selection Criteria Summary for Sediment Diversion Alternatives - Summary	-20
Table 9:	Selection Criteria Summary for Private DMPA Development Site Alternatives - Summary 4	-25
Table 10): Summary of Wetland/Waterbody Impacts for Each Alternative	5-6
Table 11	: Activities and Projects Considered in the Cumulative Impacts Analysis5	-11

APPENDICES

Appendix A	Project Figures
Appendix B	FLNG Marine Basin Sedimentation Study
Appendix C	Parcel ID Numbers for Each Non-Federal Placement Alternative
Appendix D	Contaminant Assessment Report FLNG Terminal, Dock 1 Project
Appendix E	Excerpts from Final Environmental Impact Statement for Proposed Port Freeport Channel Widening (2008)

ACRONYMS AND ABBREVIATIONS

Channel Widening Project	Port Freeport Channel Widening Project
Channel Widening FEIS	Final Environmental Impact Statement for the Port Freeport Channel Widening
0)/	Project
CY	cubic yard
CWA	Clean Water Act
DMPA	dredged material placement area
EFH	essential fish habitat
FEIS	Final Environmental Impact Statement
FERC	Federal Energy Regulatory Commission
FHCIP	Freeport Harbor Channel Improvement Project
FLNG	Freeport LNG
ft.	feet
GIWW	Gulf Intercostal Waterway
GLO	Texas General Land Office
LEI	Lloyd Engineering, Inc.
LEDPA	Least Environmentally Damaging Practicable Alternative
LNG	liquefied natural gas
LTDMPA	Long Term Dredged Material Placement Area
MLLW	mean lower low water
MPRSA	Marine Protection, Research, and Sanctuaries Act of 1972/
	Ocean Dumping Act
NMFS	National Marine Fisheries Service
NOAA	National Oceanographic and Atmospheric Administration
NWI	National Wetlands Inventory
ODMDS	Ocean Dredged Material Disposal Site
Project	Liquefaction and Phase II Developments
RHA	Rivers and Harbors Act
USACE	U.S. Army Corps of Engineers
USEPA	U.S. Environmental Protection Agency
USFWS	U.S. Fish and Wildlife Service
SAP	sampling analysis plan
Terminal	existing LNG terminal on Quintana Island near Freeport, Texas
TPWD	Texas Parks and Wildlife Department

1.0 INTRODUCTION

The U.S. Army Corps of Engineers (USACE), Galveston District issued Permit No. SWG-2013-00147 under Section 404 of the Clean Water Act and Section 10 of the Rivers and Harbors Act (Section 404/10) to Freeport LNG (FLNG) for the Liquefaction Project and Phase II Developments (Project) on September 23, 2014. The USACE issued an amendment to Permit No. SWG-2013-00147 on September 9, 2015 adding the Freeport New Work Offshore Dredged Material Disposal Site (ODMDS) as a placement area. Under the original permit and subsequent amendment, 1,188,000 cubic yards (CY) of new work material was dredged from the Phase II LNG berthing area for placement into the New Work ODMDS. On February 14, 2018 the USACE issued an amendment to Permit No. SWG-2013-00147 for the addition of the Freeport Maintenance ODMDS as a placement area for the disposal of maintenance material dredged from the FLNG Berth to allow for the safe and efficient operations. The FLNG Berth encompasses the Phase II LNG berthing area (authorized under SWG-2013-00147) and the Phase I LNG berthing area (authorized under SWG-2013-00147) and the Phase I LNG berthing area (authorized under SWG-2013-00147) and the Phase I LNG berthing area (authorized under SWG-2013-00147) and the Phase I LNG berthing area (authorized under SWG-2013-00147) and the Phase I LNG berthing area (authorized under SWG-2013-00147) and the Phase I LNG berthing area (authorized under SWG-2013-00147) and the Phase I LNG berthing area (authorized under SWG-2013-00147) and the Phase I LNG berthing area (authorized under SWG-2013-00147) and the Phase I LNG berthing area (authorized under SWG-2013-00147) and the Phase I LNG berthing area (authorized under SWG-2003-02110). The authorized depth of the FLNG berth is 46.5 feet plus 2 feet over dredge. Refer to Appendix A, Figure 1 for a vicinity map and Project location map depicting the FLNG Berth.

FLNG is requesting a modification to the existing permit (SWG-2013-00147) for the construction and operation of a long term dredged material placement area (LTDMPA), pursuant to Section 404 of the Clean Water Act (CWA) and Section 10 of the Rivers and Harbors Act (RHA), for the placement of maintenance material dredged from within the FLNG Berth as required for the continuation of operations of the FLNG Berth and associated terminal supporting infrastructure.

This document presents an alternatives analysis for the future maintenance dredged material placement and assesses the potential environmental impacts of practicable alternatives.

2.0 PROJECT PURPOSE AND NEED

The purpose of the proposed Project is to develop a long-term solution for the annual placement of maintenance material dredged from the FLNG Berth to create stability for future operations and navigation of vessels within the FLNG Berth. Safe navigation and operation of vessels within the FLNG Berth is required to support existing FLNG infrastructure and fulfillment of contract commitments to export LNG products to international markets.

FLNG's authorized Liquefaction Project is expected to result in 250 ship visits per year to the FLNG Berth. Additionally, FLNG's proposed Train 4 Project is expected to raise the total ship visits per year to the FLNG Berth to 325, once authorized. Based on a sedimentation analysis conducted, FLNG anticipates an approximate sedimentation rate of 4.1 feet per year within the FLNG Berth. As such, it is estimated that annual maintenance dredging of approximately 500,000 CY would be required to maintain previously authorized depths (48.5 feet including over-dredge) and allow vessels to safely access FLNG infrastructure located within the FLNG Berth. Please see Appendix B for the FLNG Marine Basin Sedimentation Study (Sedimentation Study). In addition to routine maintenance dredging activities, in the case of a major storm or other event that causes shoaling in the FLNG Berth to the point where a ship would not be able to access one or both LNG Docks, FLNG would need to be able to conduct emergency dredging activities to prevent operation delays.

According to the results of the Gulf Intracoastal Waterway (GIWW): Brazos River Floodgates and Colorado River Lock Systems Feasibility Study Draft Report issued February 19, 2018 (Feasibility Study), the USACE's recommended plan of widening and relocating the Brazos River Floodgates would result in a 15% increase in sedimentation in the GIWW and an 11% increase in sedimentation in the Freeport Harbor Channel (FHC) once the new structures are in place. Due to the proximity of the FLNG Berth to both the

GIWW and the FHC, sedimentation within the FLNG Berth would likely increase within that range. Sedimentation rates within the 2-year construction period where no structures would be in place would likely be higher.

Based on the engineering analysis within the Feasibility Study, the USACE does not anticipate the need for additional DMPA's or new/expanded ODMDS for the additional maintenance dredging volumes. As the lack of availability of existing dredged material capacity is currently a critical issue in the Freeport area, FLNG would like to reserve the right to allow outside users to utilize the proposed LTDMPA if and when deemed appropriate by FLNG. With current lack of availability of dredged material capacity in the Freeport area as well as the potential for sedimentation rates to increase above current values if the Brazos River Locks are modified as outlined in the Freesibility Study, a privately operated LTDMPA that can accept routine maintenance dredging volumes at the rate anticipated by the Sedimentation Study is vital to ensure long-term operations of the FLNG Berth.

FLNG requests authorization of the requested permit modification by January 2020 to allow sufficient time for the construction of the proposed Project and initial placement of maintenance material dredged from the FLNG Berth.

3.0 ALTERNATIVES ANALYSIS FOR PLACEMENT OF MAINTENANCE MATERIAL

FLNG analyzed multiple alternatives for the long-term placement of maintenance material dredged from the FLNG Berth. Each of the placement alternatives that were analyzed are discussed further below.

3.1 NO ACTION ALTERNATIVE

The no action alternative consists of the continuation of operations at the FLNG Berth without the identification of options for the future long-term placement of maintenance material. Currently, FLNG has authorization for the placement of maintenance material offshore at the Maintenance ODMDS, which expires in February 2021. Current regulations only allow the USACE to issue permits for offshore disposal of dredged material for a 3-year period. As part of the No Action alternative, once the current offshore disposal authorization expires, the current conditions that are observed at the FLNG Berth would remain, thereby preventing the future utilization of FLNG's existing infrastructure and fulfillment of contract commitments due to navigational concerns of incoming and outgoing vessel traffic.

3.2 BENEFICIAL USE

3.2.1 Beach Nourishment Alternative

Previous beach nourishment projects have been undertaken locally (including several on Quintana Island). The ideal sediment to be used for beach nourishment is dependent on the grain size, which must closely match the native beach material. Sediment containing excess silts and clay fraction typically disqualifies the material from being considered suitable for nourishment activities. Projects with unmatched grain sizes typically perform relatively poorly. FLNG performed evaluations of the maintenance material located within the FLNG Berth to determine the feasibility for the materials use for beach nourishment.

3.2.2 Bird Island Creation and Wetland Restoration

The placement of material dredged from the FLNG Berth for beneficial use (BU) for bird island creation and/or wetland restoration was considered as an alternative for the placement of material. FLNG conducted a screening-level assessment of potential BU sites within approximately 5 miles from the FLNG Berth. Additionally, FLNG engaged in discussions with the U.S. Fish and Wildlife Service (USFWS), Texas Parks and Wildlife Department (TPWD), National Marine Fisheries Service (NMFS), the Texas General Land

Office (GLO), Galveston Bay Foundation, and Ducks Unlimited to identify potential BU opportunities. Refer to Appendix A, Figure 3 and Figures 4A through 4F for depictions of the location of the sites investigated for bird island creation and wetland restoration.

3.3 EXISTING AND UNDEVELOPED FEDERAL DMPA

3.3.1 Existing Federal DMPA

FLNG investigated the use of existing Federal dredged material placement areas (DMPA) for the long-term disposal of dredged material from the FLNG Berth. The Galveston District's "Dredged Material Management Plan – Final Preliminary Assessment" (March, 2012) was used to identify existing Federal DMPAs within 5 miles to the FLNG Berth to be considered as potential alternatives on a solely locational basis. Refer to Appendix A, Figure 5 for a depiction of the locations of the existing Federal DMPAs investigated as potential alternatives for the long-term placement of maintenance material dredged at the FLNG Berth.

3.3.2 Undeveloped Federal DMPA

FLNG investigated the use of currently undeveloped federal DMPAs for the long-term disposal of dredged material from the FLNG Berth. The USACE Final Environmental Impact Statement for Proposed Port Freeport Channel Widening (Channel Widening FEIS) was used to identify undeveloped Federal DMPAs located within 5 miles of the FLNG Berth to be considered as potential alternatives. Refer to Appendix A, Figure 6 for a depiction of the locations of the undeveloped Federal DMPAs investigated as potential alternatives for the long-term placement of maintenance material dredged at the FLNG Berth.

3.4 OFFSHORE DREDGE MATERIAL DISPOSAL SITE

The option of offshore dredged material disposal at an ODMDS has historically been reserved for projects where the USACE is the sole sponsor or a co-sponsor. However, the U.S. Environmental Protection Agency (USEPA) changed the regulations to allow dredged material from the vicinity of the Federal channels to be disposed of at designated offshore placement areas. Two USEPA-designated dispersive ODMDSs are located south of Quintana Island in the Gulf of Mexico. The ODMDS closest to shore is referred to as the Freeport Maintenance ODMDS, whereas the ODMDS farthest from shore is referred to as the Freeport New Work ODMDS. Refer to Appendix A, Figure 2 for a depiction of the Freeport Maintenance and New Work ODMDS locations.

On February 14, 2018, FLNG received an amendment to SWG-2013-00417 to allow for three years of placement of maintenance dredge material at the Freeport Maintenance ODMDS. Once expired, the continued use of the ODMDS for the discharge of maintenance material would require a new MPRSA Section 103 Permit. The USACE has the authority to issue the permit contingent upon concurrence from the USEPA that the material is suitable for ocean disposal. FLNG's current authorization for use of the Freeport Maintenance ODMDS expires on February 14, 2021.

3.5 SEDIMENT DIVERSION

The Sedimentation Study was conducted by Lloyd Engineering, Inc. (LEI) to determine the feasibility of additional measures to reduce the sedimentation in the FLNG Berth. As part of this analysis, diversion structures in the GIWW and Lower Turning Basin, as well as alternative dredging and maintenance procedures were analyzed as potential sediment reduction features.

Based on the model created, high velocity currents along with high sediment concentrations flow east along the GIWW from the Brazos River to Freeport. As the flow reaches the southern end of the FLNG Berth, the flow is diverted into the FLNG Berth where a large eddy forms and water velocity decreases significantly

allowing sediment to settle. As part of this study, two sediment diversion/dredging alternatives were developed to divert the ebb flow away from the FLNG Berth and out towards the Freeport channel.

3.5.1 Southern Dredging Alternative

The Southern Dredging Alternative consists of dredging an area located adjacent to the shoreline along the Freeport Channel and just south of the FLNG Berth. The goal of dredging this area would be to reduce the diversion of ebb flows from the Freeport Channel into the FLNG Berth. Refer to the FLNG Marine Basin Sedimentation Study provided in Appendix B for the modeled flow pattern for the Southern Dredging Alternative.

3.5.2 Locks Alternative

Another sediment diversion alterative analyzed was the Locks Alternative which included the installation of locks at the GIWW and Brazos River. The main source of shoal material being deposited within the FLNG Berth occurs as a result of the Brazos River. With the locks closed, especially at high tide, there would be a major decrease in the amount of sediment traveling east along the GIWW. This alternative would require USACE permitting as well as consultations and agreements with the Texas Department of Transportation on a public/private partnership to construct the locks in a form of a Section 204 agreement – Construction of Water Resources Development Projects by Non-Federal Interest. Refer to the FLNG Marine Basin Sedimentation Study provided in Appendix B for detailed descriptions of the Locks Alternative analyzed.

3.6 PRIVATE DMPA DEVELOPMENT (PREFERRED ALTERNATIVE)

FLNG investigated the development of a private DMPA as a potential alternative for the long-term placement of maintenance material dredged at the FLNG Berth. This alternative would require USACE permitting and site development to establish the site conditions necessary to accommodate for the long-term placement of maintenance material. FLNG conducted an assessment of potential private DMPA sites within approximately 5 miles of the FLNG Berth. Refer to Appendix A, Figure 7 and Figures 8A through 8F for depictions of the potential private DMPA sites investigated.

4.0 ALTERNATIVE SCREENING PROCESS

FLNG conducted an alternative screening process to determine which alternatives allow for the long-term placement of maintenance material dredged within the FLNG Berth while minimizing environmental impacts. In order to be considered as a practicable disposal option, FLNG considered the alternatives detailed in the previous sections with the following selection criteria:

- Fulfillment of the project purpose and need to allow for the long-term placement of maintenance material dredged from the FLNG Berth to create stability for future operations and navigation of vessels within the FLNG Berth;
- 2. Located within 5 miles of the FLNG Berth;
- 3. Dredged material is suitable for placement at a given location;
- 4. Dedicated annual capacity for use by FLNG for placement of maintenance material;
- 5. Provides an annual dredged material capacity of 500,000 CY for a term of 15 years;
- 6. Authorization and construction timelines allow for the utilization prior to the expiration of existing maintenance material placement authorizations;
- 7. Minimizes impacts to properties of Federal interest; and,
- 8. Minimizes environmental impacts to the maximum extent practicable.
- 9. Disposal method requires minimal dredging equipment to safely maneuver around incoming and outgoing LNG ships and conduct dredging activities within a very active FLNG Berth.
- 10. Provides year-round availability to allow for emergency maintenance dredge disposal following possible natural disasters or other large-scale shoaling events.

The alternatives screening process was used to reduce the number of alternatives considered during moredetailed evaluations based on their ability to fulfill the requirements set forth in the selection criteria. FLNG analyzed 6 potential alternatives, including 1) the no action alternative, 2) beneficial use of dredged material, 3) disposing into an existing or undeveloped Federal DMPA, 4) sediment diversion, 5) Maintenance ODMDS, and 6) development of private DMPA for disposal. The following information is provided for each alternative disposal site that was examined, as applicable:

- Specific parcel information
 - Parcel ID numbers (see Appendix C)
 - Aerial photos and location maps (see Appendix A, Figures 3 through 8)
 - GPS Coordinates (see Appendix A, Figures 3, 5, and 7)
 - Estimated Material Capacities (see Appendix A, Figures 6 and 8A through87F)
- Presence, quantity, and quality of wetlands and/or waters of the U.S. (see Table 1)
- County/City Zoning designations (see Table 2)
- Site infrastructure and other components for a single and complete project (see Table 3)
- Presence of federally-listed threatened or endangered species or their critical habitat, state listed species, or other natural or regionally important ecosystem resource factors that may be significantly impacted (Table 4)

The following sections detail the results of the alternative screening process as well as identify the alternatives selected for further evaluation.

	We	tland/W	aterbod	y Impa	cts Ass	ociated	with Pla	cement	Alterna	atives ar	nd Dredg	ing the F	LNG Bert	:h		
									Acres	of Impa	ct					
			BU S	ites				v. Fed PAs			Privat	e DMPA:	S		Maintenance ODMDS	FLNG Berth
NWI Classification	А	В	С	D	Е	F	8	9	А	В	С	D	Е	F		
Estuarine and Marine Wetland	0.0	165.0	0.0	0.1	58.4	271.3	0.0	0.0	0.0	237.6	0.0	0.0	264.3	122.9	0.0	0.0
Freshwater Emergent Wetland	0.0	0.0	1.0	0.0	0.0	0.0	23.7	14.8	0.0	43.2	171.0	0.9	0.0	0.0	0.0	0.0
Palustrine Scrub Shrub Wetland	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Lake	0.0	0.0	130.0	0.0	0.0	0.0	0.0	0.0	0.0	0.3	0.0	0.0	0.0	0.0	0.0	0.0
Estuarine and Marine Deepwater	18.3	0.0	0.0	24.6	1.5	0.0	0.0	0.0	18.3	0.0	0.0	0.0	9.5	0.0	1,273.0 ^a	62.9
Riverine	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.8	0.0	0.0	0.0	0.0	0.0
Total:	18.3	165.0	131.0	24.7	59.9	271.3	23.7	14.8	18.3	281.1	171.8	0.9	273.8	122.9	1,273.0 ª	62.9

^a The acreage provided for the Maintenance ODMDS (1,273.0) is the total acreage for the entire ODMDS site. Disposal activities are limited to a smaller area as defined by the USEPA and USACE.

County/City Zoning Res	strictions A		le 2: Ited wit	h Onsh	ore Pla	cemen	t Altern	atives						
	_		BU	Sites				v. Fed PAs		I	Private	DMPA	S	
	А	В	С	D	Е	F	8	9	А	В	С	D	Е	F
None (located in unincorporated Brazoria County)	Х	-	х	х	х	х	х	-	Х	Х	-	Х	Х	Х
R-1 District, Single Family Residential (City of Freeport)	-	х	-	-	-	-	-	-	-	-	Х	-	-	-
W-3 District, Waterfront-Heavy (City of Freeport)	-	-	-	-	-	-	-	-	-	-	Х	-	-	-
Planned Unit Development District, PUD (City of Freeport)	-	-	-	-	-	-	-	Х	-	-	-	-	-	-

			le 3:											
Infrastructure Requiremer Required Infrastructure Development	nts As	sociate		Onshor Sites	e Place	ement A	Unde	ives v. Fed PAs		Р	rivate	DMPA	٨s	
-	А	В	С	D	Е	F	8	9	А	В	С	D	Е	F
Access Road(s)	-	-	-	-	-	-	х	х	-	-	х	-	х	-
Drainage Structure Installation within Federal Levee (408 Permit)	-	-	-	-	-	-	-	-	-	-	х	-	-	-
Site Security Infrastructure (fencing, gated access, etc.)	-	-	-	-	-	-	-	-	х	х	х	х	х	х
Water Level Control Outfalls (Weirs)	х	-	Х	х	-	-	Х	х	-	х	-	х	х	х
Construction of Levees	-	-	-	-	-	-	Х	х	х	х	х	х	х	х
Improvement of Existing Levees	-	х	Х	-	-	-	-	-	-	-	-	-	-	-
Equipment Staging Areas	х	-	-	-	Х	Х	-	-	х	-	-	-	-	-
Hay Bale Dikes/Sediment Control Dikes	х	х	Х	х	х	Х	-	-	х	-	-	-	-	-
Effluent Collection Trench	-	-	-	-	-	-	-	-	-	-	х	х	х	х
Effluent Detention Basin	-	-	-	-	-	-	-	-	-	-	-	Х	Х	х

				Table	9 4:															
	Т	hreatene	ed and E	ndangered Species Habitat Assessment	for P	lacer	nent	Alter					-	he F	LNG	Ber	th			
									ŀ	Habita	t Asse		nts							
	Federal	Status			BU Sites					Und Fe DMF	d.		Pri	vate	DMP.	As		Maint.	FLNG	
Common Name Scientific Name	USFWS	NMFS	State Status	Suitable Habitat Description	А	В	С	D	Е	F	8	9	А	В	С	D	Е	F	ODMDS	Berth
Invertebrates																				
Boulder star coral <i>Orbicella franksi</i>	-	т	-	Species inhabits reefs in shallow waters.	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν
Elkhorn coral Acropora palmata	-	т	-	Species inhabits reefs in shallow waters.	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν
Lobed star coral <i>Orbicella annulari</i> s	-	т	-	Species inhabits reefs in shallow waters.	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν
Mountainous star coral <i>Orbicella faveolata</i>	-	Т	-	Species inhabits reefs in shallow waters.	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	N	Ν	Ν	Ν	Ν	Ν	Ν
Smooth pimpleback <i>Quadrula</i> <i>houstenensis</i>	С	-	Т	Species occurs within a total of nine locations within the Colorado and Brazos River basins. Potential presence of this species within the Project area is so low as to be discountable.	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	N	N	Ν	Ν	Ν	Ν
Texas fawnsfoot Truncilla macrodon	С	-	Т	Species occurs within a total of five locations within the Colorado and Brazos River basins. Potential presence of this species within the Project area is so low as to be discountable.	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	N	N	N	Ν	Ν	Ν
Fishes																				
Sharpnose shiner <i>Notropis</i> oxyrhynchus	E ª	-	-	Species is endemic to the Colorado and Brazos River drainages and prefers large, turbid rivers with a combination of sand, gravel, and clay-mud substrates. Species is not known to occur within Brazoria County.	Ν	Ν	Ν	N	N	N	Ν	N	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν
Smalltooth sawfish Pristis pectinata	Ea	Eª	E	Species found in estuaries or river mouths with muddy or sandy substrate. Species is not known to occur within Brazoria County.	Ν	Ν	Ν	Ν	Ν	N	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν

Terrestrial Reptiles																				
Texas horned lizard Phrynosoma cornutum	-	-	Т	Found in arid and semiarid habitats in open areas with little vegetation and loose sand or loamy soils.	Ν	Ν	N	N	Ν	Ν	Ν	N	N	N	N	Ν	N	Ν	Ν	Ν
Timber/canebrake rattlesnake <i>Crotalus horridus</i>	-	-	Т	Species found in swamps, river floodplains, hardwood and pine forests, and rural farming areas.	N	Ν	Ν	Ν	N	Ν	N	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν
Aquatic Reptiles																				
Alligator snapping turtle <i>Macrochelys</i> <i>temminckii</i>	-	-	Т	Species found in river systems, lakes, and wetlands.	Ν	Ν	Y	N	Ν	Ν	Y	Y	N	N	Y	Y	N	Ν	Ν	Ν
Green sea turtle <i>Chelonia myd</i> as	Т	т	Т	The species inhabits coastal areas and the open ocean. Nesting occurs along sandy beaches.	Y	Y	Ν	Ν	Y	Y	Ν	Ν	Y	Y	Ν	Ν	Ν	Ν	Y	Y
Hawksbill sea turtle Eretmochelys imbricata	E	E	E	The species inhabits coastal areas and the open ocean. Nesting occurs along sandy beaches.	Y	Y	Ν	Ν	Y	Y	Ν	Ν	Y	Y	Ν	Ν	Ν	Ν	Y	Y
Kemp's ridley sea turtle <i>Lepidochelys</i> <i>kempii</i>	E	E	E	The species inhabits coastal areas and the open ocean. Nesting occurs along sandy beaches.	Y	Y	N	Ν	Y	Y	Ν	Ν	Y	Y	Ν	Ν	N	Ν	Y	Y
Leatherback sea turtle <i>Dermochelys</i> coriacea	E	E	E	The species inhabits coastal areas and the open ocean. Nesting occurs along sandy beaches.	Y	Y	N	N	Y	Y	Ν	N	Y	Y	N	Ν	N	Ν	Y	Y
Loggerhead sea turtle <i>Caretta caretta</i>	Т	Т	Т	The species inhabits coastal areas and the open ocean. Nesting occurs along sandy beaches.	Y	Y	Ν	Ν	Y	Y	Ν	Ν	Y	Y	Ν	Ν	Ν	Ν	Y	Y
Birds																				
Bald eagle Haliaeetus Ieucocephalus	DL ª	-	Т	Nesting typically occurs in mature trees in or near cypress/tupelo swamps, fresh to intermediate marshes, or open water.	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Y	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν
Brown pelican Pelecanus occidentalis	DL	-	-	The species is largely restricted to coastal waters for foraging and nesting.	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Ν	Y
Eskimo curlew <i>Numenius borealis</i>	E ^a	-	E	Species nests in arctic tundra and winters in open grasslands, fields, and wetlands. Species is not known to occur within Brazoria County.	Ν	Ν	Ν	N	N	Ν	N	N	N	N	N	N	N	Ν	Ν	Ν

Peregrine falcon Falco peregrinus	DL	-	۲°	This species breeds in open landscapes with cliffs and winters in open habitat primarily along barrier islands, mudflats, lake edges, and coastlines.	Y	Y	Y	Y	Y	Y	N	N	Y	Y	Ν	Y	N	Ν	Ν	Ν
Piping plover Charadrius melodus	T, CH	-	т	The species breeds in the northern United States and Canada. Wintering habitat includes sandy beaches.	Ν	N	Ν	Ν	Ν	Ν	Ν	Ν	Y	Y	Ν	Ν	Ν	Ν	Ν	Ν
Red knot Calidris canutus rufa	Т	-	-	The species breeds in Alaska and Canada. Wintering habitat includes tidal flats and beaches.	Y	Y	Ν	Y	Y	Y	N	N	Y	Y	Ν	Ν	Y	Ν	Ν	Ν
Reddish egret Egretta rufescens	-	-	т	Occurs within coastal tidal flats, salt marshes, shores, and lagoons. Forages within calm, shallow waters along coast, in protected bays, and estuaries.	Y	Y	Ν	Y	Y	Y	Ν	N	Y	Y	Ν	Y	N	Ν	Ν	Ν
Sooty tern Onychoprion fuscatus	-	-	т	Species breed on small islands along the coast in flat, open areas with little vegetation.	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	N	Ν	Ν
White-faced ibis Plegadis chihi	-	-	т	Occurs within freshwater marshes, irrigated land, and tules. Foraging habitat includes very shallow water, as in marshes, flooded pastures, and irrigated fields. Occasionally occurs within damp meadows with no standing water.	Ν	N	Y	Y	Ν	Ν	Ν	Ν	Ν	Ν	Y	Ν	Ν	Ν	Ν	Ν
White-tailed hawk Buteo albicaudatus	-	-	т	Occurs within open grasslands with scattered shrubs or low trees. Species primarily inhabits coastal prairie, but may also occur inland in ranch country. Generally not found where land is farmed or heavily grazed.	Ν	N	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν
Whooping crane Grus americana	Е	-	Е	Species found in salt marshes, primarily within Aransas NWR in Texas.	Ν	Y	Ν	Y	Y	Y	Ν	Ν	Ν	Y	Ν	Ν	Y	Ν	Ν	Ν
Wood stork <i>Mycteria americana</i>	T ^{ad}	-	т	Found in prairie ponds, flooded pastures or fields, ditches, and other shallow standing water. Species is not known to occur within Brazoria County.	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	N	Ν	Ν	Ν	Ν
Terrestrial Mammals																				
Jaguarundi Herpailurus yaguarundi	Ea	-	E	Species is found in dense, thorny shrublands. Species is not known to occur within Brazoria County.	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	N	Ν	Ν
Louisiana black bear Ursus americanus luteolus	DL	-	т	Species found in large tracts of forested habitat.	Ν	Ν	Ν	N	Ν	Ν	Ν	N	Ν	Ν	Ν	N	Ν	Ν	Ν	Ν

Environmental	Analysis:	Lona	Term	Dredaed	Material	Placement Area

Ocelot Leopardus pardalis	Eª	-	E	Species is found in dense, thorny shrublands. Species is not known to occur within Brazoria County	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν
Red wolf <i>Canis rufu</i> s	E ª	-	Е	This species has been extirpated from Texas.	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν
Marine Mammals																				
Bryde's whale Balaenoptera edeni	-	Ρ	-	The species inhabits a small area in the northeastern Gulf near De Soto Canyon in waters between along the continental shelf break.	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	N	N	Ν	Ν	Ν	N	Ν	Ν
Fin (finback) whale Balaenoptera physalus	-	Еь	-	This species inhabits the open ocean.	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Y	Ν
Humpback whale <i>Megaptera</i> <i>novaeangliae</i>	-	ЕÞ	-	The species inhabits the open ocean, coastal waters, and sometimes inshore areas such as bays.	Ν	N	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Y	Y
Sei whale Balaenoptera borealis	-	Еь	-	This species inhabits the open ocean.	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Y	Ν
Sperm whale Physeter microcephalus	-	ЕÞ	-	This species inhabits the open ocean.	Ν	Ν	Ν	Ν	N	N	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Y	Ν
West Indian manatee <i>Trichechus</i> <i>manatus</i>	E	-	E	Species inhabits in large, slow-moving rivers, river mouths, and shallow coastal areas such as coves and bays.	Ν	Ν	Ν	N	Ν	Ν	Ν	Ν	N	Ν	Ν	Ν	Ν	N	Y	Y

Notes

C = candidate species; P = proposed species; T = threatened species; E = endangered species; DL = delisted species; CH = critical habitat

N = No Suitable Habitat Present; Y = Potential Suitable Habitat Present

^a Although this species is federally listed under the ESA, it does not appear on the USFWS species list for Brazoria County (USFWS, 2017) or the NMFS species list for Texas (NMFS, 2017). However, because it occurs on the TPWD county list, we have included it in this analysis.

^b Although the bald eagle is delisted, it is still federally protected under the Bald and Golden Eagle Protection Act (16 USC § 668-668d)

^c Threatened status applies only to American peregrine falcon, not to Arctic peregrine falcon. Due to the similarity of the two species, the TPWD applies threatened status at the species level.

^d Only the portion of the wood storks are found in Alabama, Florida, Georgia, Mississippi, North Carolina, and South Carolina.

^e Also federally protected and defined as depleted by the Marine Mammal Protection Act (16 USC 31)

"-" (blank) - No regulatory listing status by agency for the Lower Brazoria County area

4.1 NO ACTION ALTERNATIVE SCREENING ANALYSIS

The no action alternative was considered during analysis but does not fulfill the Project's purpose and need for the long-term placement of maintenance material dredged from within the FLNG Berth. As such, the no action alternative jeopardizes future operations due to ongoing sedimentation which prevents the necessary vessel operations within the FLNG berth to fulfill contract commitments to export LNG products to international markets. Based on this analysis, the no action alternative does not fulfill the Project's purpose and need (selection criteria 1) and therefore was not considered a practicable alternative. However, the no action alternative is carried forward for further evaluation to serve as a baseline of environmental conditions in which to compare all other alternatives to.

4.2 BENEFICIAL USE SCREENING ANALYSIS

4.2.1 Beach Nourishment

In May 2017, FLNG collected surficial sediment and ambient water for the purposes of conducting chemical and grain-size analysis of the maintenance material located at the FLNG Berth. The grain size data collected during this analysis was reviewed to determine the suitability of the material to be dredged for the use of beach nourishment. The results of the grain-size analysis ranged in composition amongst the three sampling stations between 21.8 to 31.3 percent gravel, 22.1 to 22.6 percent sand, 45.6 to 55.6 percent silt and clay. These results indicate that the material to be dredged at the FLNG Berth includes a high proportion of silt and clay material, and therefore is not considered suitable for beach nourishment. The beach nourishment BU option would not meet selection criteria 3; therefore, the placement of material for beach nourishment was not considered a practicable alternative or selected for further evaluation. Refer to Appendix D for the Contaminant Assessment Report, including the results of the grain-size analysis conducted on maintenance material located within the FLNG Berth.

4.2.2 Bird Island Creation and Wetland Creation/Restoration

Discussions with the various agencies and organizations failed to identify any specific BU sites with immediate/short-term material needs with enough detail to assess the material volume requirements or assess schedule timeframe for potential development. Therefore, FLNG conducted an independent analysis of six potential sites to use dredged material beneficially by creating bird islands or creating/restoring wetlands. The sites investigated are displayed in Appendix A, Figures 3 and 4A through 4F and discussed below. Wetland and waterbody impacts based on National Wetland Inventory (NWI)¹ data that would be required for the disposal of dredged material within each BU site are outlined in Table 1. City/county zoning restrictions at each site are presented in Table 2 and required infrastructure improvements to develop each BU site are included in Table 3.

Beneficial Use Site A

BU Site A is a shallow, open water area containing 18.3 acres of estuarine and marine deepwater (see Table 1 and Appendix A, Figure 4A) located approximately 2 miles southwest of the FLNG Berth within shallow manmade canals. BU Site A meets selection criteria 2, 3, 6, 7, and 8, and was investigated for potential bird island creation and wetland creation. While development of a BU site would require permitting through the USACE, a Nationwide Permit 27 could be utilized, which would expedite the permitting process to a timeframe that could meet the Project schedule.

¹ Wetland and Waterbody acreages discussed throughout the document are based on NWI data except where noted otherwise.

While BU Site A provides 18.3 acres of available open water areas for wetland creation, the water depths in these canals are very shallow, and would only allow for a maximum of approximately 2 feet of dredged material placement to achieve wetland elevations. This would only allow for a capacity of approximately 60,000 cubic yards of dredged material, which does not meet selection criteria 4, 5, or the Project's purpose and need (selection criteria 1).

Small areas of oysters exist along the bulkheads throughout the canal areas, which would be impacted if this area were used for dredged material disposal and wetland creation. A small area of existing wetlands is also present within the interior of the northwestern most canal. These existing open water and wetland areas along with oysters within BU Site A currently provide valuable habitat for birds, wildlife, and fisheries. While creating wetlands would provide additional habitat for certain types of species, it would also reduce the available open water areas that are currently providing habitat for other species including loafing and foraging habitat for waterfowl and are habitat for larger fish species.

BU Site A currently provides potential habitat for 5 species of threatened or endangered sea turtles (green, hawksbill, Kemp's ridley, leatherback, loggerhead), 3 species of threatened or endangered birds (peregrine falcon, red knot, and reddish egret), and the delisted brown pelican. Activities associated with development of BU Site A could impact, but would not be expected to adversely impact these species.

No zoning restrictions are present within BU Site A (see Table 2). Infrastructure improvements including water level control outfalls, equipment staging area, and hay bale/sediment control dikes would be required to complete BU at this site (see Table 3).

Beneficial Use Site B

BU Site B includes 3 large, shallow, open water areas containing 165.0 acres of estuarine and marine wetlands (see Table 1 and Appendix A, Figure 4B) located approximately 3 miles west of the FLNG Berth. BU Site B meets selection criteria 2, 3, 6, 7, and 8, and was investigated for potential bird island creation and wetland creation. While development of a BU site would require permitting through the USACE, a Nationwide Permit 27 could be utilized, which would expedite the permitting process to a timeframe that could meet the Project schedule

BU Site B is located on a large tract of contiguous land (with 165 acres of open water areas, although NWI has them classified as wetlands). Based on an analysis conducted, BU Site B has the capacity to accommodate 100,000 cubic yards of dredged material. As such, BU Site B does not have sufficient capacity to meet criteria 4, 5, or the Project's purpose and need (selection criteria 1). Based on review of aerial photography, wetlands are located along the entire perimeter of the available open water areas, and small areas of oysters are located throughout these areas. These existing open water and wetland areas along with oysters within BU Site B currently provide valuable habitat for birds, wildlife, and fisheries. While creating wetlands would provide additional habitat for certain types of species, it would also reduce the available open water areas that are currently providing habitat for other species including loafing and foraging habitat for waterfowl. This site was analyzed for potential BU as part of the USACE's Final Environmental Impact Statement for Proposed Port Freeport Channel Widening (Channel Widening FEIS), and was deemed infeasible, as utilizing this site for BU would do unnecessary damage to the healthy and functioning habitat that is present at the site. This original analysis is appended to this document as Appendix E for reference.

BU Site B currently provides potential habitat for 5 species of threatened or endangered sea turtles (green, hawksbill, Kemp's ridley, leatherback, loggerhead), 4 species of threatened or endangered birds (peregrine

falcon, red knot, reddish egret, and whooping crane), and the delisted brown pelican. Activities associated with development of BU Site B could impact, but would not be expected to adversely impact these species.

BU Site B is zoned as R-1 District, Single Family Residential by the City of Freeport (see Table 2). Developing this site for BU would not be consistent with current zoning regulations. Infrastructure improvements including improvement of existing levees and hay bale/sediment control dikes would be required to complete BU at this site (see Table 3).

Beneficial Use Site C

BU Site C includes a large, shallow, open water area containing 1.0 acre of freshwater emergent wetland and 130.0 acres of lake (see Table 1 and Appendix A, Figure 4C) located approximately 4 miles west of the FLNG Berth. BU Site C meets selection criteria 2, 3, 6, and 7, and was investigated for potential bird island creation and wetland creation. BU Site C does not meet selection criteria 8, as portions of the open water area are located on property owned by the United States government and are of significant Federal interest. Additionally, this area is located immediately adjacent to the Federal Petroleum reserve, and therefore may preclude construction activity from happening in the area due to security access reasons.

BU Site C is located on a large tract of contiguous land (with over 130 acres of open water areas) and would likely be able to accommodate 100,000 cubic yards of dredged material capacity to establish conditions suitable for the establishment of wetlands. As such, BU Site C does not have sufficient capacity to meet criteria 4, 5, or the Project's purpose and need (selection criteria 1). Existing wetlands are located along the entire perimeter of the available open water areas. These existing open water and wetland areas within BU Site A currently provide valuable habitat for birds, wildlife, and fisheries. While creating wetlands would provide additional habitat for certain types of species, it would also reduce the available open water areas that are currently providing habitat for other species including loafing and foraging habit for waterfowl and habitat for larger fish species.

BU Site C currently provides potential habitat for 1 species of threatened aquatic reptile (alligator snapping turtle), 2 species of threatened or endangered birds (peregrine falcon and white-faced ibis), and the delisted brown pelican. Activities associated with development of BU Site C could impact, but would not be expected to adversely impact these species.

No zoning restrictions are present within BU Site C (see Table 2). Infrastructure improvements including water level control outfalls, improvement of existing levees, and hay bale/sediment control dikes would be required to complete BU at this site (see Table 3).

Beneficial Use Site D

BU Site D includes a large estuarine wetland/open water complex containing 0.1 acre of estuarine and marine wetland and 24.6 acre of estuarine and marine deepwater (see Table 1 and Appendix A, Figure 4D) located approximately 3 miles north of the FLNG Berth. BU Site D meets selection criteria 2, 3, 6, 7, and 8, and was investigated for potential wetland creation.

BU Site D is located on a large tract of contiguous land with approximately 25 acres of shallow, open water areas available for BU. While the exact depth of open water areas are unknown, it is estimated that BU Site D has an approximate capacity of 100,000 cubic yards of material to establish elevations to support the creation of wetland area. As such, BU Site D does not have sufficient capacity to meet criteria 4, 5, or the Project's purpose and need (selection criteria 1).

Wetlands are located along the entire perimeter of the available open water areas. These existing open water and wetland areas within BU Site D currently provide valuable habitat for birds, wildlife, and fisheries. While creating wetlands would provide additional habitat for certain types of species, it would also reduce the available open water areas that are currently providing habitat for other species including loafing and foraging habitat for waterfowl and habitat for larger fish species. Similar to BU Site B discussed above, these areas are adjacent to high quality fringe wetland areas and currently provide valuable habitat for birds, wildlife, and fisheries. While creating wetlands would provide additional habitat for certain types of species, it would also reduce the available open water areas that are currently provide provide additional habitat for certain types of species, it would also reduce the available open water areas that are currently provide additional habitat for certain types of species, it would also reduce the available open water areas that are currently provide additional habitat for other species including loafing and foraging habitat for waterfowl.

Site D currently provides potential habitat for 5 species of threatened or endangered birds (peregrine falcon, red knot, reddish egret, white-faced ibis, and whooping crane) and the delisted brown pelican. Activities associated with development of BU Site D could impact, but would not be expected to adversely impact these species.

No zoning restrictions are present within BU Site D (see Table 2). Infrastructure improvements including water level control outfalls and hay bale/sediment control dikes would be required to complete BU at this site (see Table 3).

Beneficial Use Site E

BU Site E includes a large estuarine wetland/open water complex containing 58.4 acres of estuarine and marine wetland and 1.5 acres of estuarine and marine deepwater (see Table 1 and Appendix A, Figure 4E) located approximately 1.5 miles north of the FLNG Berth. BU Site E meets selection criteria 2, 3, 6, 7, and 8, and was investigated for wetland creation/restoration.

BU Site E is located on a large tract of contiguous land (with over 73 acres of open water areas) and would likely be able to accommodate 100,000 cubic yards of dredged material. As such, BU Site E does not have sufficient capacity to meet criteria 4, 5, or the Project's purpose and need (selection criteria 1).

Wetlands are located along the entire perimeter of the available open waters and both large and small oyster reefs are located within the available open water areas. These existing open water and wetland areas along with oysters within BU Site E currently provide valuable habitat for birds, wildlife, and fisheries. Additionally, the open water areas within the site are utilized for recreational fishing. While creating wetlands would provide additional habitat for certain types of species, it would also reduce the available open water areas that are currently being utilized for recreational fishing and are providing habitat for other species including loafing and foraging habitat for waterfowl. Additionally, this site was analyzed for potential BU as part of the USACE's Channel Widening FEIS and was concluded that "filling of these areas to create low marsh vegetation grounds will negatively impact some functioning oyster beds as well as popular and functioning recreational fishing grounds" (see Appendix E for reference).

BU Site E currently provides potential habitat for 5 species of threatened or endangered sea turtles (green, hawksbill, Kemp's ridley, leatherback, loggerhead) 4 species of threatened or endangered birds (peregrine falcon, red knot, reddish egret, and whooping crane), and the delisted brown pelican. Activities associated with development of BU Site D could impact, but would not be expected to adversely impact these species.

No zoning restrictions are present within BU Site E (see Table 2). Infrastructure improvements including equipment staging areas and hay bale/sediment control dikes would be required to complete BU at this site (see Table 3).

Beneficial Use Site F

BU Site F includes a large estuarine wetland/open water complex containing 271.3 acres of estuarine and marine wetlands (see Table 1 and Appendix A, Figure 4F) located approximately 3 miles northeast of the FLNG Berth. BU Site F meets selection criteria 2, 3, 6, and 7, and was investigated for potential bird island creation and wetland creation. BU Site F does not meet selection criteria 8 as it is located on state-owned submerged lands that would require permitting through the GLO.

BU Site F is located on a large tract of contiguous land (with over 270 acres of open water areas) and would be able to accommodate 100,000 cubic yards of dredged material capacity, therefore does not fulfill selection criteria 4, 5, or the Project's purpose and need (selection criteria 1). Wetlands are located along the entire perimeter of the available open waters. A review of aerial photography indicates that both large and small areas of oysters are located within the available open water areas. These existing open water and wetland areas along with oysters within BU Site F currently provide valuable habitat for birds, wildlife, and fisheries. Additionally, the open water areas within the site are utilized for recreational fishing. While creating wetlands would provide additional habitat for certain types of species, it would also reduce the available open water areas that are currently being utilized for recreational fishing and providing habitat for other species including loafing and foraging habitat for waterfowl. This site was analyzed for potential BU as part of the Channel Widening FEIS, and was deemed infeasible as utilizing this site for BU would do unnecessary damage to the healthy and functioning habitat that is present at the site (see Appendix E for reference).

BU Site F currently provides potential habitat for 5 species of threatened or endangered sea turtles (green, hawksbill, Kemp's ridley, leatherback, loggerhead), 4 species of threatened or endangered birds (peregrine falcon, red knot, reddish egret, and whooping crane) and the delisted brown pelican. Activities associated with development of BU Site E could impact, but would not be expected to adversely impact these species.

No zoning restrictions are present within BU Site F (see Table 2). Infrastructure improvements including equipment staging areas and hay bale/sediment control dikes would be required to complete BU at this site (see Table 3).

4.2.3 Conclusion

Based on the screening-level assessment conducted at potential bird island creation and/or wetland restoration sites, none of the sites analyzed adequately fulfilled the selection criteria necessary to be considered as a practicable alternative and therefore, were not selected for further evaluation. However, FLNG will continue to coordinate with the various agencies on potential BU opportunities. Table 5 includes a summary of the results of the screening level analysis against the selection criteria at each potential BU Site.

Table 5:										
Selection Criteria Potential Beneficial Use Sites -	Sumr	nary								
Selection Criteria	Potential Beneficial Use									
	А	В	С	D	Е	F				
Fulfillment of project purpose and need to allow for the long-term placement										
of maintenance material dredged within the FLNG Berth	Х	Х	Х	Х	Х	Х				
(selection criteria 1)										
Within 5 miles of the FLNG Berth (selection criteria 2)	М	М	М	М	Μ	Μ				

Dredge material is suitable for placement at a given location (selection criterion 3)	М	М	М	М	М	М
Dedicated annual capacity for use by FLNG for placement of maintenance material (selection criteria 4)	х	Х	Х	Х	Х	х
Provides an annual dredged material capacity of 500,000 CY for a term of 15 years (selection criteria 5)	х	Х	Х	х	Х	х
Authorization and construction timelines allow for utilization prior to expiration of existing maintenance material placement authorizations (selection criteria 6)	М	М	х	М	М	х
Minimizes impacts to properties of federal interest (selection criteria 7)	Μ	М	М	М	М	М
Minimizes environmental impacts to the maximum extent practicable (selection criteria 8)	М	М	М	Μ	Μ	М
Disposal method requires minimal dredging equipment (selection criteria 9)	Μ	М	М	М	М	М
Available for disposal activities year-round (selection criteria 10)	М	М	М	М	М	М
M = Meets						
P = Partially Meets						
X = Does Not Meet						

4.3 EXISTING FEDERAL DMPA SCREENING ANALYSIS

FLNG conducted a screening level analysis of a total of 13 existing federal DMPA's, including 11 that are currently developed and two that are currently undeveloped. The results of this analysis are presented in Table 6 and the existing DMPA locations investigated are displayed in Appendix A, Figure 5.

		-	Table	6:										
Selection Criteria Summary	for E	xistin	ig Fec	leral I	DMPA	Site	Alter	native	es - Su	Immary	y			
												Und	dev.	
	Developed DMPA No.								DMPA					
Selection Criteria												No		
	1	7	78	79	80	81	82	84	85	86/	88	8	9	
										87				
Fulfillment of the Project purpose and need	Х	х	х	х	х	х	х	х	х	х	х	х	х	
(selection criteria 1)	^	^	^	^	^	^	^	^	^	^	^	^	^	
Location within 5 miles of FLNG Berth	М	Р	Р	Р	Р	Р	М	М	м	М	М	Р	Р	
(selection criteria 2)	IVI	IVI	I	Г	Г	г	Г	IVI	IVI	IVI	IVI	IVI	Г	
Dredged material is suitable for placement	М	М	м	М	М	М	м	М	М	М	М	м	М	Ν.4
at a DMPA (selection criteria 3)			IVI	IVI	IVI	IVI	IVI	IVI	IVI	IVI	IVI	IVI	IVI	IVI
Dedicated annual capacity for use by FLNG														
for placement of maintenance material	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	
(selection criteria 4)														
Sufficient available capacity to														
accommodate an annual minimum of	х	х	х	х	х	х	х	х	х	х	х	х	х	
500,000 CY of maintenance material	^	^	~	^	^	^	^	^	^	~	^	^	~	
(selection criteria 5)														

Authorizations and construction timelines allow for utilization prior to the expiration of existing maintenance material placement authorizations (selection criteria 6)	Х	Μ	Ρ	Ρ	Ρ	Ρ	Ρ	Х	М	М	М	Х	Х
Minimizes impacts to properties of federal interest (selection criteria 7)	х	х	х	х	х	х	х	х	Х	х	х	х	х
Minimizes environmental impacts to the maximum extent practicable (selection criteria 8)	Μ	М	М	Μ	Μ	Μ	Μ	Μ	М	М	М	х	х
Disposal method requires minimal dredging equipment (selection criteria 9)	М	М	М	Μ	Μ	Μ	М	Μ	М	М	М	Μ	Μ
Available for disposal activities year-round (selection criteria 10)	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ
M = Meets P = Partially Meets X = Does Not Meet													

4.3.1 Developed Federal DMPA Sites

FLNG has historically worked with the USACE to dispose dredged material into federal DMPAs 1 or 85. The USACE recently awarded a contract to raise the levees and DMPA 1. While this work will ultimately increase the capacity of DMPA 1, during the period that the work is occurring, no disposal activities can take place within DMPA 1. The estimated timeframe and additional dredged material capacity as a result of the levee improvement work is unknown. Additionally, the placement of material within DMPA 1 would require additional permitting for the placement of material within a federal DMPA (property of federal interest), thereby further extending the timeframe to dispose of material within DMPA 1.

The long-term placement of maintenance material within a developed federal DMPA would require sufficient capacities be available to accommodate for the annual placement of 500,000 CY of maintenance material for a term of 15 years. Federal DMPAs are utilized for the placement of material to keep federal channels open for navigation and commerce. As such, there is uncertainty as to federal DMPAs ability to accommodate for the placement of material dredged as a result of federal maintenance dredging operations and material dredged within the FLNG Berth.

For example, in August 2016, surficial sediment and ambient water were collected and analyzed to obtain permission from the USACE to place 150,000 cubic yards from the FLNG Berth into DMPA 85. The results of the sediment and water analysis showed that there were no exceedances of chemical concentrations compared to benchmarks, and therefore were suitable for placement within DMPA 85. A real-estate application was submitted as an emergency in June 2016 and was anticipated to take a maximum of 3 months to obtain authorization. In December 2017 authorization for the placement of material within DMPA 85 was received (17 months following application submittal). This authorization was for just a fraction of the capacity (30%) required for annual maintenance dredging operations within the FLNG Berth.

Based on the assessment conducted at existing developed federal DMPA sites (see Table 5), none of the sites analyzed adequately fulfill selection criteria 1, 4, 5, 6, and 7, and therefore were not considered a practicable alternative or selected for further evaluation.

4.3.2 Undeveloped Federal DMPA Sites

FLNG investigated the potential use of two undeveloped federal DMPA sites. The sites investigated are displayed in Appendix A, Figure 6. Both sites described below were analyzed as potential placement areas in the Final Environmental Impact Statement for Freeport Harbor Channel Improvement Project (FHCIP FEIS) in September 2012. Wetland and waterbody impacts based on NWI data that would be required for the development of each DMPA site are outlined in Table 1. City/county zoning restrictions at each site are presented in Table 2 and a list of required infrastructure developments for each site is included in Table 3.

DMPA 8

DMPA 8 is an undeveloped tract of land located approximately 5 miles northwest of the FLNG Berth (meeting selection criteria 2). DMPA 8 contains 23.7 acres of freshwater emergent wetland (see Table 1 and Appendix A, Figure 6). The FHCIP FEIS states that DMPA 8 contains 23 acres of wetlands as well as two small stock ponds. These features provide valuable habitat for a variety of bird, fish, and other wildlife species.

Developments would be required to allow for the placement of material within DMPA 8. Once developed it is estimated that DMPA 8 would have a future capacity of 5 million cubic yards (MCY), and therefore does not fulfill selection criteria 5. Additionally, DMPA 8 would serve as a placement area for federal projects in addition to material dredged from the FLNG Berth and therefore uncertainties as to the dedicated annual capacity for use by FLNG for the placement of maintenance material (selection criteria 4). The FHCIP FEIS also indicates that Port Freeport has plans to develop portions of this site, which could reduce the amount of land available for DMPA development.

DMPA 8 is a property of significant federal interest. As such, the estimated timeframe for obtaining the necessary authorizations for the construction of DMPA 8 is unknown. Additionally, because DMPA 8 would be a federal DMPA, the placement of maintenance material dredged from the FLNG Berth would require additional permitting, thereby further extending the timeframe to dispose of material within DMPA 8. For these reasons, DMPA 8 does not meet selection criteria 4, 5, 6, or 7.

As stated previously, wetlands and waterbodies are located within the site, which would be impacted if this area was used for dredged material disposal. DMPA 8 currently provides potential habitat for 1 species of threatened aquatic reptile (alligator snapping turtle) and 1 species of delisted bird (brown pelican). Activities associated with development of DMPA 8 could impact, but would not be expected to adversely impact these species.

No zoning restrictions are present within DMPA 8 (see Table 2). Infrastructure improvements including access roads, water level control outfalls, and construction of levees would be required to complete DMPA 8 development at this site (see Table 3).

DMPA 9

DMPA 9 is an undeveloped tract of land located approximately 5 miles northwest of the FLNG Berth (meeting selection criteria 2). DMPA 9 contains 14.8 acres of freshwater emergent wetlands (see Table 1 and Appendix A, Figure 6). The FHCIP FEIS states that DMPA 9 contains 16 acres of wetlands, 21 acres of riparian forest, and 250 acres of prime farmland. The wetlands and riparian forest currently provide habitat to bird and wildlife species in the area. Additionally, the FHCIP states that cultural resources were identified within the footprint of DMPA 9.

Developments would be required to allow for the placement of material within DMPA 9. Once developed it is estimated that DMPA 9 would have a future capacity of 3 MCY, and therefore does not fulfill selection criteria 5. Additionally, DMPA 9 would serve as a placement area for federal projects in addition to material dredged from the FLNG Berth and therefore uncertainties as to the dedicated annual capacity for use by FLNG for the placement of maintenance material (selection criteria 4).

DMPA 9 is a property of significant federal interest. As such, the estimated timeframe for obtaining the necessary authorizations for the construction of DMPA 9 is unknown. Additionally, because DMPA 9 would be a federal DMPA, the placement of maintenance material dredged from the FLNG Berth would require additional permitting, thereby further extending the timeframe to dispose of material within DMPA 9. For these reasons, DMPA 8 does not meet selection criteria 4, 5, 6, or 7.

DMPA 9 currently provides potential habitat for 1 species of threatened aquatic reptile (alligator snapping turtle) and 2 species of protected birds (bald eagle and brown pelican). Largely, activities associated with development of DMPA 9 could impact, but would not be expected to adversely impact these species. However, adverse impacts to the bald eagle could occur if construction activities were to occur during bald eagle nesting season if a nest were present nearby, as potentially suitable nesting habitat is located immediately adjacent to the site.

DMPA 9 is zoned as a Planned Unit Development District by the City of Freeport (see Table 2), which is defined as "a development of land which is under unified control and is planned and developed as a whole in a single development operation or programmed series of development, and which includes street, utilities, lots or building sites and which indicates all structures and their relationship to each other and to adjacent uses and improvements, as well as open spaces." Developing this property into a DMPA would not be consistent with current zoning regulations. Infrastructure improvements including access roads, water level control outfalls, and construction of levees would be required to complete DMPA development at this site (see Table 3).

4.3.3 Conclusion

Based on this assessment, no Federal land-based DMPA's are available for spoil disposal associated with maintenance dredging activates at the FLNG Berth. Based on this analysis, the use of existing federal DMPA's (either developed or undeveloped) for the placement of dredged material was not considered a practicable alternative or selected for further evaluation. Table 6 includes a summary of the results of the screening level analysis against the selection criteria at each existing developed and undeveloped federal DMPA site.

4.4 OFFSHORE DREDGED MATERIAL DISPOSAL SITE SCREENING ANALYSIS

The option of offshore disposal of maintenance dredged material was considered during the screening level analysis. The disposal of material dredged from the FLNG Berth would create the conditions necessary to ensure the navigational safety and operability of vessels for the utilization of existing FLNG infrastructure and fulfillment of contract commitments. The permitting timeframe (including required sampling and analyses) associated with the offshore disposal of material is anticipated to require a total of up to 12 months, which satisfies selection criteria 6.

Based on the recent changes in regulations, the Freeport Maintenance ODMDS and New Work ODMDS may now be utilized by outside users with projects within the vicinity of the Federal channel, satisfying selection criterion 3. Due to the dispersive nature of an ODMDS and the procedures and protocols in place within the ODMDS Site Management and Monitoring Plan to monitor the status of the sites, FLNG expects

the ODMDS to have sufficient capacity for the Project, satisfying selection criterion 4. As the Maintenance ODMDS and New Work ODMDS are existing designated disposal sites, and the regulations updated in 2015 allow for the disposal of material within the FLNG Berth to be deposited offshore, FLNG considers this alternative will meet selection criterion 5. Because both ODMDS are operated by federal government, neither meets selection criteria 7.

In August 2016, FLNG collected surficial sediment and ambient water for the purposes of conducting chemical and grain-size analysis for the maintenance dredging of approximately 150,000 CY of material from Dock 1 of the FLNG Berth for disposal at the Federal DMPA 85. Based on the results of this data, there were no exceedances of chemical concentrations or indications that would suggest a cause for concern for significant impacts to special aquatic resources as a result of the placement of material at the Freeport Maintenance ODMDS. Refer to Appendix D for the contaminant assessment report detailing the results of this analysis. Based on previous analyses, FLNG anticipates that the material will be suitable for ocean disposal at either the Maintenance or New Work ODMDS. However, the New Work ODMDS was designated for disposal of new work material, and the proposed material to be dredged would not meet that description physically. The New Work ODMDS is much larger than the Maintenance ODMDS, therefore any concerns with mounding or travel of material outside the ODMDS boundaries would be minimized at the New Work site. However, because the maintenance dredged material does not meet the description of New Work material outlined in the designation documents, FLNG considers that selection criterion 3 is not met at the New Work ODMDS. Selection criterion 3 would be met at the Maintenance ODMDS.

The New Work ODMDS is located approximately 6 miles offshore and 7 miles south of the FLNG Berth, which does not satisfy selection criteria 2. The Freeport Maintenance ODMDS is located approximately 3 miles offshore and 4 miles from the FLNG Berth, satisfying selection criterion 2.

Offshore disposal of dredged material requires several pieces of specialized dredging equipment including the dredge, a spider barge, tugboat, and scow(s). In order to conduct dredging for offshore disposal, all equipment must access and maneuver throughout the area for an extended period of time. Because FLNG anticipates up to 325 LNG ship visits per year to the FLNG Berth, it is likely that the additional equipment required to conduct offshore disposal of dredged material would pose safety and navigational hazards within the active FLNG Berth and therefore does not meet selection criteria 9. Additionally, the USACE prohibits outside users from conducting disposal activities within the ODMDS when the USACE is conducting dredging and disposal operations (typically in the fall between August and November each year). As the ODMDS is not available for year-round disposal does not meet selection criterial 10. Table 7 includes a summary of the results of the screening level analysis against the selection criteria for each ODMDS site.

Table 7:	0	
Selection Criteria Summary for ODMDS Site Alternatives	- Summary Maintenance ODMDS	New Work ODMDS
Fulfillment of project purpose and need to allow for the long-term placement of maintenance material dredged within the FLNG Berth (selection criteria 1)	Р	Х
Within 5 miles of the FLNG Berth (selection criteria 2)	М	х
Dredge material is suitable for placement at a given location (selection criterion 3)	М	х
Dedicated annual capacity for use by FLNG for placement of maintenance material (selection criteria 4)	М	М
Provides an annual dredged material capacity of 500,000 CY for a term of 15 years (selection criteria 5)	М	М
Authorization and construction timelines allow for utilization prior to expiration of existing maintenance material placement authorizations (selection criteria 6)	М	М
Minimizes impacts to properties of federal interest (selection criteria 7)	х	х
Minimizes environmental impacts to the maximum extent practicable (selection criteria 8)	М	М
Disposal method requires minimal dredging equipment (selection criteria 9)	Х	х
Available for disposal activities year-round (selection criteria 10)	х	Х
M = Meets P = Partially Meets X = Does Not Meet		

4.4.1 Conclusion

The Freeport Maintenance ODMDS is currently being used to place dredged material from the FLNG Berth as authorized under Permit No. SWG-2013-00147 to allow for the safe and efficient operations of the facility.

Even with a valid offshore disposal permit, very few dredging contractors have the equipment to conduct offshore dredging operations, many of which are located on the east coast and could take several weeks to mobilize to the Freeport area. Additionally, offshore disposal requires several large pieces of equipment in addition to the dredge, including a spider barge, tug, and scow, while smaller pipeline dredges do not require additional equipment. With both LNG Docks in operation, maneuvering multiple large pieces of equipment associated with offshore disposal could pose safety and navigation risks. Finally, the Maintenance ODMDS is unavailable as a disposal option during several months out of the year when the USACE is dredging the Freeport Harbor Channel.

The extended length of time required to mobilize the necessary equipment for offshore disposal, due to the limited supply of such equipment and qualified operators as well additional limitations on the disposal timeframe, makes frequent offshore disposal of small maintenance dredges infeasible for the project. Due to the cost, time, and limited availability of equipment needed to place dredged material within the ODMDS,

the continuation of utilizing the ODMDS as the only available option for routine maintenance event dredge material would hinder the continuous operation of the FLNG Berth.

Because the FLNG Berth has such a high sedimentation rate, and thus requires maintenance dredging annually or sub-annually to maintain authorized depths and continuous operation, there is an immediate need for a dredge material placement area that is more easily accessible and feasibly useful for smaller more frequent dredge volumes than what is currently justified for disposal at the ODMDS. The Maintenance ODMDS is unavailable as a disposal option during several months out of the year when the USACE is dredging the Freeport Harbor Channel and currently, FLNG has no other disposal alternatives if a shoaling event were to occur during this time. A privately-owned facility would allow FLNG to continue annual dredge maintenance of the Berth without interfering with federal use of the ODMDS and free additional capacity at the ODMDS for use during emergency or unpredicted high-volume dredge events.

Utilization of the ODMDS for dredge events requiring large volumes of material may be required in the future to reserve capacity in the private DMPA and to ensure capacity for future routine maintenance dredging cycles. Should it be determined that sufficient volumes of material from the Berth requires placement, or when the placement of material offshore is circumstantially more feasible, FLNG will continue to utilize the ODMDS. However, based on the screening-level assessment conducted for the offshore disposal alternatives, neither alternative analyzed adequately fulfilled the selection criteria necessary to be considered as a practicable alternative and therefore, were not considered for further consideration for this project and not carried forward to further environmental assessment.

4.5 SEDIMENT DIVERSION SCREENING ANALYSIS

4.5.1 Southern Dredging Option Screening Analysis

The southern dredging alternative was considered during analysis but does not fulfill the Project purpose and need to allow for the long-term placement of maintenance material dredged within the FLNG Berth to create stability for future operations and navigation of vessels. The modeling of this alternative, as described in Appendix B, shows a 10 percent reduction of sedimentation within the basin. The Southern Dredging Option would require modifications to the existing USACE permit for the additional dredging and modification of the rock groins located south of the FLNG Berth. Such modifications would likely require a Section 408 permit review and real estate agreement with the USACE Galveston District. Although a 10% reduction in the sedimentation within the FLNG Basin, the implementation of the southern dredging option would still require the annual maintenance dredging of approximately 450,000 CY of material.

The anticipated timeline associated with obtaining the necessary regulatory approvals, engineering, and construction is anticipated to require 24 months. Additionally, this option would require the disposal of dredged material as a result of the described modifications in addition to the annual maintenance dredging of approximately 450,000 CY of material. The southern dredging option would help to alleviate future sedimentation within the FLNG Berth but does not meet the Project's purpose and need to allow for the long-term placement of maintenance material dredged within the FLNG Berth to create stability for future operations and navigation of vessels. Based on this analysis, the southern dredging alternative does not fulfill the Project purpose and need and therefore was not considered a practicable alternative or selected for further evaluation.

4.5.2 Locks Alternative Screening Analysis

The locks alternative was considered during analysis but does not fulfill the Project's purpose and need to allow for the long-term placement of maintenance material dredged from within the FLNG Berth to create stability for future operations and navigation of vessels.

Additionally, the required permitting and Section 204 agreement with the Texas Department of Transportation are anticipated to take 36 months. This option would still require both the initial and subsequent maintenance dredging events to remove accumulated sediments until the locks are installed.

The USACE considered the conversion of the existing floodgates to locks at the Brazos River in the initial screening of its Feasibility Study (Alternative 4). The USACE evaluated this alternative based on a variety of factors including cost, hydrographic data, environmental impact and benefits, and ultimately eliminated this option from further consideration.

This option does not fulfill the immediate Project goals and objectives and therefore was not considered a practicable alternative or selected for further evaluation.

4.5.3 Conclusion

Based on the screening-level assessment conducted for sediment diversion alternatives, neither alternative analyzed adequately fulfilled the selection criteria necessary to be considered as a practicable alternative and therefore, were not selected for further evaluation. Table 8 includes a summary of the results of the screening level analysis against the selection criteria for each sediment diversion alternative.

Table 8:		
Selection Criteria Summary for Sediment Diversion Alternat	ives - Summary	
Selection Criteria	Southern Dredging Option	Locks
Fulfillment of the Project purpose and need to allow for the long-term placement of maintenance material dredged from the FLNG Berth (selection criteria 1)	Х	Х
Located within 5 miles of the FLNG Berth (selection criteria 2)	М	М
Dredged material is suitable for placement at a given location (selection criteria 3)	N/A	N/A
Dedicated annual capacity for use by FLNG for placement of maintenance material (selection criteria 4)	х	х
Provides an annual dredged material capacity of 500,000 CY for a term of 15 years (selection criteria 5)	х	х
Authorization and construction timelines allow for the utilization prior to the expiration of existing maintenance material placement authorizations (selection criteria 6)	М	х
Minimizes impacts to properties of federal interest (selection criteria 7)	Х	Х
Minimizes environmental impacts to the maximum extent practicable (selection criteria 8)	М	х
Disposal method requires minimal dredging equipment (selection criteria 9)	N/A	N/A
Available for disposal activities year-round (selection criteria 10)	N/A	N/A
M = Meets		
X = Does not meet		
N/A = Not Applicable		

4.6 PRIVATE DMPA DEVELOPMENT SCREENING ANALYSIS

FLNG conducted an independent analysis of six potential sites for the development of a private DMPA. The sites investigated are displayed in Appendix A, Figures 7 and 8A through 8B and discussed below. Estimated wetland and waterbody impacts that would be required for the development of each DMPA site are outlined in Table 1. City/county zoning restrictions at each site are presented in Table 2 and a list of required infrastructure developments for each site is included in Table 3.

4.6.1 Private DMPA Site A

Private DMPA Site A is an undeveloped canal subdivision that contains 18.3 acres of estuarine and marine deepwater (see Table 1 and Appendix A Figure 8A) located approximately 2 miles southwest of the FLNG Berth (meeting selection criteria 2). Private DMPA Site A was investigated as a potential long-term solution for the annual placement of maintenance material.

The development of Private DMPA Site A would require infrastructure improvements including site security infrastructure, construction of levees, equipment staging areas, and hay bale/sediment control dikes would be required to complete DMPA construction and operation activities at this site (see Table 3). No zoning restrictions are present within Private DMPA Site A (see Table 2). Selection criteria 3 would be met as the material would be contained inside constructed levees and any dewatering would be in accordance with USACE Nationwide Permit 16. Private DMPA Site A would be dedicated for use by FLNG for the placement of maintenance material dredged within the FLNG Berth (meeting selection criteria 4). However, Private DMPA Site A does not meet selection criteria 5 as it is estimated to have a capacity of 1.5 MCY, thereby only accommodating for the placement of maintenance material for a term of 3 years.

Private DMPA Site A would require filling activities within the canals which would result in impacts to existing open water area, wetlands, and oyster habitat. As such the development of Private DMPA Site A would require an individual permit through the USACE (expected to take up to 18 months). Additionally, once the permit is obtained, up to 12 months would be required to complete construction of the DMPA. Private DMPA Site A is positioned on land currently under the ownership and/or available for long term lease and would result in minimal impacts to properties of a federal interest (meeting selection criteria 7). Private DMPA Site A would meet selection criteria 2, 3, 4, 6, and 7. However, this site does not exhibit a sufficient 15-year capacity for the disposal of maintenance material. As such, Private DMPA Site A does not meet selection criteria 5 and only partially fulfills the Project purpose and need (selection criteria 1).

Small areas of oysters exist along the bulkheads throughout the canal areas, which would be impacted if this area were used for DMPA development. A small area of existing wetlands is also present within the interior of the northwestern most canal. These existing shallow open water and tidal emergent wetland areas along with oysters within DMPA Site A currently provide valuable functioning shallow open water, wetland, and oyster habitat for a variety birds, wildlife, and fisheries species. Mitigation for impacts to these habitats would be required through USACE permitting. Additionally, the open water areas within the site are periodically utilized for recreational fishing, which would be permanently lost at this area through DMPA development.

Private DMPA Site A currently provides potential habitat for 5 species of threatened or endangered sea turtles (green, hawksbill, Kemp's ridley, leatherback, loggerhead), 3 species of threatened or endangered birds (peregrine falcon, red knot, and reddish egret), and the delisted brown pelican. Activities associated

with development of Private DMPA Site A could impact, but would not be expected to adversely impact these species.

4.6.2 Private DMPA Site B

Private DMPA Site B is an undeveloped tract of land containing 237.6 acres of estuarine and marine wetlands and 43.2 acres of freshwater wetlands (see Table 1 and Appendix A, Figure 8B) located approximately 3.5 miles southwest of the FLNG Berth (meeting selection criteria 2). Private DMPA Site B was investigated as a potential long-term solution for the annual placement of maintenance material.

The development of Private DMPA Site B would require infrastructure improvements including site security infrastructure, water level control outfalls, and construction of levees would be required to complete DMPA construction and operation activities at this site (see Table 3). No zoning restrictions are present within Private DMPA Site B (see Table 2). Selection criteria 3 would be met as the material would be contained inside constructed levees and any dewatering would be in accordance with USACE Nationwide Permit 16. Private DMPA Site B would be dedicated for use by FLNG for the placement of maintenance material dredged within the FLNG Berth (meeting selection criteria 4). However, Private DMPA Site B does not meet selection criteria 5 as it is estimated to have a capacity of 5 MCY, thereby only accommodating for the placement of maintenance material for a term of 10 years.

Private DMPA Site B would require filling activities in open water and wetland habitat. As such the development of Private DMPA Site B would require an individual permit through the USACE (expected to take up to 18 months). Additionally, once the permit is obtained, up to 12 months would be required to complete construction of the DMPA. Private DMPA Site B is positioned on land currently not currently under the ownership of FLNG and/or available for long term lease however, would result in minimal impacts to properties of a federal interest (meeting selection criteria 7). Private DMPA Site B would meet selection criteria 2, 3, 4, 6, and 7. However, this site does not exhibit a sufficient 15-year capacity for the disposal of maintenance material. As such, Private DMPA Site B does not meet selection criteria 5 and only partially fulfills the Project purpose and need (selection criteria 1).

The vast amount of existing wetlands and open water areas within Private DMPA Site B currently provide valuable functioning habitat for a variety birds, wildlife, and fisheries species. Mitigation for impacts to these habitats would be required through USACE permitting. Additionally, this site is located immediately adjacent to critical habitat for piping plover (see Appendix A, Figure 7).

Private DMPA Site B currently provides potential habitat for 5 species of threatened or endangered sea turtles (green, hawksbill, Kemp's ridley, leatherback, loggerhead), 5 species of threatened or endangered birds (peregrine falcon, piping plover, red knot, reddish egret, and whooping crane), and the delisted brown pelican. Largely, activities associated with the development of Private DMPA Site B could impact, but would not be expected to adversely impact these species. However, adverse impacts to sea turtles and piping plovers could occur if construction activities were to occur during sea turtle nesting season or piping plover wintering season, as suitable sea turtle nesting and piping plover wintering habitat are located immediately adjacent to the site.

4.6.3 Private DMPA Site C

Private DMPA Site C is an undeveloped tract of land containing 171.0 acres of palustrine wetlands and 0.8 acre of riverine areas (see Table 1 and Appendix A, Figure 8C) located approximately 4 miles west of the FLNG Berth (meeting selection criteria 2). Private DMPA Site C was investigated as a potential long-term solution for the annual placement of maintenance material.

The development of Private DMPA Site C would require infrastructure improvements including access roads, site security infrastructure, construction of levees, and effluent collection trench would be required to complete DMPA construction and operation activities at this site. While the W-3 District zoning is consistent with DMPA development, developing the DMPA within the portions of the site zoned as R-1 would not be consistent with current zoning regulations (see Table 2). Selection criteria 3 would be met as the material would be contained inside constructed levees and any dewatering would be in accordance with USACE Nationwide Permit 16. Private DMPA Site C would be dedicated for use by FLNG for the placement of maintenance material dredged from within the FLNG Berth (meeting selection criteria 4). Private DMPA Site C meets selection criteria 5 as it is estimated to have a capacity of 7.5 MCY, thereby accommodating for the placement of maintenance material for a term of 15 years.

Private DMPA Site C is positioned on land currently under the ownership of FLNG. Due to the location within the floodplain, development of Private DMPA Site C would require installation of a drainage structure within a federal levee, which would require a 408 permit through the Velasco Drainage District and USACE (see Table 3). However, installation of the required drainage structure would result in minimal impacts to properties of a federal interest (meeting selection criteria 7). Private DMPA C meets selection criteria 2, 3, 4, 5, 6, and 8 and therefore fulfills the Projects purpose and need (selection criteria 1).

The vast amount of existing contiguous wetlands within Private DMPA Site C currently provide valuable functioning habitat for a variety bird and wildlife species. Mitigation for impacts to these habitats would be required through USACE permitting. FLNG has conducted a detailed analysis of potential mitigation opportunities to offset impacts as a result of the development of Private DMPA Site C.

DMPA Site C currently provides potential habitat for 1 species of threatened aquatic reptile (alligator snapping turtle) and 2 species of protected birds (brown pelican and white-faced ibis). Activities associated with the development of Private DMPA Site C may impact, but would not be expected to adversely impact these species.

4.6.4 Private DMPA Site D

Private DMPA Site D is an undeveloped tract of land containing 0.9 acre of freshwater emergent wetlands (see Table 1 and Appendix A, Figure 8D) located approximately 2.8 miles north of the FLNG Berth (meeting selection criteria 2). Private DMPA Site D was investigated as a potential long-term solution for the annual placement of maintenance material.

The development of Private DMPA Site D would require infrastructure improvements including site security infrastructure, water level control outfalls, and construction of levees would be required to complete DMPA construction and operation activities at this site (see Table 3). No zoning restrictions are present within Private DMPA Site D (see Table 2). Selection criteria 3 would be met as the material would be contained inside constructed levees and any dewatering would be in accordance with USACE Nationwide Permit 16. Private DMPA Site D would be dedicated to for use by FLNG for the placement of maintenance material dredged within the FLNG Berth (meeting selection criteria 4). However, Private DMPA Site D does not meet selection criteria 5 as it is estimated to have a capacity of 0.5 MCY, thereby only accommodating for the placement of maintenance material for single year.

Private DMPA Site D would require filling activities of existing wetlands. As such, the development of Private DMPA Site D would require an individual permit through the USACE (expected to take up to 18 months). Additionally, once the permit is obtained, up to 12 months would be required to complete construction of the DMPA. Private DMPA Site D is positioned on land currently under the ownership of FLNG and/or available for long term lease and would not require impacts to properties of a federal interest (meeting

selection criteria 7). Private DMPA Site D would meet selection criteria 2, 3, 4, 6, and 7. However, this site does not exhibit a sufficient capacity for the disposal of maintenance material beyond year one. As such, Private DMPA Site D does not meet selection criteria 5 or fulfill the Project purpose and need (selection criteria 1).

The existing wetlands and open water areas within Private DMPA Site D currently provide valuable functioning habitat for a variety birds and wildlife species. Mitigation for impacts to these habitats would be required through USACE permitting.

Private DMPA Site D currently provides potential habitat for 1 species of threatened aquatic reptile (alligator snapping turtle) and 3 species of protected birds (brown pelican, peregrine falcon, and reddish egret). Activities associated with the development of Private DMPA Site D would not be expected to adversely impact these species.

4.6.5 Private DMPA Site E

Private DMPA Site E is an undeveloped tract of land containing 264.3 acres of estuarine and marine wetlands and 9.5 acres of estuarine and marine deepwater (see Table 1 and Appendix A, Figure 8E) located approximately 3 miles northeast of the FLNG Berth (meeting selection criteria 2). Private DMPA Site E was investigated as a potential long-term solution for the annual placement of maintenance material.

The development of Private DMPA Site E would require infrastructure improvements including access roads, site security infrastructure, water level control outfalls, construction of levees, and effluent collection trench and effluent detention basin would be required to complete DMPA construction and operation activities at this site (see Table 3). No zoning restrictions are present within Private DMPA Site E (see Table 2). Selection criteria 3 would be met as the material would be contained inside constructed levees and any dewatering would be in accordance with USACE Nationwide Permit 16. Private DMPA Site E would be dedicated for use by FLNG for the placement of maintenance material dredged within the FLNG Berth (meeting selection criteria 4). However, Private DMPA Site E does not meet selection criteria 5 as it is estimated to have a capacity of 10 MCY, thereby only accommodating for the placement of maintenance material for a 5-year term.

Private DMPA Site E would require filling activities of existing wetland and open water areas. As such, the development of Private DMPA Site E would require an individual permit through the USACE (expected to take up to 18 months). Additionally, once the permit is obtained, up to 12 months would be required to complete construction of the DMPA. Private DMPA Site E is positioned on land currently under the ownership of FLNG and/or available for long term lease and would not require impacts to properties of a federal interest (meeting selection criteria 7). Private DMPA Site E would meet selection criteria 2, 3, 4, 6, and 7. However, this site does not exhibit a sufficient 15-year term capacity for the disposal of maintenance material (selection criteria 5). As such, Private DMPA Site E does not meet selection criteria 5 and only partially fulfills the Project purpose and need (selection criteria 1).

The vast amount of existing contiguous wetland and open water areas within Private DMPA Site E currently provide valuable habitat for birds, wildlife, and fisheries. Mitigation for impacts to these habitats would be required through USACE permitting.

Private DMPA Site E currently provides potential habitat for 3 species of threatened or endangered birds (red knot, reddish egret, and whooping crane) and the delisted brown pelican. Activities associated with the development of Private DMPA Site E may impact, but would not be expected to adversely impact these species.

4.6.6 Private DMPA Site F

Private DMPA Site F is an undeveloped tract of land containing 122.9 acres of estuarine and marine wetlands (see Table 1 and Appendix A, Figure 8F) located approximately 5 miles north of the FLNG Berth (meeting selection criteria 2). Private DMPA Site F was investigated as a potential long-term solution for the annual placement of maintenance material.

The development of Private DMPA Site F would require infrastructure improvements including site security infrastructure, water level control outfalls, construction of levees, and effluent collection trench and effluent detention basin would be required to complete DMPA construction and operation activities at this site (see Table 3). No zoning restrictions are present within Private DMPA Site F (see Table 2). Selection criteria 3 would be met as the material would be contained inside constructed levees and any dewatering would be in accordance with USACE Nationwide Permit 16. Private DMPA Site F would be dedicated to use by FLNG for the placement of maintenance material dredged within the FLNG Berth (meeting selection criteria 4). However, Private DMPA Site F does not meet selection criteria 5 as it is estimated to have a capacity of 4 MCY, thereby only accommodating for the placement of maintenance material for an 8-year term.

Private DMPA Site F would require filling activities of existing wetlands. As such, the development of Private DMPA Site F would require an individual permit through the USACE (expected to take up to 18 months). Additionally, once the permit is obtained, up to 12 months would be required to complete construction of the DMPA. Private DMPA Site F is positioned on land currently under the ownership of FLNG and/or available for long term lease and would not require impacts to properties of a federal interest (meeting selection criteria 7). Private DMPA Site F would meet selection criteria 2, 3, 4, 6, and 7. However, this site does not exhibit a sufficient 15-year term capacity for the disposal of maintenance material (selection criteria 5). As such, Private DMPA Site F does not meet selection criteria 5 and only partially fulfills the Project purpose and need (selection criteria 1).

The vast amount of existing contiguous wetland areas within Private DMPA Site F currently provides valuable habitat for birds and wildlife species. Mitigation for impacts to these habitats would be required through USACE permitting.

Private DMPA Site F currently provides potential habitat for the delisted brown pelican. Activities associated with the development of Private DMPA Site F may impact but would not be expected to adversely impact the brown pelican.

4.6.7 Conclusion

Based on the screening-level assessment conducted at six potential private DMPA sites, Private DMPA Site C adequately fulfilled the selection criteria necessary to be considered as a practicable alternative and therefore, was selected for further evaluation. Private DMPA Site B was also considered for further evaluation because it partially or fully met all the selection criteria. Private DMPA Site E was also considered for further evaluation because it was the next location that fulfilled most of the selection criteria. Table 9 includes a summary of the results of the screening level analysis against the selection criteria at each potential Private DMPA site.

Table 9:										
Selection Criteria Summary for Private DMPA Development Site Alternatives - Summary										
Selection Criteria	Private DMPA Site									
	Α	В	С	D	Е	F				

Fulfillment of the Project purpose and need to allow for the long-term						
placement of maintenance material dredged from the FLNG Berth (selection	Ρ	Ρ	Μ	Х	Ρ	Ρ
criteria 1)						
Location within 5 miles of FLNG Berth (selection criteria 2)	Μ	Μ	Μ	Μ	Μ	Μ
Dredged material is suitable for placement at a DMPA (selection criteria 3)	Μ	Μ	Μ	Μ	Μ	Μ
Dedicated annual capacity for use by FLNG for placement of maintenance	N.4	М	М	М	М	м
material (selection criteria 4)	Μ	IVI	IVI	IVI	IVI	IVI
Sufficient available capacity to accommodate an annual minimum of 500,000	V	-		V	-	V
CY of maintenance material for a term of 15 years (selection criteria 5)	Х	Р	Μ	Х	Р	Х
Authorizations and construction timelines allow for utilization prior to the						
expiration of existing maintenance material placement authorizations	Μ	Μ	Μ	Μ	Μ	М
(selection criteria 6)						
Minimizes impacts to properties of federal interest (selection criteria 7)	М	Р	М	М	М	М
Minimizes environmental impacts to the maximum extent practicable (selection						
criteria 8)	Μ	Μ	Μ	Μ	Μ	М
Disposal method requires minimal dredging equipment (selection criteria 9)	М	М	М	М	М	М
Available for disposal activities year-round (selection criteria 10)	М	М	М	М	М	М
Proposed industrial use compatible with existing surrounding land use(s) and	Ň				Ň	Ň
aesthetics ^a	Х	Μ	Μ	Р	Х	Х
Cost of development and maintenance ^a	Ρ	Ρ	М	Ρ	М	Ρ
M = Meets						
P = Partially Meets						
X = Does Not Meet						
^a Additional consideration above those listed as selection criteria that FLNG has take	n into a	account	t when	evalua	ting po	tential
private DMPA sites provided for reference.						

4.7 ALTERNATIVES CONSIDERED FOR DETAILED ANALYSIS

The alternative screening process was completed based on comprehensive knowledge of the requirements to complete a project in this environment. Based on this analysis, the development of the Private DMPA Site B, Site C, and Site E were considered as the private DMPA alternatives that fulfill the necessary selection criteria to fulfill the Project purpose and need for the long-term placement of maintenance material dredged from within the FLNG Berth. As such, development of Private DMPA Site B, Site C, and Site E were carried forward for further analysis. The no action alternative is also discussed in the following environmental analysis as a baseline from which other alternatives may be compared to the existing environmental conditions. The following sections discuss the impacts associated with the development and operation of the FLNG Private DMPA at Site B, Site C, and Site E. The least environmentally damaging practicable alternative (LEDPA) based on the following analysis will be selected as the FLNG LTDMPA. The construction and operation of the FLNG LTDMPA for the placement of maintenance material dredged from within the FLNG Berth forms the basis for FLNG's requested authorization amendment and is herein referred to as the "proposed Permit modification".

5.0 ENVIRONMENTAL ANALYSIS

5.1 OVERVIEW

This environmental analysis provides details related to the Private DMPA Sites B, C, and E to facilitate a description of existing resources and potential impacts as a result of the construction and operation of the proposed DMPA. The following sections detail the potential impacts to resources located within the Project area. The Project area is defined as local area containing the FLNG Berth and DMPA Sites B, C, and E. Please reference Appendix A, Figure 6 for a map of the Project area.

Previous environmental analysis for the FLNG Berth was conducted by the Federal Energy Regulatory Commission (FERC) in the FEIS for the FLNG Phase I Project in May 2004 (Phase I EIS) and the Final EIS for the Liquefaction Project and Phase II Modification Project in June 2014 (Liquefaction FEIS). Impacts associated with dredging in the Berth are not discussed in the following environmental analysis but can be referenced in the Liquefaction FEIS.

5.1.1 Environmental Setting

The proposed Project area is in Brazoria County, Texas, within the Jones Creek, TX and Freeport, TX USGS 7.5-minute quadrangle. The area is located between the mouth of the Brazos River and Oyster Creek, near the GIWW and adjacent to the Gulf of Mexico and the community of Freeport, Texas. The FLNG Berth is positioned off the south shoreline of the GIWW and west of the Freeport Harbor Entrance Channel. The FLNG Berth is approximately 62.9 acres in size and based on recent bathymetry surveys, it exhibits depths ranging from 29 to 47 ft.

The general Project area is defined as the Mid-Coast Barrier Islands and Coastal Marshes Level IV ecoregion. This ecoregion encompasses a subhumid zone along the Texas coast in which annual precipitation is between 34 to 46 inches, with greater rainfall totals to the north. This ecoregion is characterized by saline, brackish, and freshwater marshes, barrier islands with minor washover fans, and tidal flats. Smooth cordgrass, marshhay cordgrass, and gulf saltgrass dominate in more saline areas. Other native vegetation is mainly grassland composed of seacoast bluestem, sea-oats, common reed, gulfdune paspalum, and soil bind morning-glory. Some areas have clumps of sweetbay, redbay, and dwarf southern live oak trees. Brazoria County is underlain predominantly by the Beaumont formation deposits of varying ratios of clay, mud, sand, and silt that occur on the low uplands adjacent to the county's rivers and bayous. The floodplains in the area extend across the shallow terraces of the Brazos River and Oyster Creek as well as up from the Gulf of Mexico and include zones VE, A and AE, and X.

Private DMPA Site B

The Private DMPA Site B is located south of the city of Freeport, TX, adjacent to the shoreline of the Gulf of Mexico and directly west of Quintana, TX. The site is flat and contains estuarine wetlands with marsh, sand, and open water habitat. The site is completely within FEMA Zone VE flood hazard zone with a Base Flood Elevation of 13 to 15 ft. Refer to Appendix A, Figure 8B for a depiction of the location of Site B.

Private DMPA Site C

The site is located south of the city of Freeport, TX, on the eastern shore of the Brazos River, separated from the river by a levee constructed in 1929 by the USACE. The site is in a relatively flat area located at elevations less than five feet above mean sea level (MSL) and partially within a FEMA 100-year flood zone AW with Base Flood Elevation of 11 ft. and partially within Zone VE with Base Flood Elevation of 12 ft. Refer to Appendix A, Figure 8C for a depiction of the location of Site C.

Private DMPA Site E

The site is located northeast of the city of Freeport, TX, on the western shore of Oyster Creek. The site is in a relatively flat area located at elevations less than three feet above mean sea level (MSL) and within a FEMA 100-year flood zone. Refer to Appendix A, Figure 8E for a depiction of the location of Site E.

5.1.2 Historic and Current Use

Historically, the FLNG Berth and area land uses included commercial, residential, open land, and open water. Cattle grazing was the predominant land use within open land prior to the construction of FLNG infrastructure. Currently, the FLNG Berth serves as an open water basin which will allow vessel access to FLNG docks for loading and offloading of LNG products. The surrounding land use is currently industrial, driven by the location of Brazosport and other facilities surrounding the Freeport Harbor Channel, and some residential such as the communities of Quintana, Surfside and Freeport. Open water surrounding the berth, the GIWW and Freeport Harbor Channel, is used for navigation and access to industrial facilities, and some undeveloped land remains in the area today as well.

Historically, the Private DMPA Sites B, C, and E land uses included open land, open water, and wetland habitat. Historically, cattle grazing was the predominate land use within open land portions of the surrounding areas. Currently, land located to the north of Site C is utilized by the USACE for the placement of dredged material and land located to the south is utilized for industrial and commercial purposes. Land to the west of Site E is used for an industrial complex and surrounding open land is currently wetland habitat or open water habitat. Beyond the Brazos River to the west and Oyster Creek to the east is the Justin Hurst Wildlife Management Area and the Brazoria National Wildlife Refuge, respectively. Private DMPA Site B is located adjacent to the Gulf of Mexico and is surrounded by marine and estuarine marsh habitat and some navigable waterways utilized by area industry. The communities of Quintana and Surfside Beach are located near the sites and contain beaches and coastal dune habitat along the Gulf of Mexico, as well as small residential communities.

5.2 ENVIRONMENTAL IMPACTS

The potential environmental impacts associated with the disposal of maintenance material within the selected alternatives are described below.

5.2.1 Historic and Cultural Resources

No Action Alternative

The No Action Alternative would not result in any impacts to historical or cultural resources in the Project area. Please reference the Cultural Resources Report, as an attachment to the SWG-2013-00147 permit modification request, for an overview of existing cultural resources in the region and historical context of the area.

Private DMPA Site B

There are no recorded Texas State Historical resources located within the site. The nearest Historical Marker to the site is Bryan Mound, located 1.9 miles away (THC 2018). There are no National Register properties or districts near the site. A cultural resources survey was not conducted for this specific site. It is anticipated that cultural resources would not be affected by the development of this site as the LTDMPA.

Private DMPA Site C

A Phase I cultural resources investigation was conducted for the proposed Private DMPA Site C in August 2015. The results of the cultural resources investigation indicate that there are no previously recorded archaeological sites or historic structures occurring within the project area, and no new cultural resources were identified during the field effort. The nearest Historical Marker to the site is Bryan Mound located 1.24 miles away. There are no National Register properties or districts in the vicinity of the site. It is anticipated that cultural resources would not be affected by the development of this site as the LTDMPA.

Private DMPA Site E

There are no recorded Texas State Historical resources located within the site. The nearest Historical Marker to the site is The Lively, located 1.7 miles away (THC 2018). There are no National Register properties or districts near the site. A cultural resources survey was not conducted for this specific site. It is anticipated that cultural resources would not be affected by the development of this site as the LTDMPA.

5.2.2 Sediment and Water Quality

No Action Alternative

The No Action Alternative would not result in any impacts to sediment or water quality in the Project area, as dredging material from the FLNG Berth would not be feasible without a DMPA authorized for disposal. Without a LTDMPA authorized for the disposal of dredged material from the FLNG Berth, sedimentation and shoaling in the berth will continue until the berth is no longer operable. Sediment that potentially contains contaminants will accumulate in the Freeport Channel and potentially resuspend over time affecting the local turbidity of the area. The current use of the channel creates a dynamic water quality environment in which the water column is constantly disturbed by vessel traffic and associated discharges.

Private DMPA Site B, C, and D

The Private DMPA is proposed to be constructed as an upland confined dredge material placement area. The construction of the DMPA will affect jurisdictional Waters of the US, as discussed in Section 5.2.5 Wetlands and Special Aquatic Sites. All impacts to WOUS will be permitted through the USACE and mitigation will be provided according to the permit requirements. Once constructed, all dredged material will be placed within a leveed and controlled containment area and will therefore not directly impact water quality of any natural water body due to the discharge of material outside the DMPA. Decant effluent will meet the TCEQ limit of 300 mg/l of total suspended solids in the return water from the dredge disposal site prior to discharge. The Brazos River segment 1201 is classified as a tidal stream and is not listed as impaired by the TCEQ. Sediment and elutriate sampling for material to be dredged from the FLNG Berth was conducted by the FERC in the Phase I EIS and the Final EIS for the Liquefaction FEIS and no causes for concern were found. Sediment and decant effluent will be routinely tested according to TCEQ standards to ensure quality is within the acceptable limits for all constituents prior to discharge, therefore, water quality is not anticipated to be impacted by the proposed project.

FLNG has previously conducted field sampling of the material to be dredged with the FLNG Berth for the authorization for disposal in the Freeport Maintenance ODMDS, in accordance with the USACE and USEPA-approved SAP. Based on the results of the chemical analysis, there is not cause for concern for the dredging or placement of material within the proposed LTDMPA.

5.2.3 Endangered Species

No Action Alternative

There are 10 threatened or endangered species and two candidate species with federal or state listings by the U.S. Fish and Wildlife Service (USFWS 2015) or Texas Parks and Wildlife Department (TPWD 2015) that potentially occur in Brazoria County near the project area. These species are the Piping Plover, Red Knot, Sprague's Pipit, Whooping Crane, West Indian Manatee, Smooth Pimpleback mollusk, Texas Fawnfoot mollusk, Green Sea Turtle, Hawksbill Sea Turtle, Kemp's Ridley Sea Turtle, Leatherback Sea Turtle, and Loggerhead Sea Turtle. There are also several migratory bird species listed that are not mentioned here. The No Action Alternative would not result in any impacts to threatened or endangered species within the Project area, as construction of a new DMPA would not occur. Without a LTDMPA authorized for the disposal of dredged material from the FLNG Berth, sedimentation and shoaling in the berth will continue until the berth is no longer operable.

Increases in turbidity and sedimentation would result within the FLNG Berth during the period of disposal activities. Sea turtles and marine mammals are mobile species and have the ability to relocate to the abundant amount of similar habitat located adjacent to the areas where the disposal activities would occur. Additionally, Freeport LNG proposes to use a hydraulic dredge, which significantly reduces the chance of causing impacts to sea turtles over other dredge types such as hopper dredges. As such, impacts to these species are not anticipated.

Private DMPA Site B

Private DMPA Site B is located adjacent to the shore of the Gulf of Mexico. The length of the shore that intersects the site is designated as Critical Habitat for Piping Plover. The vast amount of existing wetlands and open water areas within Private DMPA Site B currently provide valuable functioning habitat for a variety birds, wildlife, and fisheries species. Mitigation for impacts to these habitats would be required through USACE permitting.

Private DMPA Site B currently provides potential habitat for 5 species of threatened or endangered sea turtles (green, hawksbill, Kemp's ridley, leatherback, loggerhead), 5 species of threatened or endangered birds (peregrine falcon, piping plover, red knot, reddish egret, and whooping crane), and the delisted brown pelican. Although an endangered species survey was not conducted for this site, it is highly likely that Piping Plover birds are located adjacent to the site during certain times of the year and potentially utilizing portions of the site for habitat. Adverse impacts to sea turtles and piping plover wintering season, as suitable sea turtle nesting and piping plover wintering habitat is located immediately adjacent to the site. Reference Table 4 for the habitat assessment of species in the placement alternatives.

Private DMPA Site C

A background review of state and federal listed species for the area was conducted in October 2015. FLNG Private DMPA Site C currently provides potential habitat for 1 species of threatened aquatic reptile (alligator snapping turtle) and 2 species of protected birds (brown pelican and white-faced ibis). Activities associated with the development of the FLNG Private DMPA Site C may impact but is not likely to adversely impact these species. A detailed impact assessment for each species is included as an attachment to the SWG-2013-00147 permit modification request. Reference Table 4 for the habitat assessment of species in the placement alternatives.

Private DMPA Site E

Private DMPA Site E is adjacent to the Brazoria National Wildlife Refuge which could potentially increase the likelihood of a threatened or endangered species utilizing the site for habitat. Private DMPA Site E currently provides potential habitat for 3 species of threatened or endangered birds (red knot, reddish egret, and whooping crane) and the delisted brown pelican. Activities associated with the development of Private DMPA Site E may impact, but would not be expected to adversely impact these species. Reference Table 4 for the habitat assessment of species in the placement alternatives.

5.2.4 Fish and Wildlife Values (including Essential Fish Habitat)

No Action Alternative

The No Action Alternative would not result in any impacts to threatened or endangered species within the Project area, as construction of a new DMPA would not occur. Without a LTDMPA authorized for the disposal of dredged material from the FLNG Berth, sedimentation and shoaling in the berth will continue until the berth is no longer operable. The proposed dredging can result in temporary disturbance to fishery resources and habitat due to increased turbidity in the water column from fine material suspension entrainment and burial of species (especially benthic species). Studies by the USACE and others have found that benthic organism populations regenerate rapidly after dredging. Since many of the potential impacts on marine habitats and species are associated with water quality, the measures reference in Section 3.4.4.2 will also aid in reducing impacts on marine habitat and species.

Private DMPA Site B, C, and E

Sites B, C, and E contain similar wildlife habitat types of wetland, open water, and some coastal uplands that may be utilized by local wildlife and fish. During construction, impacts will occur to wetland habitat and other coastal habitat that may be valuable to wildlife and some fish species. Wetland impacts will be mitigated according to the permit requirements, and wildlife values of the general project area are not anticipated to be significantly impacted by construction activities as construction noise and disturbances will be temporary. Once construction is complete, normal operation of the DMPA will not significantly impact fish or wildlife on the site, or values of fishes and wildlife in the area. According to NOAA Fisheries Essential Fish Habitat Mapper the Private DMPA Sites B and C and E are not located within Essential Fish Habitat, therefore no impacts to EFH are anticipated due to development or operation of the site (NOAA, 2018).

5.2.5 Wetlands and Special Aquatic Sites

No Action Alternative

The No Action Alternative would not result in any impacts to wetlands or special aquatic sites within the Project area, as construction of a new DMPA would not occur. Without a LTDMPA authorized for the disposal of dredged material from the FLNG Berth, sedimentation and shoaling in the berth will continue until the berth is no longer operable.

Private DMPA Site B

Private DMPA Site B is located adjacent to Gulf of Mexico and contains estuarine emergent wetlands, unconsolidated sand and mud flat, and open water areas totaling 317 acres. Reference Table 9 below for a summary of all anticipated wetland and waterbody impacts from each Private DMPA site considered in this analysis. Mitigation of impacts to WOUS will be mitigated for the project in accordance with USACE requirements, as proposed in the SWG-20103-00147 Permit Modification request.

Private DMPA Site C

A wetland delineation and functional assessment was conducted for the proposed Private DMPA Site C to assess the environmental impacts to wetlands and other WOUS resulting from the construction of the project and placement of dredged material within the DMPA Site C. Reference the permit modification request attachment for the wetlands delineation and functional assessment report. Based on the wetland and waterbodies delineated during the wetland delineation and functional assessment survey, construction of the project is anticipated to impact a total of 196.52 acres of wetlands including 174.7 acres of palustrine emergent, 19.1 acres of palustrine scrub/shrub wetlands and 2.7 acres of open water. Reference Table 9 below for a summary of all anticipated wetland and waterbody impacts from each Private DMPA site considered in this analysis. Mitigation of impacts to WOUS will be mitigated for the project in accordance with USACE requirements, as proposed in the SWG-20103-00147 Permit Modification request.

Private DMPA Site E

Private DMPA Site E is located adjacent to tidal portions of Oyster Creek and contains Estuarine emergent wetlands, unconsolidated sand and mud flat, and open water areas totaling 273.8 acres. Reference Table 10 below for a summary of all anticipated wetland and waterbody impacts from each Private DMPA site considered in this analysis. Mitigation of impacts to WOUS will be mitigated for the project in accordance with USACE requirements, as proposed in the SWG-20103-00147 Permit Modification request.

Table 10:						
Summary of Wetland/Waterbody Impacts for Each Alternative						
Site	Palustrine Emergent	Palustrine Scrub-shrub	Estuarine Emergent	Open Water	Total (Acres)	
Private DMPA Site B ¹	43.2	-	237.5	0.3	317.0	
Private DMPA Site C ²	174.7	19.1	-	2.7	196.5	
Private DMPA Site E	-	-	264.3	9.5	273.8	

1. Areas for DMPA Site B and E are calculated using National Wetland Inventory data from US Fish and Wildlife (USFWS 2018) and the proposed project layout which is assumed to impact the entire property.

 Areas for DMPA Site C are calculated using delineated wetland boundaries from the Wetland Delineation Report and the proposed project layout which can be referenced in the USACE SWG-2013-00147 permit modification application

5.2.6 Shoreline Erosion and Accretion

No Action Alternative

The No Action Alternative would not result in any impacts to shoreline erosion within the Project area, as construction of a new DMPA would not occur. Without a LTDMPA authorized for the disposal of dredged material from the FLNG Berth, sedimentation and shoaling in the berth will continue until the berth is no longer operable. Shoreline protection of the FLNG Berth was permitted and constructed under SWG-2013-00147. With the shoreline protection in place, the proposed maintenance dredging activities are not expected to impact shoreline erosion and accretion.

Private DMPA Site B

Development of Private DMPA Site B would require constructing a levee immediately adjacent to the beach/piping plover critical habitat. Shore-parallel structures can lead to beach erosion by narrowing the

beach as the shoreline retreats. (Morton 1988) Creating hard structures along coastlines can increase erosion in the vicinity of the structure and potentially impact beach habitat including critical habitat for piping plover located along the shore directly adjacent to the site. Impacts to shoreline erosion are anticipated as a result of the construction of the DMPA at Site B.

Private DMPA Site C

As the Private DMPA Site C is not located on the shoreline or in tidal waters, and is an upland confined DMPA, development of the site or the placement of dredged material into the site will not impact shoreline erosion or accretion.

Private DMPA Site E

Development of Private DMPA Site E would require constructing a levee immediately adjacent to Oyster Creek. Creating hard structures along waterbodies can increase erosion in areas in the vicinity of the structure. Open shallow water, oyster habitat, and wetlands located adjacent to Private DMPA Site E could be impacted by such erosion activities. Additionally, creating hard structures, such as a levee or access roads adjacent to Oyster Creek and within the active floodway of the waterbody can alter the sedimentation regime of the tidal river and lead to accretion in shallow areas, destroying wetland and benthic habitat or burying oyster reefs. Impacts are anticipated to occur to Oyster Creek and nearby tidally influenced water bodies because of the construction of the DMPA levees at Site E.

5.2.7 Recreation and Aesthetics

No Action Alternative

The No Action Alternative would not result in any impacts to recreation or aesthetics within the Project area, as construction of a new DMPA would not occur. Without a LTDMPA authorized for the disposal of dredged material from the FLNG Berth, sedimentation and shoaling in the berth will continue until the berth is no longer operable.

Private DMPA Site B

Private DMPA Site B is privately owned and is therefore not currently available for recreational use by the public. The beaches and shoreline of the Gulf of Mexico located directly south of the site are utilized for recreational fishing, and is directly adjacent to Bryan Beach Park, a park providing fishing, camping, and beach access. The DMPA perimeter levee is proposed to be 25 ft high, above natural ground elevation. Because the DMPA would be located parallel to the coastline, directly adjacent to the beach area, the aesthetics of the beach area and surrounding estuarine habitat would be negatively impacted by the construction of the levee.

Private DMPA Site C

As the Private DMPA Site C is currently privately owned by FLNG and is not accessible for public recreation. There are no recreation activities that occur on the site proposed for development, therefore construction and operation of the site will have no effect on recreation activities. The current land use of the proposed DMPA Site C area is natural wetland habitat and open water. The surrounding land use and aesthetics is dominated by the Federal DMPA to the north, the Bryan Mound industrial and commercial site to the south, the Brazos River levee to the east, and other DMPAs to the west. The development of the site would require infrastructure improvements including access roads, site security infrastructure, construction of levees, and an effluent collection trench. However, because the area is surrounded by similar federal and industrial land uses, the impact to area aesthetics is anticipated to be minor.

Private DMPA Site E

Private DMPA Site E is currently privately owned by FLNG and is not accessible for public recreation. There are no recreation activities that occur on the site proposed for development, therefore construction and operation of the site will have no effect on recreation activities. The DMPA Site E is located adjacent to Oyster Creek, which is a navigable waterway often frequented by recreational paddlers, boaters, anglers, and nature seekers. Aesthetics of the waterway would be affected by the construction of the DMPA site in this location due to the required height of the levee. The surrounding land use is mostly flat, wetland and open water habitat and does not contain much development currently. Additionally, the Brazoria National Wildlife Refuge is located on the adjacent bank of Oyster Creek. The DMPA site would be visible from the refuge and potentially have a negative impact on the recreation users and aesthetics of the area.

5.2.8 Socioeconomics and Land Use

No Action Alternative

The No Action Alternative would not result in any impacts to socioeconomic climate or land use within the Project area, as construction of a new DMPA would not occur. Without a LTDMPA authorized for the disposal of dredged material from the FLNG Berth, sedimentation and shoaling in the berth will continue until the berth is no longer operable. If the FLNG Berth becomes inoperable due to lack of authorized DMPA, negative socioeconomic impacts could occur because of lack of jobs in the area due to the terminal closing as well as loss of revenue from the industry brought to the area by the FLNG terminal.

The estimated population in 2014 in Freeport TX was 12,191, a 4% decrease since 2000. The median resident age, income, and house value are all below state averages. The city has about 1800 residents who work in the city, others commute to the nearby Brazosport area, Lake Jackson, or Houston. The most common industries listed in 2016 were construction and manufacturing. The most common occupations in 2016 by residents of Freeport are listed as Construction, extraction, and production. Nearest hospitals and medical facilities are located in Lake Jackson, TX about 6 miles away from the city (Advameg 2018).

Private DMPA Site B

The current land use of the proposed Private DMPA Site C is natural estuarine emergent wetland habitat and some open water areas. There are some maintenance roads that traverse the site, used to access adjacent industrial sites and the bank of the GIWW, which is located north of the site. Surrounding beach areas are utilized for public recreation. There are no residences located in the vicinity of the site. No zoning restrictions are present within Private DMPA Site B. The change in land use from undeveloped site to DMPA site is consistent with other properties in the region. However, because the site is not located directly adjacent to any other developed DMPA and is adjacent to undeveloped coastal habitat and Gulf of Mexico beach, impacts to land use as a result of the development of the site to a DMPA would be significant.

Socioeconomic impacts as a result of the proposed project are expected to be positive overall. The project will create jobs in the area's most popular occupation and industry, construction. The authorization of a DMPA for use by FLNG will allow the continuous operation of the Quintana Island Terminal which provides economic value to the region and also provides jobs and income to the local community. There are no negative socioeconomic impacts anticipated by the proposed DMPA Site B.

Private DMPA Site C

The current land use of the proposed Private DMPA Site C area is natural wetland habitat and open water. The surrounding land use includes other federal DMPA facilities and industrial complexes. While the W-3

(Waterfront-Heavy) District zoning is consistent with DMPA development, developing the DMPA within the portions of the site zoned as R-1 (Single Family Residential) would not be consistent with current zoning regulations; however, the area zoned as R-1 does not currently contain any residential properties. The change in land use from undeveloped site to DMPA site is consistent with other properties in the area. Additionally, because the site is dominated by wetland habitat and is within the regulatory floodplain, development of any other type such as commercial or residential is unlikely to occur in future years. Therefore, impacts to land use as a result of the development of the site to a DMPA will have insignificant impacts to the overall regional land use configuration or City of Freeport zoning code.

Socioeconomic impacts as a result of the proposed project are expected to be positive overall. The project will create jobs in the area's most popular occupation and industry, construction. The authorization of a DMPA for use by FLNG will allow the continuous operation of the Quintana Island Terminal which provides economic value to the region and also provides jobs and income to the local community. There are no negative socioeconomic impacts anticipated by the proposed DMPA Site C.

FLNG PRIVATE DMPA SITE E

The current land use of the proposed Private DMPA Site E area is natural wetland habitat and open water. The surrounding land use includes one industrial complex, but mostly natural area of wetland and open water. The area is not within the city limits of Freeport and therefore has no zoning restrictions. The change in land use from undeveloped site to DMPA site is consistent with other properties in the region. However, because the site is not located directly adjacent to any other developed DMPA and is adjacent to a natural waterbody, Oyster Creek, impacts to land use as a result of the development of the site to a DMPA will have significant impacts to land use of the region.

Socioeconomic impacts as a result of the proposed project are expected to be positive overall. The project will create jobs in the area's most popular occupation and industry, construction. The authorization of a DMPA for use by FLNG will allow the continuous operation of the Quintana Island Terminal which provides economic value to the region and also provides jobs and income to the local community. There are no negative socioeconomic impacts anticipated by the proposed DMPA Site E.

5.2.9 Navigation

No Action Alternative

The No Action Alternative would not result in any impacts to navigation within the Project area, as construction of a new DMPA would not occur.

Private DMPA Sites B, C, and E

Navigation will be unaffected by the development of the Private DMPA Site C because the Private DMPA Sites B, C, and E are not located within navigable waters. Although Private DMPA Sites B and E are located adjacent to navigable waterways, construction and operation activities will be confined within the site boundaries; therefore, adjacent waterways are not anticipated to be affected. Any outfall structure will adhere to Section 10 of the CWA permitting requirements and will not interfere with navigation of a waterway.

5.2.10 Federal Projects

There are no known federal projects proposed to utilize Private DMPA Site B, Site D, or Site E. Site B and C are adjacent to federal DMPA's and Site E is adjacent to a federal National Wildlife Refuge, however impacts to these areas are not anticipated because construction and operation activities will be confined

within the site boundaries. Site D and E are privately owned by FLNG and construction and operation of the site will therefore not interfere with any federal projects. As previously discussed, The Freeport Maintenance ODMDS is still available for federal use and authorization of a LTDMPA for use by FLNG will free up capacity at the ODMDS for continual use for federal projects.

5.2.11 Mineral Needs

There are no wells or leases within Private DMPA Sites B or E. There are several plugged and abandoned dry hole wells located on the Private DMPA Site C site. Placement of material above the plugged wells will not impact the well. There are no other active mineral leases or wells located on the project site. Nearby oil wells located outside of the proposed project boundary will not be impacted by the project. There are several pipelines that traverse the Site C project site, including two operated by Phillips 66, two operated by Exxon Mobil, and one operated by the US Department of Energy. The construction of and placement of dredged material within the DMPA Site C is not anticipated to affect any existing pipeline infrastructure.

5.2.12 Other Federal, State, or Local Requirements

A USACE Section 404 permit will be required due to anticipated discharges into waters of the US. A Texas Coastal Zone consistency certification is required for the dredging of material at the FLNG berth and placement of material within the LTDMPA. Additionally, FLNG is coordinating with the USACE to determine the necessary coordination and clearances necessary for a water quality certification administered either by the Texas Railroad Commission or Texas Commission on Environmental Quality (TCEQ).

5.2.13 Other Factors

The following factors were not included in the current analysis as they do not pertain to the FLNG LTDMPA or FLNG Berth site for the proposed activities: floodplain values; safety; energy needs; floodplain hazards; economics; water supply and conservation; air pollution; and food and fiber production. These factors were evaluated originally for the USACE Permit and the results of that evaluation remain unchanged with the proposed Permit modification.

5.2.14 LEDPA

Based on the environmental analysis detailed above, the development of the Private DMPA Site C as the proposed FLNG Long Term Dredged Material Placement Area (LTDMPA) is considered the least environmentally damaging practicable alternative (LEDPA) that fulfills the Project purpose and need for the long-term placement of maintenance material dredged within the FLNG Berth

5.3 CUMULATIVE AND SECONDARY IMPACTS

The Council on Environmental Quality regulations for implementing the National Environmental Policy Act define cumulative effects as "the impact on the environment which results from the incremental impact of the action when added to other past, present, and reasonably foreseeable future actions regardless of what agency (Federal or non-Federal) or persons undertake such actions" (Title 40 Code of Federal Regulations Section 1508.7). Cumulative impacts may result when the environmental effects associated with a proposed project are added to temporary (construction-related) or permanent (operations-related) impacts associated with past, present, or reasonably foreseeable projects. Although impacts might be insignificant if they were to occur in isolation on an individual project basis, the additive or synergistic effects (caused by the action and occurring concurrently with and proximal to the action) and indirect effects (which are caused by the action and are later in time or farther removed in distance, but are still reasonably foreseeable).

Consideration of criteria was integral in analyzing the projects that may contribute to cumulative impacts in combination with impacts from the proposed LTDMPA project. An action (i.e., an existing or proposed project development) must meet three criteria to warrant inclusion in a cumulative impacts analysis. It must:

- affect a resource or resources potentially affected by the proposed project for which the cumulative impacts analysis is being undertaken;
- cause this impact within all, or part of, the project area; and
- cause this impact within all, or part of, the timespan for the potential impact from the proposed project.

The resources potentially affected by the proposed project include tidal segments of the Brazos River, the city of Freeport, TX and Brazosport, TX and surrounding residences and industry, and wetland and wildlife resources of the surrounding area in Brazoria County. The project area is defined as the proposed LTDMPA site and associated FLNG Berth. The surrounding area of Freeport and Brazosport and industry within the port of Freeport is also included in the affected project area. The timespan considered for the potential impact from the proposed project is 15 years, the length of time the LTDMPA is proposed to maintain capacity for dredge material placement from maintenance dredging of the FLNG Berth. Projects considered for analysis of cumulative impact are described in the table below:

Table 11: Activities and Projects Considered in the Cumulative Impacts Analysis					
Project	Project Description	Location	Approximate Distance	Estimated Timeframe	
Liquefied Natural Gas Termir	nal Projects				
Freeport LNG Liquefaction Project	Liquefaction plant (three trains), Pre-treatment Facility, and interconnecting pipeline/utility line system	Quintana, TX	3.8 miles	Construction 2014 Operation 2020	
Other FLNG Projects					
FLNG Train 4 Project	Expansion of the existing Liquefaction Project including 10.6 mile 42inch pipeline	Quintana, TX	3.8 miles	Construction 2018 Operation 2022	
Other Utilities and Industrial	Facilities				
MEGlobal (EQUATE Petrochemicals Co.)	New monoethylene glycol facility	Oyster Creek, TX	4 miles	Construction underway Operation 2019	
Port and Harbor Channel Dev	velopments				
Port Freeport & U.S. Army Corps of Engineers Freeport Harbor Channel Improvement Project	Channel widening from 400 feet up to 600 feet; increase depth from 45 feet to 55 feet	Freeport, TX	2.4 mile	Construction 2014 Operation 2021	
Port Freeport Velasco Terminal Development	Additional berth expansion	Freeport, TX	2.3 miles	Operation 2021	
FEDERAL AND STATE AGEN	ICY PROJECTS				
Active Federal DMPA Sites	All active Federal DMPA sites in the immediate area	Freeport, TX	<500 feet (closest is north of LTDMPA Site)	Various	

Table 11: Activities and Projects Considered in the Cumulative Impacts Analysis				
Project	Project Description	Location		Timeframe
RESIDENTIAL DEVELOPMENTS				
8 housing developments with a total of about 144 residential lots and 655 RV campsites		Freeport, TX	3 miles (northwest of Terminal)	Various
2 housing development with a total of 94 single-family homes and 92 RV campsites		Oyster Creek, TX	1.0 mile (west of Pipeline Corridor)	Various

5.3.1 FLNG Berth Dredging Impacts

Cumulative and secondary impacts associated with the maintenance dredging of the FLNG Berth and the federal maintenance dredging project of the Freeport Harbor include impacts to the benthic macroinfaunal and microinfaunal communities located within the dredge footprint and temporary impacts to water quality and dissolved oxygen. Incidental mortality to benthic organisms are likely to occur during dredging and transport of material to the LTDMPA. Benthic communities will be allowed to regenerate at the FLNG Berth between maintenance dredging events. The repeated dredging of the FLNG Berth over time could reduce the abundance and diversity of benthic organisms; however, the initial dredge of the FLNG Berth created additional submerged bottom, and that habitat is plentiful in the area. Therefore, no large-scale impacts to benthic communities would be anticipated as a result of the proposed Project. Temporary impacts to water quality including increased suspended solids and decreases in dissolved oxygen are anticipated to occur based on the nature of dredging operations. Turbidity is most common near the bottom and will likely be confined to deeper water in the berth or immediately adjacent water bottoms. Increased turbidity could cause fish in the surrounding areas to be displaced temporarily but is not expected to cause permanent displacement of mobile organisms. The current use of the channel creates a turbulent water environment and vessel traffic is expected to continue at current rates with future industrial developments in the port. The federally proposed widening of the channel will also cause temporary sediment suspension and turbidity in the project area and therefore, increased turbidity within shallow water areas of the GIWW or Freeport Harbor Channel as a result of this project or due to cumulative effects of this project is not anticipated. Additionally, continued dredging of the berth would allow a layer of higher salinity water to develop near the bottom of the water column. These areas have been shown to support fisheries species present in the surrounding area, especially during events where freshwater dominates the environment. The cumulative impacts of the proposed FLNG project over time along with ongoing projects is expected to have minimal impacts to the FLNG Berth.

5.3.2 Dredged Material Placement Area Impacts

Cumulative and secondary impacts associated with the proposed placement of dredged material at the ODMDS from the FLNG Project as well as other past, ongoing, and future projects were assessed in the prior permit amendment. Cumulative impacts associated with the construction of an upland confine LTDMPA for placement of dredged material from the FLNG Project are discussed below.

As discussed in Section 5.2, use of the proposed LTDMPA site for construction of an upland confined DMPA is consistent with regional land use patterns and would not cause indirect impacts to land use or

regional development trends. The construction of the proposed LTDMPA site will impact wetlands vegetation and wildlife of the immediate project area. Freeport LNG will ensure the avoidance of indirect impacts (e.g., from storm water runoff) on nearby wetlands through adherence to permit conditions and implementation of best management practices. In total, 196.5 acres of wetlands will be impacted in the project area, and mitigation is proposed. Several of the projects listed above will likely impact wetlands. Because each of the projects will need to obtain applicable permits from the USACE, each project would be expected to appropriately mitigate for impacts on wetland resources and minimize any cumulative wetland effects caused by development of the area.

Construction and operation of projects listed above will also result in temporary impacts on vegetation communities, and will likely result in the permanent conversion of vegetated habitats to developed, industrial land. Based on a desktop review, many of the projects are located within developed or open areas, and appear to require minimal vegetation clearing. Vegetation in the vicinity of the Project and other projects have been affected by ongoing industrial development and construction and maintenance of existing roads, railroads, natural gas and oil pipelines, utility lines, and electrical transmission line rights-of-way. Given the limited impacts on vegetation and the extensive industrial development in the vicinity, cumulative impacts on vegetation are expected to be minimal.

Impacts to aquatic areas outside the project area will not occur during construction of the LTDMPA. Potential direct impacts on fish and wildlife habitat during construction and operation of the Project will be limited to the potential for increased suspended sediment concentrations from erosion and stormwater runoff from construction areas and accidental spills during sediment transport from the berth to the LTDMPA. Freeport LNG will ensure the avoidance of impacts on aquatic wildlife through adherence to permit conditions and implementation of best management practices. Based on desktop review, many of the projects included in this cumulative analysis are located on or adjacent to surface waters and appear to require use of the surface waters. As noted previously, the proponents of each of the projects will need to obtain applicable permits from the USACE. Because these projects require USACE authorization, resource agencies will have the opportunity to review each of the project's potential impacts on fish and wildlife values and ensure that the project will have a deminimis effect. Therefore, the cumulative impacts on aquatic resources will be minimal.

Short-term impacts on wildlife potentially occurring during construction associated with LTDMPA construction and operation include increased noise, lighting, and human activity, which could disrupt breeding and/or feeding behavior of wildlife in the vicinity of the Project. Construction activities could result in temporary avoidance of the area, and could inhibit the movement of wildlife. Potentially, some smaller, less mobile fauna could become entrapped in excavations or could be inadvertently injured or killed by construction equipment, although no negative population-level effects are expected. Because the Project area supports currently operating industrial facilities within the larger Port Freeport, Oyster Creek, and Brazosport areas, wildlife present are likely fairly tolerant of industrial activity and noise. Therefore, cumulative impacts during construction and operation of the LTDMPA will be negligible to terrestrial wildlife.

Brazoria National Wildlife Refuge, Justin Hurst Wildlife Management Area, and two sensitive wildlife areas (Quintana Neotropical Bird Sanctuary and the Town of Quintana's Xeriscape Park) are located within the Project vicinity. The Brazoria National Wildlife Refuge is located east of the area, and visual impacts will be limited to construction of the proposed LTDMPA perimeter levee, which is expected to have temporary and minor impacts on visual resources. The Bryan Beach unit of the Justin Hurst Wildlife Management Area is on the southeast corner of Quintana Island, and the Quintana Neotropical Bird Sanctuary is located approximately 0.3 miles south of the FLNG Berth. Because construction and operation of the LTDMPA

Project will be in a similar location as other DMPAs and industrial sites, and consistent with existing construction activities, visual impacts will be permanent but not cumulatively significant.

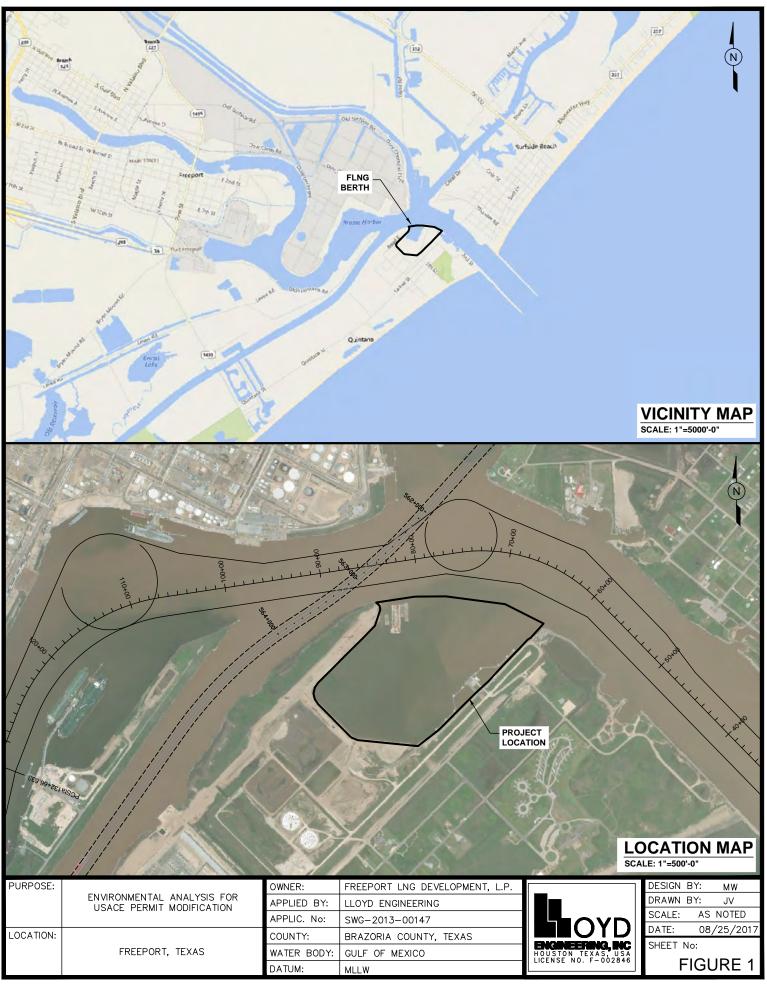
Potential for cumulative noise impacts associated with the LTDMPA will be operation of heavy equipment at the LTDMPA Site (e.g., bulldozers, backhoes, cranes, rollers, and trucks). Construction activities will be limited to daytime hours. Therefore, most construction noise will not have nighttime impacts on residents near the city of Freeport. Additionally, due to the temporary nature of these activities, no associated long-term impacts on noise levels are anticipated.

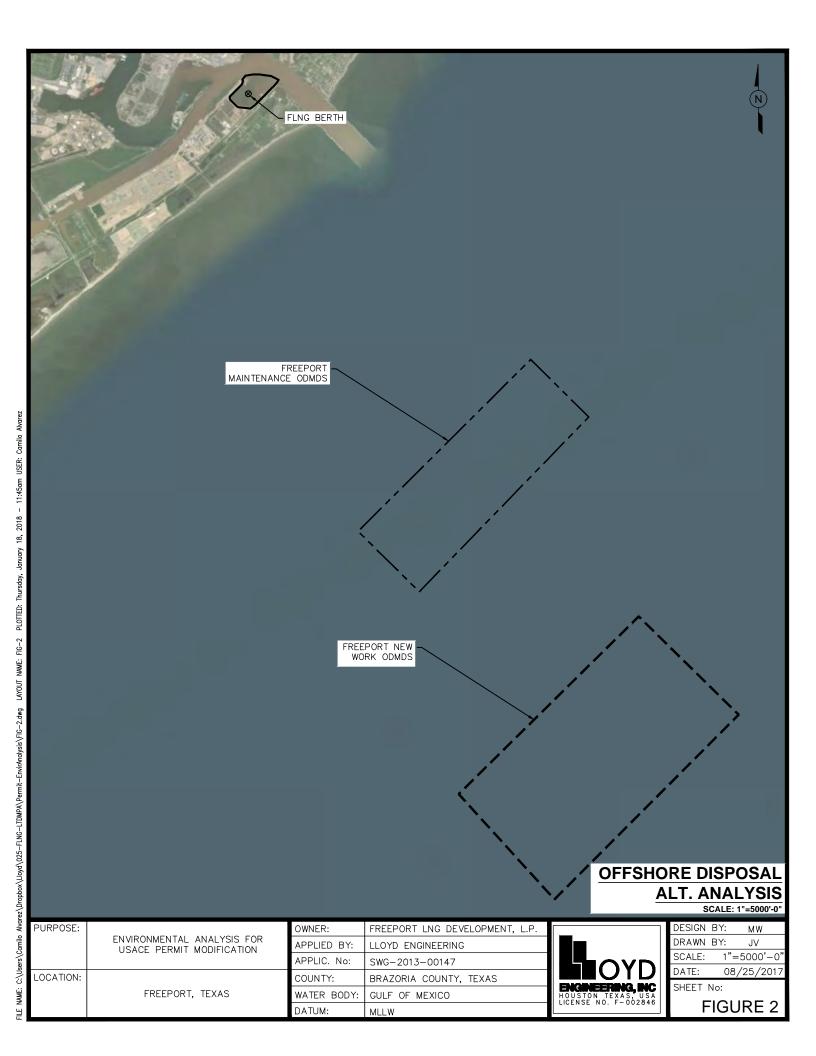
The surrounding project area of the LTDMPA site is well established in industrial and port activities and therefore, will not be significantly impacted by the construction of additional industrial-based sites. Overall, cumulative impacts from the construction and operation of the LTDMPA are expected to be minor and insignificant.

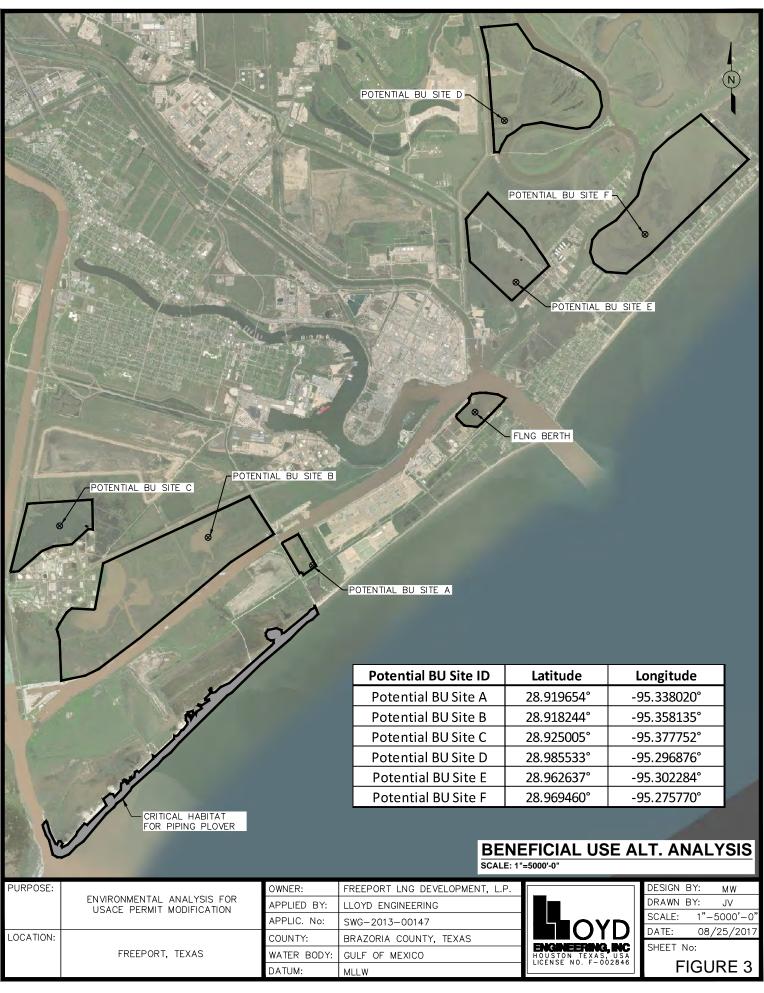
6.0 CONCLUSION

Based on the environmental analysis detailed above, the development of the Private DMPA Site C and as the proposed FLNG LTDMPA is considered the LEDPA that fulfills the Project purpose and need for the long-term placement of maintenance material dredged within the FLNG Berth. As discussed in Section 4.4, the Freeport Maintenance ODMDS will still be utilized for the disposal of dredged material from the FLNG berth in the event that the volume or timing of the dredging activity becomes consequently feasible and beneficial for the overall project to do so. Capacity in the LTDMPA will be reserved for an estimated 15-year period for material from the FLNG Project. The proposed LTDMPA site will allow for the continuous operation of the FLNG terminal by providing the necessary capacity and availability for the disposal of routine annual maintenance dredging material from the FLNG Berth.

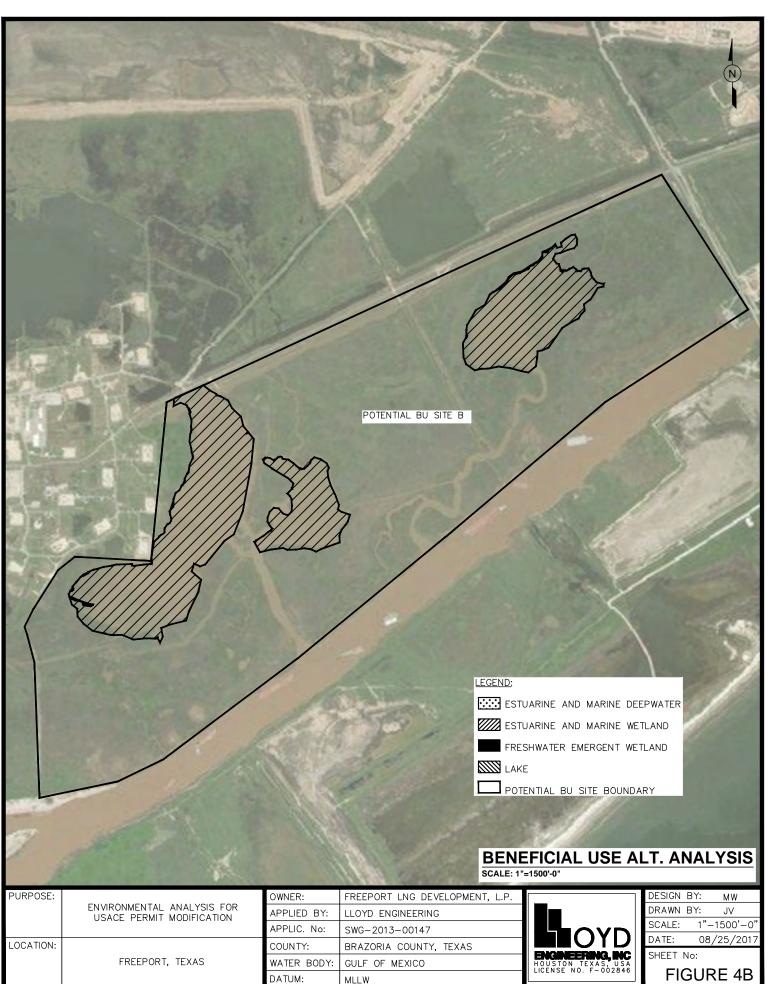
7.0 REFERENCES

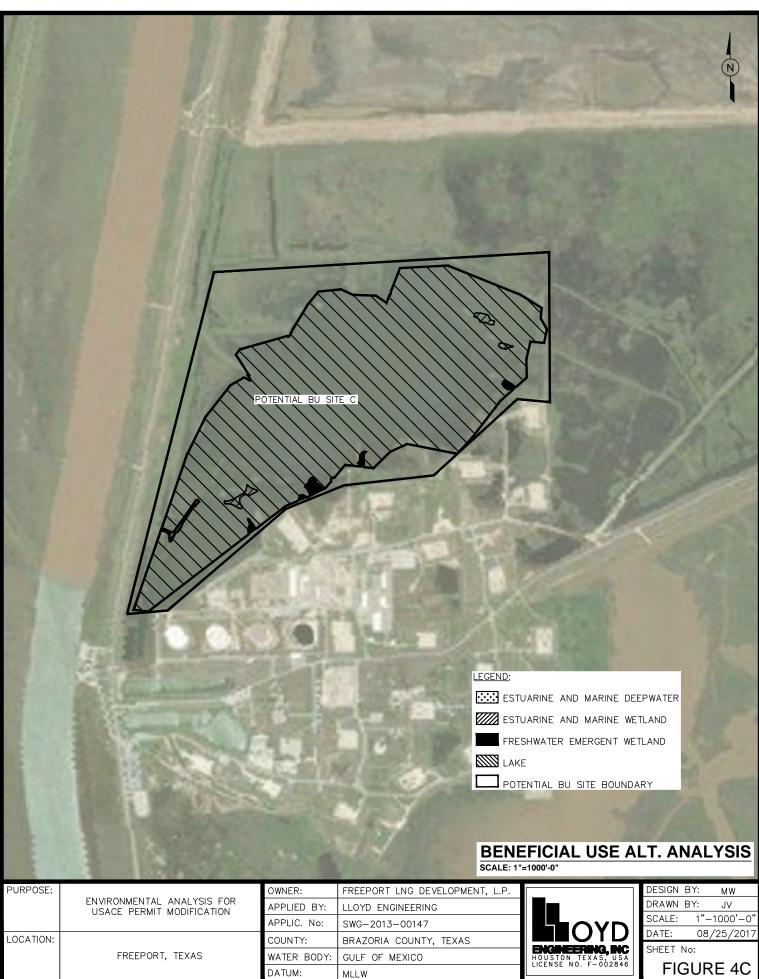

81 Federal Register 88,639;

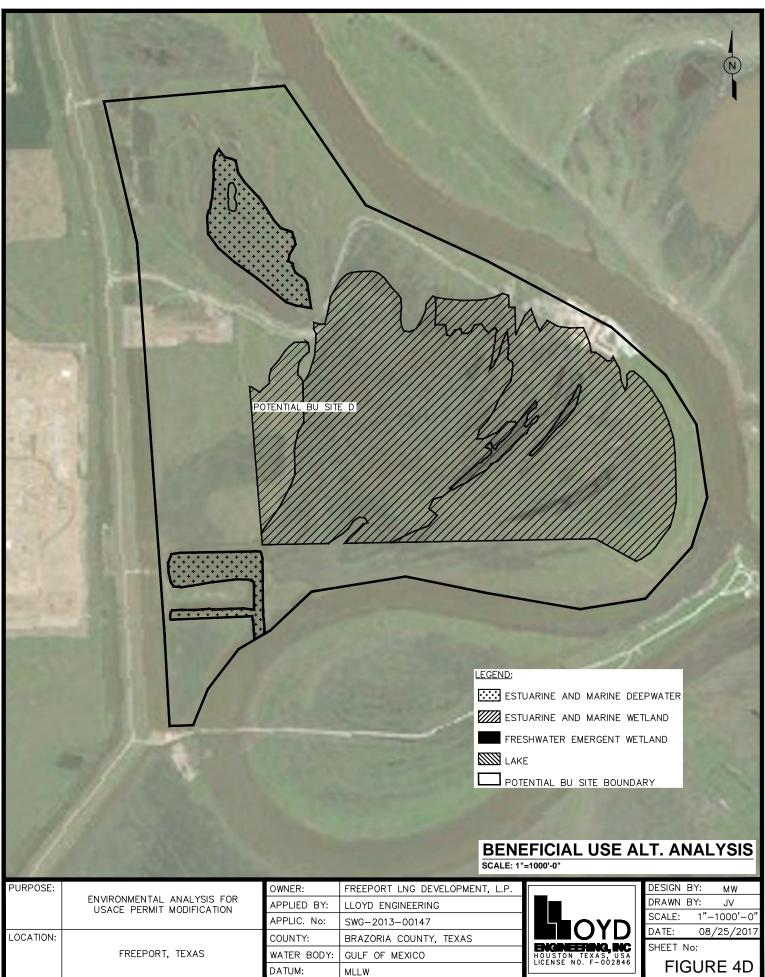

Advameg Inc. 2018. City Data. City-data.com accessed May 23, 2018.

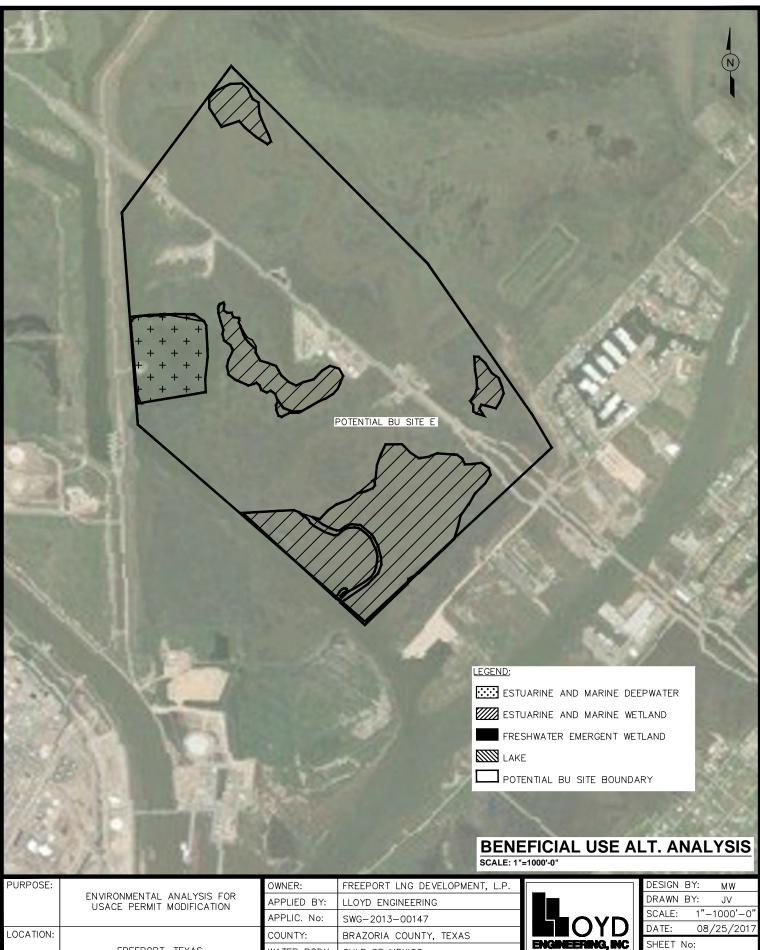

- Federal Energy Regulatory Commission, 2004. Final Environmental Impact Statement Freeport LNG Project. Docket No. CP03-75-000 issued May 28, 2004. FERC/EIS-0164.
- Federal Energy Regulatory Commission, 2014. Freeport LNG Liquefaction Project Phase II Modification Project Final Environmental Impact Statement. Docket No. CP12-509-000 and CP12-29-000 issued June 16, 2014. FERC/EIS-250F.
- Morton, R. A., 1988, Interactions of storms, seawalls and beaches of the Texas coast: Journal of Coastal Research, v. 4, p. 113-134.
- National Marine Fisheries Service. 2017. Species Under NMFS Jurisdiction, Listed as Threatened or Endangered, and Designated Critical Habitat for Each State and Territory. Available online at http://sero.nmfs.noaa.gov/protected_resources/section_7/threatened_endangered/Documents/tex as.pdf. Accessed August 2017.
- National Oceanographic and Atmospheric Administration (NOAA). Online Query, <u>https://www.habitat.noaa.gov/protection/efh/efhmapper/</u>. Accessed June 9, 2018.
- Texas Commission on Environmental Quality. 2015. 2014 Texas Integrated Report Texas 303(d) List (Category 5). Accessed May 23, 2018.
- Texas Historical Commission. 2018. Texas Historical Sites Atlas. Accessed May 23, 2018. https://atlas.thc.state.tx.us/Map
- Texas Natural Diversity Database (TXNDD). 2015. Element Occurrence data export. Wildlife Diversity Program of Texas Parks & Wildlife Department. September 2015.
- Texas Parks and Wildlife (TPWD). 2015. Rare, Threatened, and Endangered Species of Texas by County. Available at: http://tpwd.texas.gov/gis/rtest/. Accessed October 2015.
- Texas Parks and Wildlife Department. 2017. Annotated County Lists of Rare Species. Revised July 25, 2016. Available online at http://tpwd.texas.gov/gis/rtest/. Accessed August 2017.
- U.S. Army Corps of Engineers, 2008. Final Environmental Impact Statement for Proposed Port Freeport Channel Widening Brazoria County, Texas. Northwestern University, Evanston, Illinois.
- U.S. Army Corps of Engineers. 2012. Final Environmental Impact Statement, Freeport Harbor Channel Improvement Project Brazoria County. Texas. Available online at: http://www.swg.usace.army.mil/BusinessWithUs/PlanningEnvironmentalBranch/DocumentsforPu blicReview.aspx. Accessed August 2016.
- U.S. Fish and Wildlife Service. 2017. Information for Planning and Conservation Trust Resource Report for Brazoria County, Texas. Available online at https://ecos.fws.gov/ipac/. Accessed August 2017
- U.S. Fish and Wildlife Service. 2018. National Wetland Inventory. Available online at: <u>https://www.fws.gov/wetlands/data/mapper.html</u>, Accessed June 7, 2018.

Appendix A


Project Figures







FREEPORT, TEXAS

WATER BODY:

DATUM:

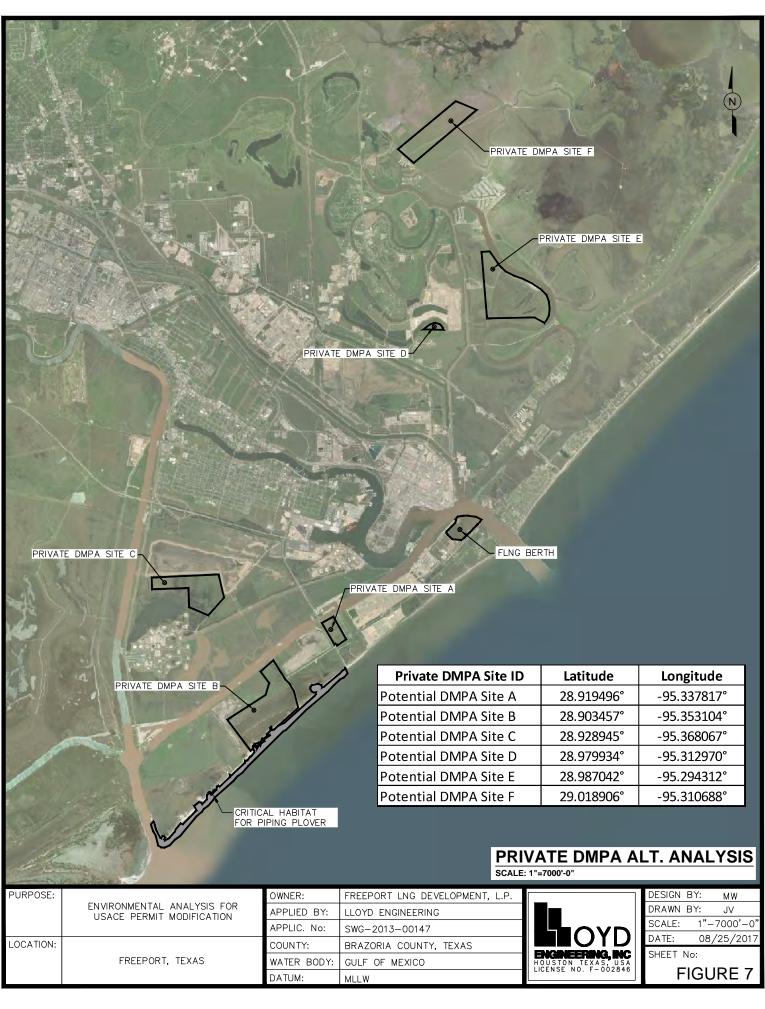
GULF OF MEXICO

MLLW

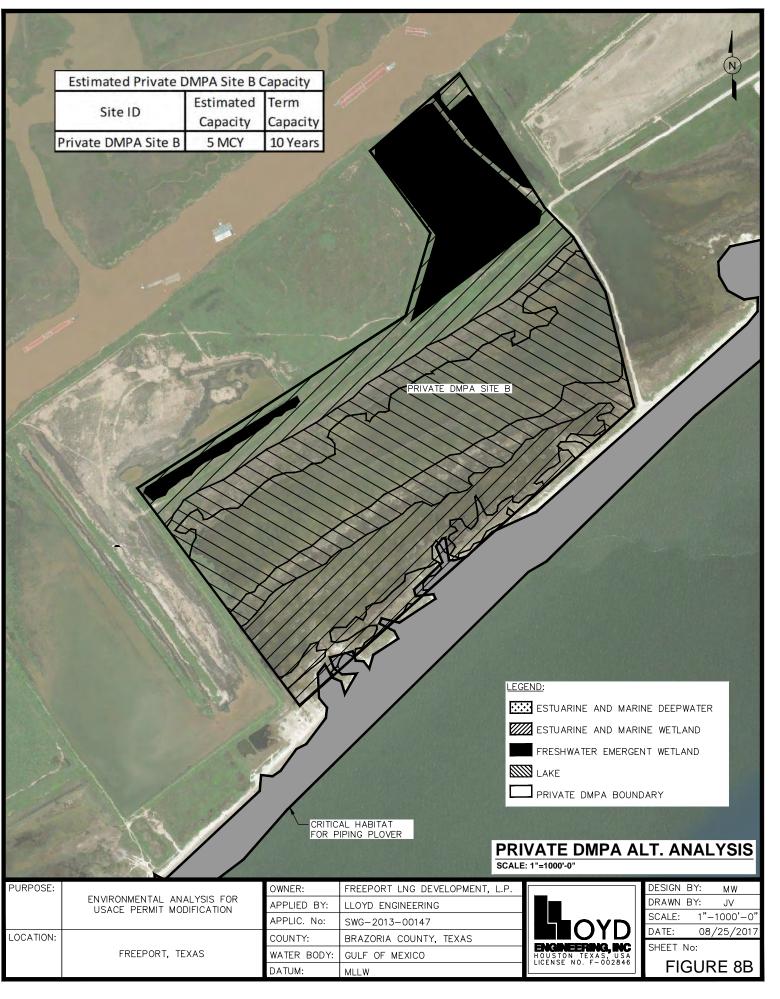
LICENSE NO. F-002846

FIGURE 4E

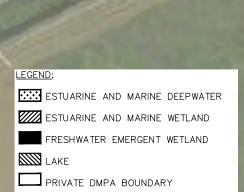
DA 9 (UNDEVELOPED) DA 8 (UNDEVELOPED)		DA 78 5 79	
DA 164 DA 1 DA 10 DA 27 DA 85 DA 86/87			
DA 1 DA 1 DA 2 DA 85/87	Federal DMPA ID	Latitude	Longitude
DA 1 DA 1 DA 85	DA-1	28.934437°	-95.369079°
DA 1 DA 1 DA 2 DA 85/87	DA-1 DA-7	28.934437° 28.930137°	-95.369079° -95.352315°
DA 1 DA 1 DA 2 DA 85/87	DA-1 DA-7 DA-8 (Undeveloped)	28.934437° 28.930137° 28.954696°	-95.369079° -95.352315° -95.388248°
DA 1 DA 1 DA 2 DA 85/87	DA-1 DA-7 DA-8 (Undeveloped) DA-9 (Undeveloped)	28.934437° 28.930137° 28.954696° 28.965765°	-95.369079° -95.352315° -95.388248° -95.383824°
DA 1 DA 1 DA 2 DA 85/87	DA-1 DA-7 DA-8 (Undeveloped) DA-9 (Undeveloped) DA-78	28.934437° 28.930137° 28.954696° 28.965765° 28.980765°	-95.369079° -95.352315° -95.388248° -95.383824° -95.274982°
DA 1 DA 1 DA 2 DA 85/87	DA-1 DA-7 DA-8 (Undeveloped) DA-9 (Undeveloped)	28.934437° 28.930137° 28.954696° 28.965765°	-95.369079° -95.352315° -95.388248° -95.383824°


CRITICAL HABITAT FOR PIPING PLOVER

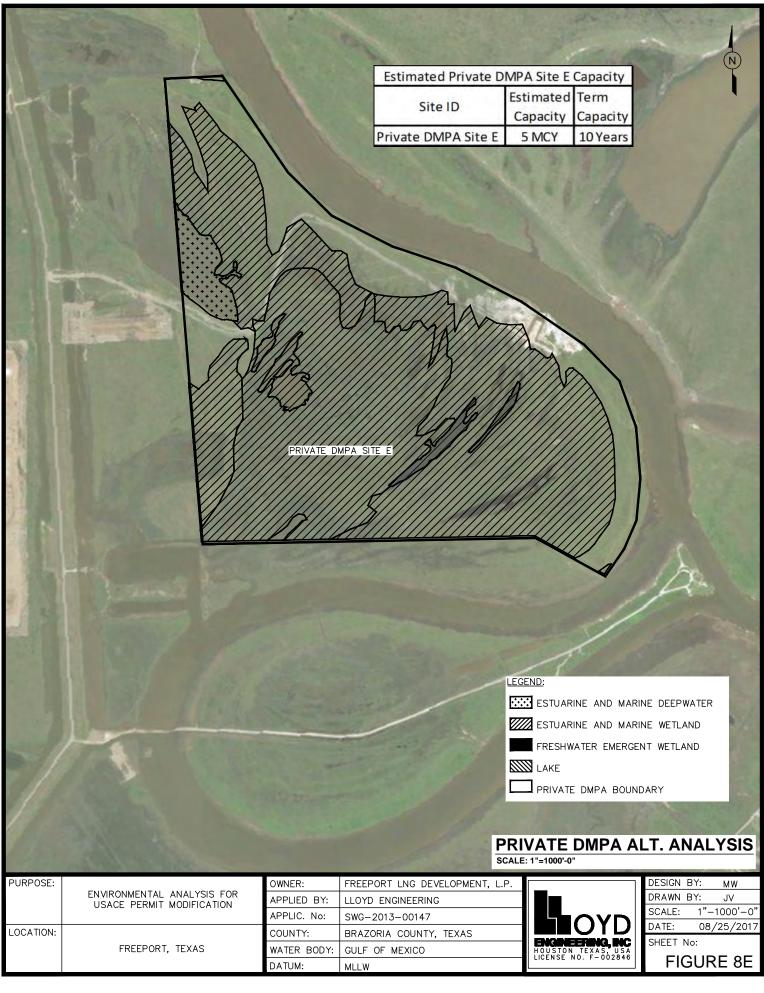
DA-8 (Undeveloped)	28.954696°	-95.388248°
DA-9 (Undeveloped)	28.965765°	-95.383824°
DA-78	28.980765°	-95.274982°
DA-79	28.966749°	-95.282249°
DA-80	28.970100°	-95.286858°
DA-81	28.959831°	-95.296525°
DA-82	28.954978°	-95.297655°
DA-84	28.927320°	-95.338614°
DA-85	28.915285°	-95.344236°
DA-86/87	28.902491°	-95.364839°
DA-88	28.896340°	-95.373891°


FEDERAL DMPA ALT. ANALYSIS SCALE: 1"=7000'-0"

PURPOSE:		OWNER:	FREEPORT LNG DEVELOPMENT, L.P.		DESIGN BY: MW
	ENVIRONMENTAL ANALYSIS FOR USACE PERMIT MODIFICATION	APPLIED BY:	LLOYD ENGINEERING		DRAWN BY: JV
		APPLIC. No:	SWG-2013-00147		SCALE: 1"-7000'-0"
LOCATION:		COUNTY:	BRAZORIA COUNTY, TEXAS		DATE: 08/25/2017
	FREEPORT, TEXAS	WATER BODY:	GULF OF MEXICO	ENGINEERING, INC HOUSTON TEXAS, USA LICENSE NO. F-002846	SHEET No:
		DATUM:	MLLW		FIGURE 5


		Pa 8 (UNDEV)	LOPED)	ILEGENE:		
	Estimated Undeveloped Fee	deral DMPA C	Capacities		JARINE AND MARINE DE	FPWATER
	Site ID	Current	Future	9	JARINE AND MARINE WE	Statement and a state of the st
a la de		Capacity	Capacity		SHWATER EMERGENT WE	and the second sec
and the second second	DA-8 (Undeveloped)	0 MCY	5 MCY			
	DA-9 (Undeveloped)	0 MCY	3 MCY	FEDI	RAL DMPA BOUNDARY	LT. ANALYSIS
PURPOSE:	ENVIRONMENTAL ANALYSIS FOR USACE PERMIT MODIFICATION	OWNER: APPLIED BY APPLIC. No:	SWG-2013-00147			DESIGN BY: MW DRAWN BY: JV SCALE: 1"-2000'-0" DATE: 08/25/2017
LOCATION:	FREEPORT, TEXAS	COUNTY: WATER BOD DATUM:	BRAZORIA COUNTY, TEXAS Y: GULF OF MEXICO MLLW	<u>ی</u>	ENGINEERING, INC HOUSTON TEXAS, USA LICENSE NO. F-002846	SHEET No: FIGURE 6

		++++++++++++++++++++++++++++++++++++++	(+,+)		
		>	B	LEGEND:	A A A A A A A A A A A A A A A A A A A
	Estimated Private DM		pacity	ESTUARINE AND MAR	the second se
	Estimated Private DN Site ID	Estimated	Dacity Term	ESTUARINE AND MAR	RINE WETLAND
	Site ID		oacity Term Capacity	ESTUARINE AND MAR	RINE WETLAND
		Estimated Capacity	acity Term Capacity	ESTUARINE AND MAR	RINE WETLAND
	Site ID	Estimated Capacity	Dacity Term Capacity 3 Years	ESTUARINE AND MAR	RINE WETLAND ENT WETLAND NDARY
PURPOSE:	Site ID Private DMPA Site A	Estimated Capacity 1.5 MCY	Term Capacity 3 Years P SR FREEPORT LNG DEVELOPMENT, L.F	ESTUARINE AND MAR	RINE WETLAND ENT WETLAND NDARY NLT. ANALYSIS DESIGN BY: MW
PURPOSE:	Site ID Private DMPA Site A	Estimated Capacity 1.5 MCY	Dacity Term Capacity 3 Years	ESTUARINE AND MAR	RINE WETLAND ENT WETLAND NDARY LT. ANALYSIS DESIGN BY: MW DRAWN BY: JV SCALE: 1"-500'-0"
PURPOSE:	Site ID Private DMPA Site A	Estimated Capacity 1.5 MCY	Term Capacity 3 Years FREEPORT LNG DEVELOPMENT, L.P LLOYD ENGINEERING	ESTUARINE AND MAR	RINE WETLAND ENT WETLAND NDARY NDARY NDARY DESIGN BY: MW DRAWN BY: JV


Estimated Private D	MPA Site C	Capacity
Site ID	Estimated Capacity	and the second
Private DMPA Site C		

PRIVATE DMPA SITE C

			AND AND A COMPANY	RIVATE DMPA AI	LT. ANALYSIS
PURPOSE:		OWNER:	FREEPORT LNG DEVELOPMENT, L.P.		DESIGN BY: MW
	ENVIRONMENTAL ANALYSIS FOR USACE PERMIT MODIFICATION	APPLIED BY:	LLOYD ENGINEERING		DRAWN BY: JV
		APPLIC. No:	SWG-2013-00147		SCALE: 1"-1000'-0"
LOCATION:		COUNTY:	BRAZORIA COUNTY, TEXAS		DATE: 08/25/2017
	FREEPORT, TEXAS	WATER BODY:	GULF OF MEXICO	HOUSTON TEXAS, USA LICENSE NO. F-002846	SHEET No:
		DATUM:	MILW	LICENSE NO. F-002846	FIGURE 8C

5			THE REAL PROPERTY.	12 m 1
Sec. Sec.	Estimated Private D	MPA Site D Capacity	as the Barring of Va	N
C.P.		Estimated Term		
	Site ID	Capacity Capacity		
	Private DMPA Site D	0.5 MCY 1 Year	(Iteritie	COLUMN TO ST.
199				
	56			Mar Aller
1 and	21	. 2	· · · · · · · · · · · · · · · · · · ·	
		19191	an a	
1. E	Ret	NO.		
1			1 - Martin Carlos	IR STATE
	TRY EX			A second like La
		PRIVATE	DMPA SITE D	Constant for a state of the sta
	IE.			- Section Section
				and the second
Han	1 Lovas			
E N. A.				
1	a 1. K			and the second
The second	K C			ALC: NOT
2 m	1 the		LEGEND:	
1			the second se	AND MARINE DEEPWATER
(A			R EMERGENT WETLAND
4			LAKE	PA BOUNDARY
				and the second
3			PRIVATE DN SCALE: 1"=500'-0"	IPA ALT. ANALYSIS
PURPOSE:	ENVIRONMENTAL ANALYSIS	FOR ADDUED DY LLOYD ENG		DESIGN BY: MW DRAWN BY: JV
	USACE PERMIT MODIFICA	APPLIC. No: SWG-2013-		SCALE: 1"-500'-0"
LOCATION:	FREEPORT, TEXAS	COUNTY: BRAZORIA WATER BODY: GULF OF M	COUNTY, TEXAS EXICO EXICO	Y D DATE: 08/25/2017 NG. NC SHEET No:

Estimated Private D	MPA Site F	Capacity
Site ID	Estimated	
Site ib	Capacity	Capacity
Private DMPA Site F	4 MCY	8 Years

ENVIRONMENTAL ANALYSIS FOR USACE PERMIT MODIFICATION

FREEPORT, TEXAS

PRIVATE DMPA SITE F

LEGEND:

ESTUARINE AND MARINE DEEPWATER	ł			
ESTUARINE AND MARINE WETLAND				
FRESHWATER EMERGENT WETLAND	ESTUARINE AND MARINE WETLAND			
LAKE				

PRIVATE DMPA BOUNDARY

PRIVATE DMPA ALT. ANALYSIS SCALE: 1"=1000'-0"

OWNER:	FREEPORT LNG DEVELOPMENT, L.P.		DESIGN BY: MW
APPLIED BY:	LLOYD ENGINEERING		DRAWN BY: JV
APPLIC. No:	SWG-2013-00147		SCALE: 1"-1000'-0"
COUNTY:	BRAZORIA COUNTY, TEXAS		DATE: 08/25/2017
WATER BODY:	GULF OF MEXICO	ENGINEERING, INC HOUSTON TEXAS, USA LICENSE NO. F-002846	SHEET No:
DATUM:	MLLW	LIGENSE NO. F-002848	FIGURE 8F

PURPOSE:

LOCATION:

Appendix B

FLNG Marine Basin Sedimentation Study

Freeport LNG Liquefaction Project and Phase II Developments Environmental Analysis

Appendix B

FLNG Marine Basin Sedimentation Study

August 22, 2016

Mr. Tony Galt Marine Operations Manager Freeport LNG

Subject: FLNG Marine Basin Sedimentation Study Freeport, Texas

Dear Tony,

Lloyd Engineering, Inc. (LEI) is pleased to present our findings, in accordance with our propasal, dated 02/18/16, to study the naturally occurring sedimentation within the FLNG marine basin. LEI has evaluated existing (observed) sedimentation patterns, and developed and analyzed existing current diversion structure and/or conceptual dredging solutions that may reduce sedimentation within the basin. The FLNG terminal is located on the Freeport Harbor Channel, at the Lower Turning Basin, approximately 1,500 feet from the Gulf Intracoastal Waterway (GIWW). This study was completed in conjunction with the modeling capabilities of Mott MacDonald.

Figure 1 - Project Location

Assumptions:

The following assumptions were made during the development of this study:

- LEI will utilize existing historical pre and post dredging hydrographic surveys from within the basin and the adjacent channel.
- LEI will utilize historical dredging records within the FLNG basin including volume dredged, date of dredging, ond design dredging template.
- LEI will provide a dredging solution on a conceptual level only, as part of this scope.
- No new data will be collected as part of this scope. LEL will use the proposed berth/expansion layout in this study.
- No model validation will be performed. However, sedimentation volumetric rates will be reviewed and compared with the observed rates to ensure the simulations are sufficiently accurate to provide recommendations.

• No vessel maneuverability analysis will be performed related to the current diversion structure as part of this scope of work.

Basin Sedimentation Analysis

A sedimentation analysis of the Freeport LNG basin was conducted by comparing historical hydrographic surveys of the basin collected from May 22, 2009 through October 23, 2015. The surveys were categorized into 5 comparisons (to ideally capture the period from a post-dredge to a pre-dredge event when possible) throughout the survey timeline. The analysis was conducted between each successive survey to determine the average sedimentation between each survey. Table 1 shows the dates of the surveys analyzed.

Year	Month/Day	Purpose of Survey	Comparison
	May 22	Condition	
2009	November 05	Condition	Comparison 1
	March 04	Pre-Dredge	
2010	October 13	Post-Dredge	
	March 08	Condition	
	July 13	Condition	Comparison 2
2011	November 02	Pre-Dredge	
	November 28	Post-Dredge	
	June 07	Condition	
2012	November 14	Condition	
	January 07	Condition	Comparison 3
	April 12	Pre-Dredge	
2013	May 06	Post-Dredge	# 14- A ***
	November 01	Condition	
	May 19	Condition	
2014	November 25	Condition	Comparison 4
	February 06	Pre-Dredge	
	March 03	Post-Dredge	
2015	May 19	Condition	Comparison 5
	October 23	Condition	

Table 1: Information on Historical Dredging Activities and Survey Schedules

The common overlapping area for all the available surveys was identified and used as the analysis basin area to compute the depth difference between each successive survey. The average depth difference within the basin area was then calculated to determine the average sedimentation within the basin for that time period. Figure 2 shows a contour difference plot of the LNG basin between November 28, 2011 and June 7, 2012.

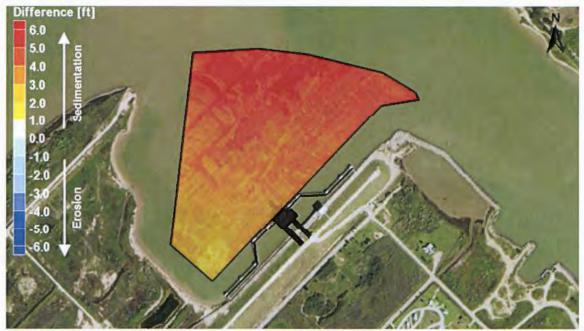


Figure 2 - contour difference plot of the LNG basin between November 28, 2011 and June 7, 2012

Table 2: Sedimentation Rate Calculations (Ex	isting Basin)
--	---------------

Start Date	End Date	Time Elapsed [yrs]	Average Difference [ft]	Sedimentation Rate [ft/yr]
Comparison 1				
5/22/2009	11/5/2009	0.46	1.2	2.7
(Condition)	(Condition)	0.40	1.2	2.7
11/5/2009	3/4/2010 (Pre-	0.33	2.5	7.8
(Condition)	Dredge)	0.33	Z.3	1.0
Comparison 2				
10/13/2010	3/8/2011 (Conditi	0.40	0.0	1 2
이 같은 것 같은 것 같은 것 같은 것 같이 많았다.	on)	0.40	0.9	2.3
3/8/2011(Cond		0.05	0.0	2.4
ition)	(Condition)	0.35	0.8	2.4
7/13/2011	11/2/2011 (Pre-	0.01	0.5	
(Condition)	Dredge)	0.31	0.5	1.6
Comparison 3				
11/28/2011	6/7/2012			
(Post-Dredge)	(Condition)	0.53	4.1	7.8
6/7/2012	11/14/2012			
(Condition)	(Condition)	0.44	3.4	7.7
11/14/2012	1/7/2013			
(Condition)	(Condition)	0.15	0.0	-0.1
1/7/2013	4/12/2013 (Pre-	0.01		0.0
(Condition)	Dredge)	0.26	0.2	0.8
Comparison 4		L		
5/6/2013 (Post-	11/1/2013			
Dredge)	(Condition)	0.49	2.0	4.0
11/1/2013	5/19/2014			2000년 중국 관람
(Condition)	(Condition)	0.54	1.6	2.9
5/19/2014	11/25/2014			
(Condition)	(Condition)	0.52	0.9	1.8
11/25/2014	2/6/2015 (Pre-			
(Condition)	Dredge)	0.2	1.4	7.0
Comparison 5				
3/3/2015 (Post-	5/19/2015			
Dredge)	(Condition)	0.21	1.5	7.2
5/19/2015	10/23/2015			
(Condition)	(Condition)	0.43	2.4	5.5

The results from Table 2 show a high variability in the sedimentation rates within the basin. This is primarily due to the influence of the Brazos River on the sedimentation in the basin. The annual rate was validated by comparing volumes between dredge events. The variable scale plot in Figure 3 below shows the Brazos River Discharge data collected from the USGS observation station located in Rosharon, TX (blue) vs. the average measured sedimentation within the FLNG basin (red) relative to the comparisons found in Table 2. The plot appears to suggest a strong correlation between high discharge in the Brazos River and high sedimentation within the basin.

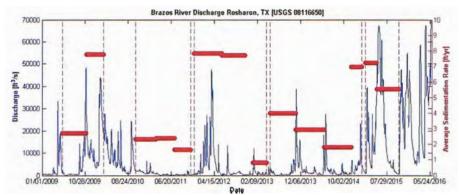


Figure 3. Brazos River Discharge and Sedimentation Rates

In addition to sedimentation rates, the spatial distribution of material throughout the basin was analyzed to determine any distinct sedimentation patterns within the basin. Figure 4 shows the typical distribution of material within the basin over time. The surveys showed that more material tends to deposit on the eastern end of the basin near the Freeport Navigation Channel. This corresponds to observations made that the basin tends to silt in faster adjacent to the Freeport Navigation Channel.

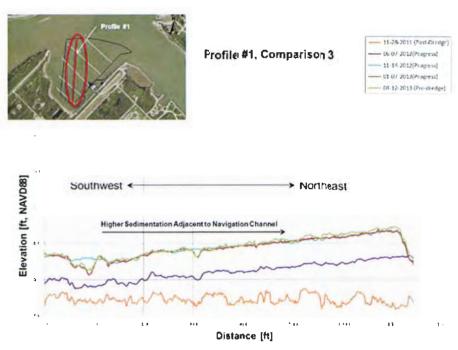
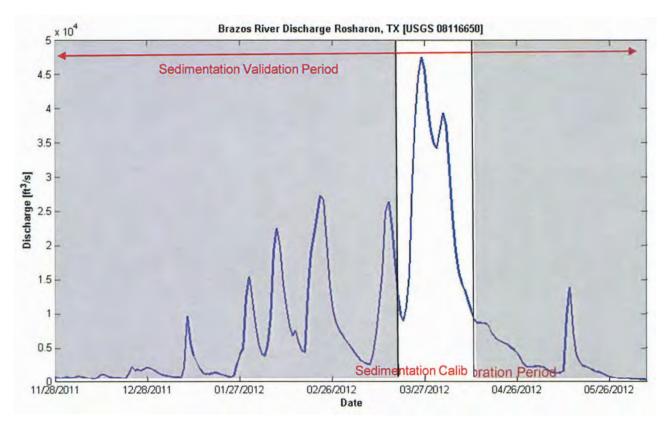


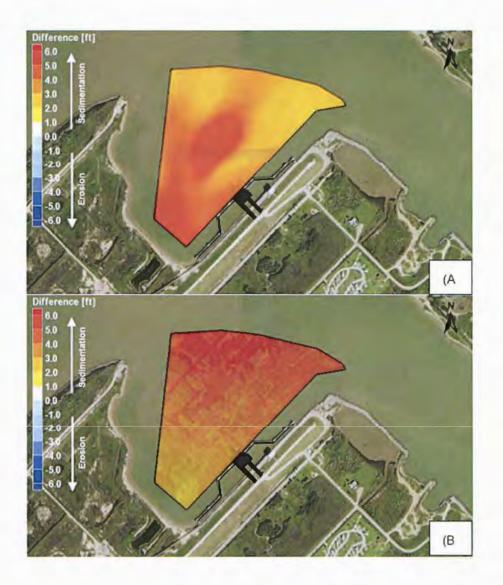
Figure 4. Survey Comparison 3 Profile

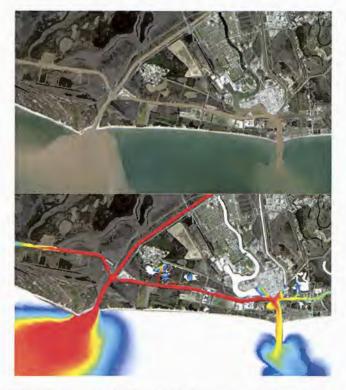

Hydrodynamic and Sedimentation Modeling

Hydrodynamic and Sedimentation modeling of the project site was performed using MORPHO (Kivva *et al.*, 2006). MORPHO is a 2-D model that simulates depth-averaged surface water flow, sediment transport, and bottom-change morphology in the near-shore zone. The model was used to evaluate tidal and riverine generated currents as well as sediment transport patterns and sedimentation in the project vicinity and proposed basin.

Calibration and Validation

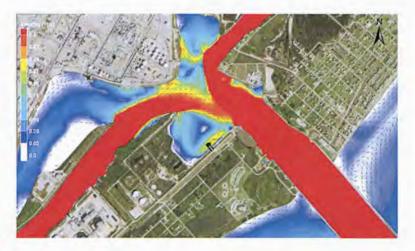
In order to ensure the accuracy of the model, an extensive calibration and validation was performed. Three distinct periods were chosen:


- Hydrodynamic Calibration: March 12, 2015 to March 21, 2015 due to the availability of both water level and velocity data in the vicinity of the project site.
- Sedimentation Calibration: March 20, 2012 to April 15, 2012 to overlap a high discharge event in the Brazos River.
- Sedimentation Validation: November 28, 2011 to June 7, 2012 to match the actual dredging survey camparison event and also to a time when high sedimentation in the FLNG basin and high discharges from Brazos River were observed. See below.



In order to calibrate the sedimentation model, a target sedimentation volume within the basin was determined. This target quantity was determined by scaling the observed sedimentation in the basin from November 28, 2011 to June 7, 2012 (6 month period). Prior to scaling, based on several discharge tests performed using the model it was determined that when the discharge from the Brazos River is less than 8,000 CFS the sediment does not reach the basin.

Using this threshold, the ratio of sedimentation during the modeling period to the total observed period (around 6 months) and for an entire year (September 25, 2011 to September 24, 2012) was calculated. It was estimated that 53% of the observed sedimentation (6 month period) occurred during the model calibration period (March 20, 2012 to April 15, 2012) and 48% of the total annual sedimentation would have accurred the model calibration period. Applying this to the observed sedimentation volume target sedimentation of 100,700 CY was chosen to calibrate the model. After the sedimentation model was calibrated the resulting sedimentation within the basin was approximately 100,874 CY. The results from the model were then extrapolated to the period from November 28, 2011 to June 7, 2012 in order to compare the modeled sedimentation patterns with those measured.


The comparison between the measured and modeled sedimentation in the basin can be seen in the figures below:

The calibration and validation results indicate that the model is accurately reproducing the hydrodynamics processes responsible for depositing the observed amount of sediment within the basin. This calibrated and validated model of the project site can now be used to test the expansion of the basin or installation of conceptual sediment diversion structures.

The colibrated model shows the highest sediment concentrations reaching the FLNG basin during peak ebb tides. The ebb tide allows flows originating from the Brazos River to enter the GIWW and reach the project site. During ebb tides, high water velocities also occur in the GIWW east of the project site. The water flows west and transports sediment from this area directly into the Freeport Channel. Although the concentrations from this area are not as high as those from the Brazos River, this area represents a constant influx of sediment to the Freeport Channel. A part of this sediment rich flow entering the Freeport Channel enters the FLNG basin in the form of a gyre and drops the sediment load in the basin due to sudden decrease in velocities, shown below:

During slack tides (period during which the water is completely unstressed i.e. not moving in either direction) the flows from the Brazos River and GIWW in the project area are reduced. At this time the gyre forming within the basin begins to shift out towards the Freeport Navigation channel with the center of the gyre shifting to the eastern end of the basin. During these times, water velocities reduce significantly in the area, allowing suspended sediments in the water column to drop out.

During flood tides the flows from the GIWW are forced back towards the east and west away from the project site, reducing the amount of sediment reaching the project site from the Brazos River and from the GIWW east of Freeport. The Flood tide does push flows from the Gulf back into the basin which would deposit remaining suspended sediment back into the basin.

Apart from the short term sediment deposition, the daily fluctuation of flows at the project site due to tides would serve to redistribute deposited sediment over time. The ebb tide flow patterns indicated that sediment would likely migrate towards the center of the basin, while during slack tides sediment would be forced towards the eastern end of the basin by the flows. Finally, during flood tides the flow patterns indicated that sediment would flow towards the north eastern end of the basin. The effect of the tides would also vary depending on the discharges from the Brazos River. During high discharge events the ebb tide would combine with the flows from the Brazos to increase velocities through the GIWW west of Brazos Floodgates while flood tide velocities would be reduced as the water would flow against the currents generated by the river discharges.

Extended Basin Modeling

The calibrated model was updated to include the expanded FLNG basin (designed at -46.5 ft NAVD88) and run for the same 1-month duration used earlier as the model calibration period (March 20, 2012 to April 15, 2012) to determine how the expanded FLNG basin would affect the hydrodynamics and sedimentation within the project site.

The extended basin modeling resulted in the larger basin filling in with approximately 122,200 CY of material throughout the modeling period; this is approximately 21% more sediment than what was observed in the smaller basin (as shown in Table 4). It should be noted that even though the sedimentation volume has increased for the large basin, the overall sedimentation height actually reduces by approximately 17% due to the sedimentation occurring over a much larger basin area. This may potentially reduce the dredging frequency. It was observed that most of the material is depositing in the center of the basin. Per the sedimentation analysis of the smaller basin, long term tidal, wind wave and vessel propwash effects would likely cause more sediment to deposit on the eastern end of the basin closer to the Freeport Channel.

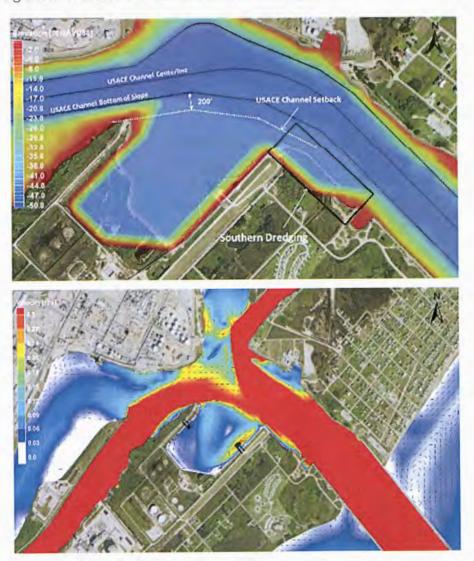
	Modeled Sedimentatio [ft]	Modeled	Computed	Computed Annual Sedimentatio n [CY/yr]	Sedimentati on Change
Existing	2.1	100,900	4.1	194,000	N/A
Expande d Basin	1.7	122,200	3.4	235,000	+21%

Table 4. Large Basin Sedimentation Modeling Results

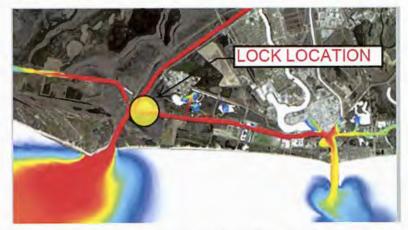
Sediment Diversion/Dredging Alternatives Analysis

We used the results from the modeling to determine the feasibility of additional measures to reduce the sedimentation in the FLNG Basin. We examined diversion structures in the GIWW, Freeport Harbor Channel, and the Lower Turning Basin; as well as alternative dredging design and maintenance procedures for the basin to incorporate a sedimentation reduction feature.

The modeling showed that, for the basin, high velocity currents along with high sediment concentration flows east along the GIWW from Brazos to Freeport. These flows then turn towards the Freeport Channel during an ebb tide on interaction with flows moving west from the Galveston Bay towards Freeport. As the flows reaches the southern end of the basin part of the flow is diverted into the basin where a large eddy forms. This eddy diverts the sediment rich high velocity water from the Freeport Channel into the basin where the velacities decrease significantly and the sediment is allowed to settle into the basin. The sediment diversion/dredging alternatives were developed to divert the ebb flow away from the basin and out towards the Freeport channel.


Below shows the Ebb flows in the basin:

Several olternatives were developed and tested which included the dredging and structural alternatives, but are not included in this report. The alternatives shown are representative of the most feasible alternatives tested.


Southern Dredging

The area adjacent to the shoreline along the Freeport channel just south of the project site was dredged in order to channel the flow being diverted into the basin south towards the Freeport inlet. The goal of dredging this area is to reduce the diversion of ebb flows from the Freeport Channel into the FLNG basin. These flows can carry large quantities of sediment and cause deposition into the basin due to the gyred flows that form. The southern dredging alternative and the modeled flow pattern for this alternative are shown below: The modeling shows a 10% reduction in siltation for this option.

This option would require additional United States Army Corps of Engineers permitting. The additional dredging and modification of the rock groins to the south of the basin would trigger the need to modify our existing Corps permit. It most likely would need to include a section 408 permit review and a real estate instrument by the Corps. The timeline to complete the modification requests and documents needed, review and approval time, is approximately 18 months. This does not include any engineering or construction time. Engineering could be completed in conjunction with the review time by the USACE.

Another alternative that we initially looked at was to place locks at the GIWW and Brazos River. The main source of material is coming from the discharge of the Brazos. Having the locks in place and operating properly would significantly reduce the amount of material making its way down the GIWW.

We propose that these locks be similar to the locks at the Colorado River. With the locks closed, especially at high tide, there would be a major decrease in the amount of sediment traveling east along the GIWW.

Locks at the Colorado River

This option would require Corps permitting as well. However, FLNG would also have to come to agreement with USACE and the Texas Department of Transportation on a public private partnership to construct the locks. It would most likely be in the form of a section 204 agreement, Construction of Water Resources Development Projects by Non-Federal Interest. The agreement negotiations and finalization, permitting, review and approvals are estimated to take 36 months. This does nat include any engineering or construction time. Engineering could be completed in conjunction with the review time by the USACE.

Conclusions and Recommendations

Sedimentation analysis and modeling was conducted to develop solutions and alternatives for the reduction of dredging within the Freeport LNG basin. Prior to the development of the numerical model, a sedimentation analysis was performed which showed the average elevation change in the basin due to sedimentation was approximately 4.1 ft/yr. The results also showed a strong correlation between Brazos River discharge and sedimentation within the basin where periods of higher discharges tend to increase the sedimentation rates in the basin. A functional sedimentation model was developed that simulates with good certainty the sedimentation volumes within the basin. The sedimentation model was then used to develop and test conceptual structural and dredging alternatives for the basin. The model incorporates tidal and riverine inputs as the driving factors behind the sedimentation of the FLNG basin. Insight gained from the analysis of existing surveys was also used to develop the model and to develop an advanced maintenance alternative that addresses the spatial distribution of sediment throughout the basin.

A number of options were considered to reduce the amount of sedimentation that is deposited into the FLNG basin. We looked at dredging deeper, adding diversion structures, additional dredging and combinations of the like. Due to navigation concerns, hard diversion structures were ruled out, as they constricted vessel movements in the basin. Dredging deeper caused the velocity of the ebb current to drop to a critical point, where additional sedimentation was deposited. A feasible option was to remove the southern point of the basin. This removed a hord point, where the current hit the point and then diverted material into the basin.

The modeling and sedimentation results were also used to determine the approximate volume of dredging for the basin prior to 2018. The analysis produced an estimate of approximately 863,000 CY for dredging on December 31, 2017. This estimate is subject to variability due to the unpredictability of the natural processes driving the sedimentation in the basin.

We believe that further modeling and analysis should be completed to investigate the possibility and advantages of adding locks at the GIWW and Brazos intersection. It is aur opinion that preventing the sediment to travel east along the GIWW will greatly reduce siltation in the basin. LEI, along with HM, believe that the best depiction of the sediment movement is shown in a movie of the modeling runs. The link below is to the movie. https://www.dropbox.com/s/cn8ynjeu4fgbyql/zoomed%20out%20sediment%20concentration on MMLogo.avi?dl=0

Should you have any questions, please feel free to contact me directly. We look forward to continuing our excellent working relationship with FLNG.

Sincerely, Lloyd Engineering, Inc. TXBPE # 2846

P.O. Parker, P.E. Executive Vice President

Copy: Stan Lloyd, P.E.

Appendix C

Parcel ID Numbers for Each Non-Federal Placement Alternative

Freeport LNG Liquefaction Project and Phase II Developments Environmental Analysis

Appendix C

Parcel ID Numbers for Each Non-Federal Placement Alternative

	POTENTIA	AL BU SITE A	
Property ID	Acreage	Latitude	Longitude
194549	0.233 ac	-95.337943	28.922056
194548	0.191 ac	-95.338157	28.922011
194547	0.112 ac	-95.33835	28.921925
194546	0.124 ac	-95.338493	28.921835
194545	0.145 ac	-95.33865	28.921748
194544	0.139 ac	-95.338811	28.921662
194552	0.135 ac	-95.337612	28.921581
194543	0.146 ac	-95.338966	28.921578
591338	0.862 ac	-95.340252	28.921315
194542	0.134 ac	-95.339113	28.921495
194553	0.136 ac	-95.337525	28.92143
194541	0.234 ac	-95.339346	28.921353
194554	0.150 ac	-95.337434	28.921276
194555	0.189 ac	-95.337361	28.921095
194657	0.380 ac	-95.340136	28.920938
194556	0.215 ac	-95.337261	28.920929
194565	0.206 ac	-95.338364	28.920857
194566	0.171 ac	-95.338589	28.920883
194567	0.169 ac	-95.338772	28.92082
194568	0.215 ac	-95.338926	28.920689
194557	0.251 ac	-95.33716	28.920749
194656	0.264 ac	-95.340109	28.920709
194558	0.315 ac	-95.337243	28.920597
194564	0.163 ac	-95.338289	28.920621
194559	0.227 ac	-95.337459	28.920489
194563	0.179 ac	-95.33819	28.920503
194560	0.179 ac	-95.337628	28.920421
194655 194561	0.209 ac 0.366 ac	-95.340039 -95.337838	28.920517 28.920314
194562	0.350 ac	-95.338083	28.920314
194569	0.350 ac	-95.338716	28.920397
194589	0.260 ac	-95.336807	28.920397
194588	0.214 ac	-95.337001	28.920137
194587	0.151 ac	-95.33722	28.920134
194570	0.131 dc	-95.33861	28.920134
194653	0.231 ac	-95.339827	28.920185
194590	0.162 ac	-95.336667	28.920026
194586	0.143 ac	-95.337405	28.920045
194652	0.245 ac	-95.339713	28.920013
194571	0.229 ac	-95.338518	28.920005
194651	0.246 ac	-95.3396	28.919843
194572	0.241 ac	-95.338428	28.919826
194592	0.108 ac	-95.336523	28.91977
194650	0.256 ac	-95.339491	28.919675
194593	0.158 ac	-95.336451	28.919632
194573	0.234 ac	-95.338345	28.919655
194594	0.163 ac	-95.336371	28.919477
194574	0.229 ac	-95.338271	28.91949
194595	0.180 ac	-95.336293	28.919323
194575	0.237 ac	-95.338204	28.919323
194596	0.181 ac	-95.336216	28.91917
194576	0.289 ac	-95.338115	28.919143
194647	0.286 ac	-95.339152	28.919151
194581	0.137 ac	-95.337382	28.919137

	POTENTIAL B	SU SITE A Cont.	
Property ID	Acreage	Latitude	Longitude
194597	0.201 ac	-95.336135	28.919019
194646	0.280 ac	-95.339043	28.918982
194580	0.105 ac	-95.337536	28.919013
194598	0.275 ac	-95.336046	28.918841
194579	0.100 ac	-95.337729	28.918949
194577	0.147 ac	-95.338133	28.918892
194578	0.094 ac	-95.337912	28.918886
194645	0.298 ac	-95.338934	28.918814
194599	0.202 ac	-95.336581	28.91864
194644	0.289 ac	-95.338834	28.918638
194614	0.215 ac	-95.335876	28.91857
194643	0.295 ac	-95.338726	28.918466
194615	0.174 ac	-95.335756	28.918436
194616	0.150 ac	-95.335641	28.918304
194613	0.191 ac	-95.336365	28.918257
194642	0.282 ac	-95.33863	28.918288
194612	0.165 ac	-95.336541	28.918152
194617	0.143 ac	-95.335526	28.918158
194611	0.153 ac	-95.336702	28.918078
194641	0.275 ac	-95.338536	28.918109
194610	0.175 ac	-95.336858	28.917992
194609	0.188 ac	-95.337028	28.917902
194606	0.127 ac	-95.337481	28.917976
194640	0.252 ac	-95.338448	28.917928
194619	0.241 ac	-95.335348	28.917789
194607	0.120 ac	-95.337399	28.917828
194639	0.237 ac	-95.338356	28.917753
194620	0.283 ac	-95.335532	28.917627
194608	0.149 ac	-95.337233	28.917721
194624	0.148 ac	-95.336286	28.917219
194625	0.155 ac	-95.336452	28.917134
194626	0.147 ac	-95.336612	28.917052
194627	0.161 ac	-95.336771	28.916968
194628	0.163 ac	-95.336936	28.916884
194629	0.165 ac	-95.337098	28.916799
194630	0.229 ac	-95.337281	28.916683
0	17.694 ac	-95.337868	28.919356
0	0.717 ac	-95.336691	28.91834

	POTENTI	AL BU SITE B	
Property ID	Acreage	Latitude	Longitude
162699	191.197 ac	-95.363881	28.916562
179987	114.268 ac	-95.364131	28.910892
162699	191.188 ac	-95.363881	28.916562
0	31.220 ac	-95.353222	28.921874
0	1.779 ac	-95.355088	28.920868
0	0.395 ac	-95.355328	28.920625
169669	73.454 ac	-95.356636	28.926301
169685	6.464 ac	-95.353072	28.919651
0	20.079 ac	-95.350888	28.923774
0	31.219 ac	-95.353222	28.921874
169639	351.255 ac	-95.349909	28.927853
0	31.220 ac	-95.353222	28.921874
0	31.219 ac	-95.353222	28.921874

	POTENTIAL E	BU SITE B Cont.	
Property ID	Acreage	Latitude	Longitude
169669	73.454 ac	-95.356636	28.926301
0	31.219 ac	-95.353222	28.921874
169669	73.454 ac	-95.356636	28.926301
169639	351.255 ac	-95.349909	28.927853
162699	191.197 ac	-95.363881	28.916562
162699	34.728 ac	-95.369584	28.916482
151808	41.075 ac	-95.37282	28.914538
179987	114.268 ac	-95.364131	28.910892
163985	13.090 ac	-95.372411	28.912156
163984	30.226 ac	-95.370737	28.91043
162695	28.612 ac	-95.376066	28.911261
162694	64.287 ac	-95.372499	28.907083
162699	191.188 ac	-95.363881	28.916562
162699	34.728 ac	-95.369584	28.916482
162699	191.197 ac	-95.363881	28.916562
162699	191.188 ac	-95.363881	28.916562
162699	34.728 ac	-95.369584	28.916482
162699	34.728 ac	-95.369584	28.916482
162699	191.188 ac	-95.363881	28.916562
162699	34.728 ac	-95.369584	28.916482

	POTENTI	AL BU SITE C	
Property ID	Acreage	Latitude	Longitude
162701	335.699 ac	-95.376193	28.933967
162699	113.155 ac	-95.375437	28.92622
162703	54.318 ac	-95.373347	28.923019
162703	30.952 ac	-95.381304	28.921393
162703	24.546 ac	-95.375957	28.921094
162703	84.072 ac	-95.376925	28.91646
162703	123.853 ac	-95.382107	28.916256
162703	54.318 ac	-95.373347	28.923019
162703	30.952 ac	-95.381304	28.921393
162703	30.952 ac	-95.381304	28.921393
162703	24.546 ac	-95.375957	28.921094

	POTENTIA	AL BU SITE D	
Property ID	Acreage	Latitude	Longitude
191329	5.005 ac	-95.300905	28.991408
191268	4.978 ac	-95.301881	28.991391
191328	4.920 ac	-95.300852	28.989506
191330	4.945 ac	-95.301829	28.989489
191268	5.039 ac	-95.302818	28.989475
191268	5.021 ac	-95.29989	28.987748
191332	5.133 ac	-95.30287	28.991379
191327	5.083 ac	-95.29986	28.989522
0	2.586 ac	-95.298082	28.988541
191313	4.956 ac	-95.30114	28.987732
191268	4.862 ac	-95.302693	28.980218
191268	5.180 ac	-95.300974	28.980034
191268	4.527 ac	-95.302719	28.980883
191275	4.782 ac	-95.302666	28.979531
0	32.928 ac	-95.296613	28.978817

	POTENTIA	AL BU SITE E	
Property ID	Acreage	Latitude	Longitude
191048	0.143 ac	-95.308511	28.961759
191048	0.047 ac	-95.306459	28.961741
191048	1.170 ac	-95.307551	28.961234
191048	4.005 ac	-95.307611	28.963761
191048	1.509 ac	-95.307906	28.963098
191048	0.276 ac	-95.308233	28.962375
0	37.830 ac	-95.305746	28.959058
0	0.983 ac	-95.306408	28.964442
191090	4.953 ac	-95.298276	28.962363
191104	4.808 ac	-95.297737	28.961578
652493	4.909 ac	-95.297213	28.960795
191091	0.235 ac	-95.29812	28.960227
652484	1.118 ac	-95.298632	28.960738
191049	4.066 ac	-95.304998	28.968989
191050	5.564 ac	-95.304836	28.967881
0	1.103 ac	-95.304092	28.966338
0	9.167 ac	-95.303291	28.966641
191095	5.046 ac	-95.300872	28.959128
191097	5.604 ac	-95.301996	28.959099
191019	4.971 ac	-95.299478	28.956985
191017	5.090 ac	-95.300459	28.956974
191010	4.805 ac	-95.300171	28.955468
652484	2.791 ac	-95.299723	28.960049
0	0.848 ac	-95.300319	28.959757
191011	3.425 ac	-95.301606	28.954981
191090	1.275 ac	-95.297759	28.958516
191021	4.378 ac	-95.298523	28.957088
191015	3.526 ac	-95.302	28.957629
191023	0.744 ac	-95.304474	28.957926
191031	0.412 ac	-95.305495	28.957866
191024	5.690 ac	-95.303636	28.95738
191029	4.600 ac	-95.302891	28.956746
191012	2.642 ac	-95.301538	28.955886
191024	3.419 ac	-95.30269	28.956123
191091	3.748 ac	-95.298579	28.958969
0	4.874 ac	-95.30026	28.958077
0	1.615 ac	-95.304939	28.958162
0	1.010 ac	-95.300976	28.956152
0	1.349 ac	-95.302262	28.956669
0	0.138 ac	-95.305242	28.957755
191093	4.858 ac	-95.29957	28.958938
191029	4.600 ac	-95.302891	28.956746
191024	3.419 ac	-95.30269	28.956123
191048	5.001 ac	-95.30509	28.960367
191053	4.945 ac	-95.305115	28.961192
191036	4.650 ac	-95.302875	28.960294
634141	1.740 ac	-95.302436	28.961936
191053	4.840 ac	-95.302797	28.961129
191053	4.878 ac	-95.305201	28.963731
191053	5.403 ac	-95.305169	28.962878
191053	4.970 ac	-95.305142	28.962016
0	1.558 ac	-95.303938	28.961437

1906614.946 ac-95.27229328.91906614.944 ac-95.27276128.91906614.942 ac-95.27322828.91906714.885 ac-95.2672128.91906165.040 ac-95.27154128.91906165.051 ac-95.2728128.91906644.953 ac-95.2708928.91906624.951 ac-95.27135728.91906624.951 ac-95.2748928.91907344.739 ac-95.2748928.91907243.066 ac-95.2746428.91906614.937 ac-95.27416428.91906614.553 ac-95.2746828.91906610.372 ac-95.2756828.91906515.055 ac-95.2756828.91907241.589 ac-95.26963228.91907241.589 ac-95.27534428.91907241.589 ac-95.26856328.91907241.589 ac-95.27593128.91906510.545 ac-95.27593128.91906510.545 ac-95.27507828.91906510.545 ac-95.27507828.91906510.545 ac-95.27507828.91906510.545 ac-95.27507828.91906510.545 ac-95.27507828.91906510.545 ac-95.27507828.91906510.545 ac-95.27507828.91906510.545 ac-95.27507828.9 <tr< th=""><th>72784 72419 72054 71689 76421 75865 74866 73514 73149 66524 71269 70959 71262 70531 71353 70644 70356 97287 72695 72297</th></tr<>	72784 72419 72054 71689 76421 75865 74866 73514 73149 66524 71269 70959 71262 70531 71353 70644 70356 97287 72695 72297
190661 4.946 ac -95.272293 28.9 190661 4.944 ac -95.272761 28.9 190661 4.942 ac -95.273228 28.9 190661 4.942 ac -95.273228 28.9 190671 4.885 ac -95.271228 28.9 190616 5.040 ac -95.271541 28.9 190616 5.051 ac -95.27281 28.9 190664 4.953 ac -95.27089 28.9 190662 4.951 ac -95.271357 28.9 190662 4.951 ac -95.27489 28.9 190724 3.066 ac -95.27489 28.9 190724 3.066 ac -95.274164 28.9 190724 1.573 ac -95.274164 28.9 190661 4.937 ac -95.27568 28.9 190724 1.573 ac -95.27568 28.9 190661 0.372 ac -95.27568 28.9 190724 0.376 ac -95.268859 28.9 190724<	72419 72054 71689 76421 75865 74866 73514 73514 71269 70959 71262 70531 71353 70644 70356 97287 72695 72297
1906614.944 ac-95.27276128.91906614.942 ac-95.27322828.91906714.885 ac-95.2672128.91906165.040 ac-95.27154128.91906165.051 ac-95.2728128.91906644.953 ac-95.2708928.91906624.951 ac-95.27135728.91906624.951 ac-95.2748928.91907344.739 ac-95.2748928.91907243.066 ac-95.26963828.91907241.573 ac-95.27416428.91906610.372 ac-95.2756828.91906610.372 ac-95.2756828.91907240.376 ac-95.26963228.91907241.553 ac-95.26963228.91907241.556 ac-95.26856328.91907241.589 ac-95.26856328.91907241.768 ac-95.27534428.91906510.545 ac-95.27593128.91906510.545 ac-95.27507828.91906510.545 ac-95.27507828.91906510.545 ac-95.27507828.91906510.545 ac-95.27507828.91906510.545 ac-95.27507828.91906510.545 ac-95.27507828.91906510.545 ac-95.27507828.9	72054 71689 76421 75865 74866 73514 73514 71269 70959 71262 70531 71353 70644 70356 97287 72695 72297
1906614.942 ac-95.27322828.91906714.885 ac-95.2672128.91906165.040 ac-95.27154128.91906165.051 ac-95.2728128.91906644.953 ac-95.2708928.91906624.951 ac-95.27135728.91907344.739 ac-95.2748928.91907243.066 ac-95.26963828.91906614.937 ac-95.27416428.91906614.553 ac-95.27040228.91907241.573 ac-95.27454328.91906610.372 ac-95.2756828.91907240.376 ac-95.26963228.91907241.589 ac-95.26963228.91907241.589 ac-95.26901128.91907241.589 ac-95.26901128.91907240.545 ac-95.27593128.91906510.545 ac-95.27507828.91906510.545 ac-95.27507828.91906510.545 ac-95.27593128.91906510.545 ac-95.27507828.91906510.545 ac-95.27507828.91906510.545 ac-95.27507828.91906510.545 ac-95.27593128.91906510.545 ac-95.27507828.91906592.175 ac-95.27507828.9	71689 76421 75865 74866 73514 73149 66524 71269 70531 71262 70531 71353 70644 70356 97287 72695 72297
1906714.885 ac-95.2672128.91906165.040 ac-95.27154128.91906165.051 ac-95.2728128.91906644.953 ac-95.2708928.91906624.951 ac-95.27135728.91907344.739 ac-95.2748928.91907243.066 ac-95.26963828.91907241.573 ac-95.27446428.91906614.937 ac-95.2746428.91906614.553 ac-95.27454328.91906610.372 ac-95.2756828.91906610.376 ac-95.26963228.91907241.553 ac-95.26963228.91907240.376 ac-95.26963228.91907241.589 ac-95.26885928.91907241.589 ac-95.26963228.91907241.768 ac-95.27593128.91906510.545 ac-95.27593128.91906510.545 ac-95.27507828.91906510.545 ac-95.27507828.91906510.545 ac-95.27507828.91906510.545 ac-95.27507828.91906510.545 ac-95.27507828.91906510.545 ac-95.27507828.91906510.545 ac-95.27507828.91906592.175 ac-95.27507828.9	76421 75865 74866 73514 73149 66524 71269 70959 71262 70531 71353 70644 70356 97287 72695 72297
1906165.040 ac-95.27154128.91906165.051 ac-95.2728128.91906644.953 ac-95.2708928.91906624.951 ac-95.27135728.91907344.739 ac-95.2748928.91907243.066 ac-95.26963828.91907241.573 ac-95.27416428.91906614.937 ac-95.27454328.91906614.553 ac-95.27454328.91906610.372 ac-95.27454328.91906610.376 ac-95.26963228.91907242.155 ac-95.26963228.91907241.589 ac-95.26885928.91907241.589 ac-95.26963228.91907241.589 ac-95.26901128.91906510.545 ac-95.27593128.91906510.545 ac-95.27593128.91906510.545 ac-95.27507828.91906510.545 ac-95.27507828.91906510.545 ac-95.27593128.91906510.545 ac-95.27507828.91906510.545 ac-95.27507828.91906510.545 ac-95.27507828.91906510.545 ac-95.27507828.91906592.175 ac-95.27507828.9	75865 74866 73514 73149 66524 71269 70959 71262 70531 71353 70644 70356 97287 72695 72297
1906165.051 ac-95.2728128.91906644.953 ac-95.2708928.91906624.951 ac-95.27135728.91907344.739 ac-95.2748928.91907243.066 ac-95.26963828.91907241.573 ac-95.27416428.91907241.573 ac-95.27454328.91906614.553 ac-95.27454328.91906610.372 ac-95.2756828.91906610.376 ac-95.26963228.91907242.155 ac-95.26963228.91907241.589 ac-95.26856328.91907241.589 ac-95.26856328.91907241.589 ac-95.26901128.91907241.589 ac-95.26901128.91906510.545 ac-95.27593128.91906510.545 ac-95.27593128.91906510.545 ac-95.27507828.91906510.545 ac-95.27593128.91906510.545 ac-95.27593128.91906510.545 ac-95.27593128.91906510.545 ac-95.27593128.91906510.545 ac-95.27593128.91906510.545 ac-95.27593128.91906510.545 ac-95.27507828.91906592.175 ac-95.27507828.9	74866 73514 73149 66524 71269 71262 70531 71353 70644 70356 97287 72695 72297
1906644.953 ac-95.2708928.91906624.951 ac-95.27135728.91907344.739 ac-95.2748928.91907243.066 ac-95.26963828.91906614.937 ac-95.27416428.91907241.573 ac-95.27040228.91907241.573 ac-95.27454328.91906614.553 ac-95.27454328.91906610.372 ac-95.2756828.91906610.376 ac-95.26963228.91907242.155 ac-95.26963228.91907241.589 ac-95.26856328.91907241.589 ac-95.26901128.91907240.545 ac-95.27593128.91906510.545 ac-95.27593128.91906510.545 ac-95.27593128.91906510.545 ac-95.27507828.91906510.545 ac-95.27507828.91906512.175 ac-95.27507828.9	73514 73149 66524 71269 70959 71262 70531 71353 70644 70356 97287 72695 72297
1906624.951 ac-95.27135728.91907344.739 ac-95.2748928.91907243.066 ac-95.26963828.91906614.937 ac-95.27416428.91907241.573 ac-95.27040228.91907241.573 ac-95.27454328.91906614.553 ac-95.27454328.91906610.372 ac-95.2756828.91907240.376 ac-95.26885928.91907242.155 ac-95.26963228.91907241.589 ac-95.26856328.91907241.589 ac-95.26901128.91907241.768 ac-95.27593128.91906510.545 ac-95.27507828.91906592.175 ac-95.27507828.9	73149 66524 71269 70959 71262 70531 71353 70644 70356 97287 72695 72297
1907344.739 ac-95.2748928.91907243.066 ac-95.26963828.91906614.937 ac-95.27416428.91907241.573 ac-95.27040228.91906614.553 ac-95.27454328.91906610.372 ac-95.2756828.91907240.376 ac-95.26885928.91907242.155 ac-95.26963228.91907245.055 ac-95.27534428.91907241.589 ac-95.26856328.91907241.589 ac-95.26901128.91907241.768 ac-95.27593128.91906510.545 ac-95.27507828.91906592.175 ac-95.27507828.9	66524 71269 70959 71262 70531 71353 70644 70356 97287 72695 72297
1907243.066 ac-95.26963828.91906614.937 ac-95.27416428.91907241.573 ac-95.27040228.91906614.553 ac-95.27454328.91906610.372 ac-95.2756828.91907240.376 ac-95.26885928.91907242.155 ac-95.26963228.91907245.055 ac-95.27534428.91907241.589 ac-95.26856328.91907241.589 ac-95.26901128.91907241.589 ac-95.26901128.91906510.545 ac-95.27593128.91906510.545 ac-95.27593128.91906510.545 ac-95.27593128.91906510.545 ac-95.27593128.91906512.175 ac-95.27507828.91906592.175 ac-95.27507828.9	71269 70959 71262 70531 71353 70644 70356 97287 72695 72297
1906614.937 ac-95.27416428.91907241.573 ac-95.27040228.91906614.553 ac-95.27454328.91906610.372 ac-95.2756828.91907240.376 ac-95.26885928.91907242.155 ac-95.26963228.91906515.055 ac-95.26856328.91907241.589 ac-95.26856328.91907241.589 ac-95.26963228.91907241.589 ac-95.26901128.91907241.768 ac-95.27593128.91906510.545 ac-95.27593128.91906514.939 ac-95.27369628.91906512.175 ac-95.27507828.9	70959 71262 70531 71353 70644 70356 97287 72695 72297
1907241.573 ac-95.27040228.91906614.553 ac-95.27454328.91906610.372 ac-95.2756828.91907240.376 ac-95.26885928.91907242.155 ac-95.26963228.91906515.055 ac-95.27534428.91907241.589 ac-95.26856328.91907241.768 ac-95.26901128.91906510.545 ac-95.27593128.91906510.545 ac-95.27593128.91906510.545 ac-95.27593128.91906510.545 ac-95.27593128.91906510.545 ac-95.27593128.91906512.175 ac-95.27507828.91906592.175 ac-95.27507828.9	71262 70531 71353 70644 70356 97287 72695 72297
1906614.553 ac-95.27454328.91906610.372 ac-95.2756828.91907240.376 ac-95.26885928.91907242.155 ac-95.26963228.91906515.055 ac-95.27534428.91907241.589 ac-95.26856328.91907241.768 ac-95.26901128.91906510.545 ac-95.27593128.91906510.545 ac-95.27593128.91906510.545 ac-95.27369628.91906512.175 ac-95.27507828.9	70531 71353 70644 70356 97287 72695 72297
1906610.372 ac-95.2756828.91907240.376 ac-95.26885928.91907242.155 ac-95.26963228.91906515.055 ac-95.27534428.91907241.589 ac-95.26856328.91907241.768 ac-95.26901128.91906510.545 ac-95.27593128.91906510.545 ac-95.27593128.91906514.939 ac-95.27369628.91906592.175 ac-95.27507828.9	71353 70644 70356 97287 72695 72297
1907240.376 ac-95.26885928.91907242.155 ac-95.26963228.91906515.055 ac-95.27534428.91907241.589 ac-95.26856328.91907241.768 ac-95.26901128.91906510.545 ac-95.27593128.91906510.545 ac-95.27593128.91906614.939 ac-95.27369628.91906592.175 ac-95.27507828.9	70644 70356 97287 72695 72297
1907242.155 ac-95.26963228.91906515.055 ac-95.27534428.91907241.589 ac-95.26856328.91907241.768 ac-95.26901128.91906510.545 ac-95.27593128.91906614.939 ac-95.27369628.91906592.175 ac-95.27507828.9	70356 97287 72695 72297
1906515.055 ac-95.27534428.1907241.589 ac-95.26856328.91907241.768 ac-95.26901128.91906510.545 ac-95.27593128.91906614.939 ac-95.27369628.91906592.175 ac-95.27507828.9	97287 72695 72297
1907241.589 ac-95.26856328.91907241.768 ac-95.26901128.91906510.545 ac-95.27593128.91906614.939 ac-95.27369628.91906592.175 ac-95.27507828.9	72695 72297
1907241.768 ac-95.26901128.91906510.545 ac-95.27593128.91906614.939 ac-95.27369628.91906592.175 ac-95.27507828.9	72297
1906510.545 ac-95.27593128.91906614.939 ac-95.27369628.91906592.175 ac-95.27507828.9	
1906614.939 ac-95.27369628.91906592.175 ac-95.27507828.9	72455
190659 2.175 ac -95.275078 28.9	72155
	71324
	69317
190730 3.598 ac -95.272801 28.9	68609
	68065
190732 3.351 ac -95.273779 28.9	67943
190733 4.804 ac -95.273929 28.9	67239
190672 4.744 ac -95.27442 28.9	66888
190725 2.618 ac -95.2683 28.9	70776
190672 4.549 ac -95.270201 28.9	70187
190672 4.527 ac -95.270688 28.9	69872
190660 1.626 ac -95.274395 28.9	69666
190727 2.640 ac -95.271576 28.9	69933
190728 3.136 ac -95.271951 28.9	69443
190729 2.768 ac -95.272488 28.9	69177
190616 5.061 ac -95.274078 28.9	73868
190630 1.221 ac -95.276331 28.9	73498
190672 0.659 ac -95.268334 28.	97317
190725 2.057 ac -95.269387 28.9	71852
190616 4.656 ac -95.267742 28.9	76088
190616 4.422 ac -95.274274 28.9	76333
190626 0.997 ac -95.27588 28.9	77073
190670 3.958 ac -95.268379 28.9	75876
190627 1.394 ac -95.276231 28.9	76594
190626 4.237 ac -95.27471 28.9	75923
190669 4.174 ac -95.2688 28.9	75457
190628 1.600 ac -95.276599 28.9	76153
190627 3.787 ac -95.275082 28.9	75448
190667 4.305 ac -95.269118 28.9	74987
	75175
190616 1.812 ac -95.277034 28.9	75772
190616 4.960 ac -95.269487 28.9	74609
190719 3.819 ac -95.264809 28.9	74641
190628 3.131 ac -95.275458 28.	97501
190629 2.792 ac -95.277311 28.	97522

POTENTIAL BU SITE F Cont.					
Property ID	Acreage	Latitude	Longitude		
190720	1.692 ac	-95.265606	28.974753		
190665	4.958 ac	-95.269954	28.974244		
190630	4.075 ac	-95.277489	28.97455		
190616	3.210 ac	-95.27587	28.974635		
0	4.956 ac	-95.270422	28.973879		
190629	2.374 ac	-95.276138	28.974099		
190623	1.211 ac	-95.273435	28.978755		
190624	1.083 ac	-95.273994	28.978522		
190620	1.991 ac	-95.270491	28.978313		
190621	2.868 ac	-95.271189	28.978138		
190619	0.575 ac	-95.269779	28.978429		
190622	3.435 ac	-95.271803	28.977905		
0	2.553 ac	-95.272628	28.975821		
190616	4.596 ac	-95.269036	28.977805		
190623	3.241 ac	-95.272306	28.977621		
190625	0.955 ac	-95.274499	28.978175		
190624	4.192 ac	-95.272842	28.977364		
190616	0.764 ac	-95.27494	28.977826		
0	4.934 ac	-95.266702	28.976753		
0	2.710 ac	-95.271562	28.975039		
190625	4.211 ac	-95.273339	28.977017		
190616	5.030 ac	-95.270273	28.976863		
190616	0.844 ac	-95.275455	28.97748		
190616	3.995 ac	-95.273804	28.976674		
0	1.631 ac	-95.265945	28.976687		
190667	4.305 ac	-95.269118	28.974987		
190616	4.960 ac	-95.269487	28.974609		
190745	1.727 ac	-95.281668	28.962447		
190640	3.032 ac	-95.283958	28.963251		
190616	0.161 ac	-95.281687	28.963352		
190642	2.909 ac	-95.284871	28.962455		
190744	1.755 ac	-95.281199	28.962822		
190643	1.618 ac	-95.285202	28.962254		
190672	1.852 ac	-95.282094	28.962035		
0	0.342 ac	-95.28228	28.961777		
190746	1.199 ac	-95.282657	28.961776		
190747	0.625 ac	-95.283356	28.961574		
190616	2.331 ac	-95.281785	28.964495		
190627	4.701 ac	-95.278178	28.96398		
190616	1.700 ac	-95.2822	28.964372		
0	1.281 ac	-95.281738	28.963141		
190740	4.696 ac	-95.278648	28.963616		
190741	4.691 ac	-95.279118	28.963253		
190616	0.601 ac	-95.281949	28.963999		
190616	2.757 ac	-95.28356	28.963411		
190742	4.600 ac	-95.279601	28.96291		
190616	3.129 ac	-95.284318	28.963054		
190641	3.260 ac	-95.284616	28.962779		
190743	3.229 ac	-95.280387	28.962894		
190636	2.505 ac	-95.280061	28.966659		
190638	2.559 ac	-95.280489	28.966334		
190616	4.998 ac	-95.278715	28.965942		
190639	3.268 ac	-95.280602	28.965713		
190616	2.458 ac	-95.280829	28.965296		
190672	4.712 ac	-95.277239	28.964707		

POTENTIAL BU SITE F Cont.				
Property ID Acreage Latitude Long				
190616	2.454 ac	-95.281148	28.965024	
190739	4.707 ac	-95.277708	28.964343	
190616	2.331 ac	-95.281469	28.964756	
0	2.147 ac	-95.278744	28.967112	
190634	2.488 ac	-95.279234	28.967337	
190635	2.550 ac	-95.279633	28.966987	

PRIVATE DMPA SITE A				
Property ID	Acreage	Latitude	Longitude	
194549	0.233 ac	-95.337943	28.922056	
194548	0.191 ac	-95.338157	28.922011	
194550	0.175 ac	-95.337803	28.921898	
194536	0.145 ac	-95.339253	28.921978	
194547	0.112 ac	-95.33835	28.921925	
194537	0.143 ac	-95.339407	28.921922	
194546	0.124 ac	-95.338493	28.921835	
194545	0.145 ac	-95.33865	28.921748	
194551	0.130 ac	-95.337698	28.921733	
194544	0.139 ac	-95.338811	28.921662	
194539	0.142 ac	-95.339605	28.921636	
194552	0.135 ac	-95.337612	28.921581	
194543	0.146 ac	-95.338966	28.921578	
591338	0.862 ac	-95.340252	28.921315	
194542	0.134 ac	-95.339113	28.921495	
194553	0.136 ac	-95.337525	28.92143	
194540	0.135 ac	-95.339516	28.921482	
194541	0.234 ac	-95.339346	28.921353	
194554	0.150 ac	-95.337434	28.921276	
194555	0.189 ac	-95.337361	28.921095	
194657	0.380 ac	-95.340136	28.920938	
194556	0.215 ac	-95.337261	28.920929	
194565	0.206 ac	-95.338364	28.920857	
194566	0.171 ac	-95.338589	28.920883	
194567	0.169 ac	-95.338772	28.92082	
194568	0.215 ac	-95.338926	28.920689	
194557	0.251 ac	-95.33716	28.920749	
194656	0.264 ac	-95.340109	28.920709	
194558	0.315 ac	-95.337243	28.920597	
194564	0.163 ac	-95.338289	28.920621	
194559	0.227 ac	-95.337459	28.920489	
194563	0.179 ac	-95.33819	28.920503	
194560	0.179 ac	-95.337628	28.920421	
194655	0.209 ac	-95.340039	28.920517	
194561	0.366 ac	-95.337838	28.920314	
194562	0.350 ac	-95.338083	28.9203	
194569	0.261 ac	-95.338716	28.920397	
194589	0.260 ac	-95.336807	28.920197	
194588	0.214 ac	-95.337001	28.920234	
194654	0.211 ac	-95.339937	28.920351	
194587	0.151 ac	-95.33722	28.920134	
194570	0.214 ac	-95.33861	28.920186	
194653	0.231 ac	-95.339827	28.920185	
194590	0.162 ac	-95.336667	28.920026	
194586	0.143 ac	-95.337405	28.920045	
194652	0.245 ac	-95.339713	28.920013	
194571	0.229 ac	-95.338518	28.920005	
194585	0.214 ac	-95.337591	28.919931	
194591	0.099 ac	-95.336582	28.919886	
194651	0.246 ac	-95.3396	28.919843	
194572	0.241 ac	-95.338428	28.919826	
194584	0.301 ac	-95.337748	28.919784	
194592	0.108 ac	-95.336523	28.91977	

PRIVATE DMPA SITE A Cont.			
Property ID	Acreage	Latitude	Longitude
194650	0.256 ac	-95.339491	28.919675
194593	0.158 ac	-95.336451	28.919632
194573	0.234 ac	-95.338345	28.919655
194583	0.297 ac	-95.337678	28.919569
194594	0.163 ac	-95.336371	28.919477
194649	0.275 ac	-95.339377	28.919504
194574	0.229 ac	-95.338271	28.91949
194595	0.180 ac	-95.336293	28.919323
194582	0.265 ac	-95.337582	28.919353
194648	0.288 ac	-95.339263	28.919328
194575	0.237 ac	-95.338204	28.919323
194596	0.181 ac	-95.336216	28.91917
194576	0.289 ac	-95.338115	28.919143
194647	0.286 ac	-95.339152	28.919151
194581	0.137 ac	-95.337382	28.919137
194597	0.201 ac	-95.336135	28.919019
194646	0.280 ac	-95.339043	28.918982
194580	0.105 ac	-95.337536	28.919013
194598	0.275 ac	-95.336046	28.918841
194579	0.100 ac	-95.337729	28.918949
194577	0.147 ac	-95.338133	28.918892
194578	0.094 ac	-95.337912	28.918886
194645	0.298 ac	-95.338934	28.918814
194599	0.202 ac	-95.336581	28.91864
194644	0.289 ac	-95.338834	28.918638
194614	0.215 ac	-95.335876	28.91857
194600	0.175 ac	-95.336769	28.918565
194601	0.190 ac	-95.336942	28.918492
194643	0.295 ac	-95.338726	28.918466
194615	0.174 ac	-95.335756	28.918436
194602	0.183 ac	-95.33711	28.918412
194603	0.192 ac	-95.337279	28.918339
194616	0.150 ac	-95.335641	28.918304
194613	0.191 ac	-95.336365	28.918257
194604	0.162 ac	-95.337562	28.918312
194642 194612	0.282 ac 0.165 ac	-95.33863 -95.336541	28.918288 28.918152
194617	0.103 ac	-95.335526	28.918152
194611	0.143 ac 0.153 ac	-95.336702	28.918138
194641	0.133 ac	-95.338536	28.918078
194605	0.121 ac	-95.337564	28.918109
1946003	0.121 ac	-95.336858	28.917992
194618	0.175 dc	-95.335411	28.917985
194609	0.177 de 0.188 ac	-95.337028	28.917902
194606	0.100 dc	-95.337481	28.917976
194640	0.127 ac	-95.338448	28.917928
194619	0.232 ac	-95.335348	28.917528
194607	0.120 ac	-95.337399	28.917828
194639	0.120 ac	-95.338356	28.91753
194620	0.283 ac	-95.335532	28.917627
194628	0.149 ac	-95.337233	28.917721
194638	0.241 ac	-95.338256	28.917575
194621	0.175 ac	-95.335776	28.91749
13:021	0.17.0 40	55.555776	2010 17, 45

PRIVATE DMPA SITE A Cont.			
Property ID	Acreage	Latitude	Longitude
194622	0.149 ac	-95.335958	28.917394
194637	0.222 ac	-95.338154	28.917402
194623	0.148 ac	-95.336123	28.917308
194624	0.148 ac	-95.336286	28.917219
194636	0.238 ac	-95.338052	28.917231
194625	0.155 ac	-95.336452	28.917134
194626	0.147 ac	-95.336612	28.917052
194635	0.228 ac	-95.337948	28.917058
194627	0.161 ac	-95.336771	28.916968
194628	194628 0.163 ad	-95.336936	28.916884
194634	0.237 ac	-95.337844	28.916886
194629	0.165 ac	-95.337098	28.916799
194630	0.229 ac	-95.337281	28.916683
0	2.836 ac	-95.336524	28.920243
0	0.824 ac	-95.338725	28.921967
0	17.694 ac	-95.337868	28.919356
0	7.588 ac	-95.339508	28.918813
0	0.375 ac	-95.338432	28.920382
0	0.426 ac	-95.337442	28.920227
0	0.465 ac	-95.337884	28.919357
0	0.717 ac	-95.336691	28.91834

PRIVATE DMPA SITE B				
Property ID	Acreage	Latitude	Longitude	
163175	14.717 ac	-95.351157	28.912479	
162715	0.643 ac	-95.352238	28.912737	
162720	120.191 ac	-95.351492	28.905854	
179987	120.327 ac	-95.357247	28.908024	
162716	19.602 ac	-95.349063	28.907785	
163175	1.403 ac	-95.350598	28.910887	
162716	10.319 ac	-95.351409	28.909653	
163176	12.383 ac	-95.348202	28.908047	
162716	14.446 ac	-95.34842	28.905473	
162717	26.455 ac	-95.360585	28.905111	
162719	27.904 ac	-95.36196	28.903884	
164001	8.713 ac	-95.361168	28.90043	
162716	74.594 ac	-95.354389	28.90155	
162718	78.812 ac	-95.357564	28.899459	
164003	9.963 ac	-95.360702	28.900244	
0	26.694 ac	-95.329479	28.920887	
0	2.898 ac	-95.347389	28.907576	
162716	19.602 ac	-95.349063	28.907785	
163176	12.383 ac	-95.348202	28.908047	

PRIVATE DMPA SITE C			
Property ID	Acreage	Latitude	Longitude
162709	131.112 ac	-95.370217	28.932274
162699	113.155 ac	-95.375437	28.92622
162703	54.318 ac	-95.373347	28.923019
663312		0	0

PRIVATE DMPA SITE D				
Property ID	Acreage	Latitude	Longitude	
655979	29.744 ac	-95.309241	28.979279	
655979	30.290 ac	-95.315468	28.980296	
218366	130.697 ac	-95.312012	28.985434	
218368	62.850 ac	-95.31479	28.977404	
218368	40.678 ac	-95.309368	28.977016	

PRIVATE DMPA SITE E				
Property ID	Acreage	Latitude	Longitude	
191297	5.076 ac	-95.29891	28.991436	
191268	5.135 ac	-95.299911	28.991421	
191329	5.005 ac	-95.300905	28.991408	
191328	4.920 ac	-95.300852	28.989506	
191268	5.075 ac	-95.292228	28.987824	
191268	5.021 ac	-95.29989	28.987748	
191312	4.908 ac	-95.301098	28.986242	
191268	5.095 ac	-95.290842	28.984548	
191297	5.329 ac	-95.293641	28.984495	
191268	5.027 ac	-95.298251	28.984421	
191268	4.986 ac	-95.290791	28.982519	
191268	5.015 ac	-95.298203	28.98239	
191268	5.266 ac	-95.297835	28.989557	
191268	5.003 ac	-95.292194	28.986355	
191288	5.095 ac	-95.294785	28.986319	
191288	5.011 ac	-95.295481	28.98446	
191299	4.850 ac	-95.294575	28.984475	
0	0.531 ac	-95.301459	28.993367	
191268	5.298 ac	-95.288254	28.980332	
191268	2.447 ac	-95.289671	28.980233	
191339	2.341 ac	-95.290038	28.980219	
491421	4.770 ac	-95.290603	28.980256	
491421	4.633 ac	-95.29137	28.980278	
191268	5.437 ac	-95.292246	28.980349	
191278	4.425 ac	-95.293196	28.980451	
191268	4.625 ac	-95.294213	28.980575	
191268	4.400 ac	-95.29542	28.980679	
191268	4.172 ac	-95.296724	28.980715	
491421	4.478 ac	-95.298017	28.980627	
491421	4.452 ac	-95.29917	28.980491	
491421	4.476 ac	-95.300156	28.980283	
191268	5.180 ac	-95.300974	28.980034	
191283	4.906 ac	-95.299661	28.99273	
191283	5.176 ac	-95.296091	28.989807	
191326	5.021 ac	-95.298857	28.989538	
191327	5.083 ac	-95.29986	28.989522	
191268	5.311 ac	-95.295391	28.989144	
191268	7.040 ac	-95.293382	28.989102	
191268	5.706 ac	-95.291237	28.987223	
191268	5.875 ac	-95.290496	28.987043	
191268	5.123 ac	-95.293522	28.987804	
191268	5.060 ac	-95.294822	28.987786	
191268	4.950 ac	-95.297391	28.987782	
191268	5.078 ac	-95.296122	28.98777	
191268	7.457 ac	-95.289414	28.986907	

PRIVATE DMPA SITE E Cont.				
Property ID	Acreage	Latitude	Longitude	
191268	5.506 ac	-95.288156	28.986113	
191317	5.061 ac	-95.293487	28.986339	
191268	5.143 ac	-95.296087	28.986303	
191268	4.837 ac	-95.297352	28.986287	
191268	4.978 ac	-95.299854	28.986257	
191287	2.696 ac	-95.289671	28.984571	
191285	2.525 ac	-95.290147	28.984561	
191268	5.000 ac	-95.291764	28.98453	
191296	5.082 ac	-95.292687	28.984512	
191268	5.168 ac	-95.296419	28.984453	
191268	4.846 ac	-95.297344	28.984434	
191268	4.946 ac	-95.300093	28.984399	
191297	4.893 ac	-95.300996	28.984386	
191283	5.527 ac	-95.287716	28.98463	
191283	5.374 ac	-95.287642	28.984015	
191281	5.170 ac	-95.287625	28.983428	
191288	5.080 ac	-95.289851	28.982537	
191290	4.885 ac	-95.291713	28.982505	
191295	4.994 ac	-95.292636	28.982486	
191268	4.862 ac	-95.294512	28.98244	
191268	5.024 ac	-95.295426	28.982431	
191268	5.041 ac	-95.287599	28.982862	
191302	4.833 ac	-95.297289	28.982409	
191268	4.953 ac	-95.30005	28.982363	
191306	4.918 ac	-95.300958	28.982346	
191280	5.965 ac	-95.287103	28.982223	
191268	6.276 ac	-95.287296	28.981578	
191268	5.298 ac	-95.287678	28.980923	
191283	5.786 ac	-95.300067	28.99395	
0	3.757 ac	-95.296486	28.981362	
646420	4.556 ac	-95.289081	28.980027	
191284	5.515 ac	-95.28791	28.985293	
191268	5.241 ac	-95.297894	28.991427	
191268	5.697 ac	-95.296952	28.990359	
191288	5.060 ac	-95.298633	28.987766	
191288	5.006 ac	-95.298595	28.98627	
191288	5.026 ac	-95.299176	28.984413	
191288	5.146 ac	-95.293584	28.982472	
191288	5.131 ac	-95.296367	28.982427	
191268	5.018 ac	-95.299131	28.98238	
191200	5.136 ac	-95.301069	28.994603	
191336	4.726 ac	-95.299834	28.993273	
0	1.485 ac	-95.300876	28.992406	
0	2.586 ac	-95.298082	28.988541	
191313	4.956 ac	-95.30114	28.987732	
0	3.483 ac	-95.296947	28.985512	
0	0.966 ac	-95.289358	28.983598	
0	0.200 ac	55.205550	20.303330	

PRIVATE DMPA SITE F				
Property ID	Acreage	Latitude	Longitude	
573376	11.312 ac	-95.317713	29.017582	
168799	307.964 ac	-95.305913	29.01828	
168799	198.258 ac	-95.310011	29.020653	

Appendix D

Contaminant Assessment Report FLNG Terminal, Dock 1 Project

Freeport LNG Liquefaction Project and Phase II Developments Environmental Analysis

Appendix D

Contaminant Assessment Report FLNG Terminal Dock 1 Project

CONTAMINANT ASSESSMENT REPORT FLNG TERMINAL, DOCK 1 PROJECT BRAZORIA COUNTY, TEXAS

Prepared for:

Freeport LNG 333 Clay Street, Suite 5050 Houston, Texas 77002

Prepared by:

Lloyd Engineering, Inc 6565 West Loop South, Suite 708 Bellaire, Texas 77401

October 2016

Table of Contents

				Page	
List of	Tables .			iii	
List of	Figures			iii	
List of	Append	lices		iii	
Acrony	ms and	Abbrev	riations	iv	
1.0	OBJEC	TIVES .		1-1	
2.0	OVERV	/IEW		2-1	
3.0	APPRO	DACH		3-1	
4.0	SAMPL	E COLI	ECTION	4-2	
	4.1	OVERV	/IEW	4-2	
	4.2	SAMPL	ING SITES	4-2	
	4.3	WATEF	R QUALITY	4-5	
	4.4	WATEF	R SAMPLES	4-5	
	4.5	SEDIM	ENT SAMPLES	4-5	
		4.5.1	Bulk Samples	4-5	
		4.5.2	Elutriates	4-6	
		4.5.3	Grain Size Analysis	4-6	
	4.6	SAMPL	E COLLECTION, PRESERVATION, AND STORAGE	4-6	
	4.7	CHAIN	OF CUSTODY	4-6	
5.0	ANALY	'SES		5-1	
	5.1	PHYSIC	CAL AND CHEMICAL ANALYSES	5-1	
	5.2	LABOR	ATORY QUALITY CONTROL	5-3	
	5.3	CHEMI	CAL ANALYSES	5-4	
		5.3.1	Water Quality	5-5	
		5.3.2	Water and Elutriate Chemistry	5-7	
		5.3.3	Sediment Chemistry	5-10	
		5.3.4	Sediment Grain Size	5-12	
6.0	SUMM	ARY		6-1	
7.0	CONCLUSION7-1				
8.0	REFER	ENCES		8-1	

<u>Tables</u>

Table 1	Sample Location Details and Analyses, FLNG Terminal, Dock 1 Project, Brazoria County, Texas	. 4-3
Table 2	Parameters Determined by Chemical Analysis, FLNG Terminal, Dock 1 Project, Brazoria County, Texas	.5-2
Table 3	Water Quality Data, FLNG Terminal, Dock 1 Project, Brazoria County, Texas	. 5-6
Table 4	Concentrations of Detected Compounds in Water Samples, FLNG Terminal, Dock 1 Project, Brazoria County, Texas	. 5-8
Table 5	Concentrations of Detected Compounds in Elutriate Samples, FLNG Terminal, Dock 1 Project, Brazoria County, Texas	
Table 6	Concentrations of Detected Compounds in Sediment Samples, FLNG Terminal, Dock 1 Project, Brazoria County, Texas	
Table 7	Summary of Grain-Size Composition, FLNG Terminal, Dock 1 Project Brazoria	5-13

Figures

Figure 1. 3-2Sediment and Water Sampling Locations	Figure 1. 3-2Sediment and Water	Sampling Locations
--	---------------------------------	--------------------

Appendices

Appendix A	Sampling and Analysis Plan (SAP)
Appendix B	Chemical Data
Appendix C	Grainsize Data
Appendix D	Electronic Data Deliverable (EDD): Raw Laboratory Results Data (Excel Attachment)

Acronyms and Abbreviations

ASTM	American Society for Testing and Materials		
AWQC	ambient water quality criteria		
BDL	below detection limit		
°C	degrees Celsius		
CFR	Code of Federal Regulations		
cm	centimeter		
CMC	criteria maximum concentration		
COC	contaminant(s) of concern		
су	cubic yards		
DA 85	Upland Confined Dredge Material Placement Area 85		
DMPA	dredged material placement area		
DO	dissolved oxygen		
EPA	U.S. Environmental Protection Agency		
ERL	effects range low		
ERM	effects range medium		
ft	feet/foot		
FLNG	Freeport LNG		
GPS	global positioning system		
ITM	Evaluation of Dredged Material Proposed For Discharge in Waters of the U.S Testing Manual. Inland Testing Manual.		
LDL	laboratory detection limit		
L	liter		
LRL	laboratory reporting limit		
MDL	method detection limit		
mg	milligram		
mph	miles per hour		
μg	microgram		
μm	micrometer		
mm	millimeter		
mS	millisiemens		
NWP	Nationwide Permit		
NELAC	National Environmental Laboratory Accreditation Conference		
NELAP	National Environmental Laboratory Accreditation Program		
NOAA	National Oceanic and Atmospheric Administration		
NTU	nephlometric turbidity unit		
NWDLS	North Water District Laboratory Services, Inc.		
PAH	polycyclic aromatic hydrocarbon		
PCB	polychlorinated biphenyl		
PCL	protective concentration levels		
psu	practical salinity unit		

QA	(quality assurance
QC	(quality control
%sat	F	percent saturation
SAP	5	sampling and analysis plan
SOP	5	standard operating procedure
SQuiRT	Ś	Screening Quick Reference Tables
SU	5	standard unit
TAC	-	Texas Administrative Code
TDL	t	target detection limit
TRRP	-	Texas Risk Reduction Program
TSWQS	-	Texas Surface Water Quality Standards
UCPA	ι	upland confined placement area
USACE	l	U.S. Army Corps of Engineers
WQS	١	water quality standard

1.0 Objectives

The objectives of this dredging application and testing are to:

- a. Collect sediment and water samples from the berth area at Dock 1 of the Freeport LNG (FLNG) Terminal, which adequately characterizes the materials to be dredged, as described below in Section 2.
- b. Analyze the dredged material samples for chemical contaminants of concern (COC) and physical characteristics in order to determine the suitability of the material to be placed in Upland Confined Placement Area 85 (DA 85) in Freeport, Texas.
- c. Document the field sampling and results of physical and chemical analyses and quality control measures.
- d. Collect sufficient data to determine whether unacceptable adverse impacts would result from dredging and dredged material placement operations.

2.0 Overview

Freeport LNG is providing the following contaminant assessment, prepared by Lloyd Engineering, INC (LEI), to the U.S. Army Corps of Engineers (USACE) Galveston District as part of permit application SWG-2003-02110, for the proposed FLNG Terminal, Dock 1 project located in Freeport, Brazoria County, Texas. FLNG is requesting authorization from USACE under Nationwide Permit (NWP) 35 (Maintenance Dredging) for dredging and placement of material into DA 85. Refer to Figure 1 for a depiction of the location of the proposed project.

This document presents the results of the sampling and analyses of sediment, water, elutriate chemistry, and sediment grain size within the Dock 1 dredge footprint. The proposed dredging activities associated would result in the removal of approximately 320,000 cubic yards (cy) of sediment, of which only 150,000 cy would be placed in DA85. The remaining material will be placed at an FLNG owned and operated Dredged Material Placement Area (DMPA) or other approved placement area.

3.0 Approach

Site water and sediment samples were collected by LEI on behalf of FLNG, to characterize the maintenance material proposed to be dredged in association with the FLNG Terminal, Dock 1. Sediment and water samples were collected within the proposed dredge footprint by LEI personnel and tested by National Environmental Laboratory Accreditation Program (NELAP)-certified laboratories to determine whether adverse impacts would be expected as a result of proposed activities. Chemical and grain-size analyses were performed on all sediment samples collected within the proposed dredge footprint. In addition, chemical analyses were conducted on all water and elutriate samples. All sampling procedures strictly followed LEI standard operating procedure (SOP) outlined in the sampling and analysis plan (SAP) for the collection, testing, and analyses of sediment and water samples (Appendix A).

The resource documents listed below were used for guidance when developing the sampling protocol and analyses to place 150,000 cy of the 320,000 cy of dredge material from the FLNG Terminal, Dock 1 dredge footprint at DA 85:

- a. U.S. Environmental Protection Agency (EPA) and USACE (1998). *Evaluation of Dredged Material Proposed for Discharge in Waters of the US - Testing Manual. Inland Testing Manual* (ITM).
- b. EPA and USACE (1995). QA/QC Guidance for Sampling and Analysis of Sediments, Water and Tissues for Dredged Material Evaluations (Chemical Evaluations). EPA-823-B-95-001.
- c. USACE (2003). Evaluation of Dredged Material Proposed for Disposal at Island, Nearshore, or Upland Confined Disposal Facilities Testing Manual.

4.0 Sample Collection

4.1 Overview

The SAP for the proposed project was prepared by LEI and approved by the USACE Galveston District on July 19, 2016, prior to initiating sampling (Appendix A). Samples were collected and tested to determine the potential for adverse impacts resulting from the proposed dredging and material placement operations associated with the proposed project. Field sampling protocol and laboratory analyses were conducted according to the same methodology used by the USACE Galveston District for routine sediment, water, and elutriate analyses prior to dredging.

4.2 Sampling Sites

Samples were collected August 4, 2016, from a total of six USACE pre-approved sampling locations within the proposed dredge footprint. The six sampling sites and one duplicate were selected based on their distribution within the proposed dredge footprint, to accurately characterize the material proposed to be removed and relocated. Table 1 provides the global positioning system (GPS) coordinates of the sampling locations, as well as, lists the analyses that were conducted at each of the sampling locations.

All sampling locations were navigated to and documented using a handheld GPS unit. Figure 1 depicts the USACE-approved sampling locations and the actual sampling locations from which sediment and water samples were collected.

Sampling Station ID	Sample Matrix	Original Proposed GPS Coordinates (Latitude, Longitude)	Revised Sampled GPS Coordinates (Latitude, Longitude)	Station Type	Analyses ¹
QI-16-01	Sediment, Water	28°56'24.24"N	95°18'16.83"W	Open Water	W, S, E, GS
QI-16-02	Sediment, Water	28°56'24.64"N	95°18'20.56"W	Open Water	W, S, E, GS
QI-16-03	Sediment, Water	28°56'22.12"N	95°18'20.54"W	Open Water	W, S, E, GS
QI-16-04	Sediment, Water	28°56'22.16"N	95°18'25.43"W	Open Water	W, S, E, GS
QI-16-05	Sediment, Water	28°56'19.41"N	95°18'26.08"W	Open Water	W, S, E, GS
QI-16-06	Sediment, Water	28°56'27.12"N	95°18'28.62"W	Open Water	W, S, E, GS
Duplicate	Sediment, Water	Duplicate	Duplicate	Open Water	W, S, E, GS

Table 1Sample Location Details and Analyses FLNG Terminal, Dock 1 Project, Brazoria County, Texas

1

 $W = water sample collected for analysis of water chemistry \\ S = sediment sample collected for analysis of sediment chemistry \\ E = water and sediment samples collected for chemical analysis of elutriate \\$

GS = sediment sample collected for grain-size analysis

Figure 1. Sediment and Water Sampling Locations for Maintenance Dredging at Dock 1, FLNG Terminal, Brazoria County, Texas

4.3 Water Quality

At each sampling location, *in situ* standard water quality parameters were measured using a YSI 6920 V2 multi-parameter data sonde instrument. *In situ* water quality measurements are recorded any time a water sample is collected, as the data is used not only for quality control purposes, but a set of parameters (salinity, pH, and water temperature) are used to calculate EPA's acute criteria maximum concentration [CMC] for ammonia in saltwater (listed in the summary results tables for water and elutriate, Tables 4 and 5, respectively). Water quality parameters measured and recorded in the field included dissolved oxygen (DO), milligrams/liter (mg/L) and percent saturation (%sat); pH, standard units (SU); salinity, practical salinity units (psu); specific conductivity, millisiemens per centimeter (mS/cm); water temperature, degrees Celsius (°C); turbidity, nephlometric turbidity units (NTU); total water depth in feet (ft), at sampling location; and profile depth in ft, at which the measurement was taken.

4.4 Water Samples

Water samples for chemical analyses were collected using a non-contaminating peristaltic pump with Teflon tubing. Each water sample was collected between one-third and midway to the bottom of the water column. Prior to filling sample containers, the peristaltic pump was allowed to run in order to purge the existing hose and ensure that the water collected was representative of the sample location. Water samples were then collected in pre-cleaned polyethylene or glass bottles containing preservatives that were provided by North Water District Laboratory Services, Inc. (NWDLS), in accordance with EPA standards.

Water samples for metals analysis, with the exception of mercury and selenium (due to TCEQ Texas Surface Water Quality Standards [TSWQS] requirements), were filtered by NWDLS through 0.45-micrometer (polycyclic) filters.

For water samples collected for preparation of elutriates, pre-cleaned, brown-glass bottles were used for the collection of water samples that were used in organic analyses. All bottles were filled completely with no air bubbles or headspace. All of the sample containers were placed into an ice chest and chilled on ice until relinquished to NWDLS following completion of sampling.

4.5 Sediment Samples

4.5.1 Bulk Samples

LEI personnel collected sediment samples for chemistry and grain-size analyses at all sampling locations. Sediment samples were collected using a stainless-steel petit ponar grab sampler.

Prior to collection at each site, the sampling device was rinsed with deionized water and an anionic detergent (Alconox®) followed by a rinse with ambient site water. The jars were filled completely to avoid any head space and to ensure total sample volume was achieved. The sample bottles were placed into an ice chest and chilled until delivered to NWDLS following the completion of sampling.

4.5.2 Elutriates

The elutriate samples for chemical analyses were prepared from site sediment and site water, combined by NWDLS personnel at a 1:4 ratio, respectively, as designated in the ITM (EPA and USACE, 1998).

4.5.3 Grain Size Analysis

Samples of sediments from each sample station were collected in the field and tested by NWDLS, in the laboratory, for grain-size analysis (American Society for Testing and Materials [ASTM] D422). Samples were subjected to standard sieve analysis (sieve sizes 4, 10, 20, 40, 50, 70, 100, 140, and 200) to determine the percent of fine sand and larger particles. Hydrometer analyses (elapsed time reading of 2, 4, 30, 60, 120, 240, and 1,440 minutes) complemented by specific gravity determinations, were conducted to determine the percent silt, clay, and colloidal material in the sediments. Cut-off points between medium and fine sand, fine sand and silt, silt and clay, and clay and colloidal material are sieve size 40, sieve size 200, 0.005, and 0.001 millimeter (mm), respectively.

4.6 Sample Collection, Preservation, and Storage

Prior to sample collection, all containers and sampling equipment were cleaned according to protocols described in Plumb (1981). Care was taken to avoid contamination of sampling devices from the boat deck and other surfaces. In addition, powderless latex or nitrile gloves were worn during sample collection, to prevent contamination of samples. Samples were stored in the dark at temperatures between 2 and 4 °C until delivered to NWDLS for testing and analyses.

4.7 Chain of Custody

Strict chain-of-custody protocols were followed, pursuant to LEI SOP for field collections, as well as Plumb (1981). For sample collection dates and times, refer to the field sampling log provided in Appendix B.

5.0 Analyses

The following section summarizes the results of the chemical and grain-size analyses and reports all significant values and parameters determined by the results of the tests performed. The raw data and complete results from the NWDLS and NELAP-certified subcontracted laboratories are provided for reference in Appendix B, which include the laboratory analysis reports for the chemical analyses. The results of the laser grain-size analysis are also provided in Appendix C.

5.1 Physical and Chemical Analyses

Water, elutriate, and sediment samples from each station were analyzed for the parameters listed in Table 2. Sediment samples are reported as dry weight. The methods of analysis and the minimum detection levels (i.e., target detection limits [TDL]), are included in Appendix B. NWDLS is certified by NELAP for all chemical analyses conducted on water, sediment, and elutriate samples.

<u>Table 2</u> Parameters Determined by Chemical Analysis FLNG Terminal, Dock 1 Project Brazoria County, Texas METALS								
Aluminum	Iron							
Antimony	Lead							
Arsenic	Manganese							
Barium	Mercury							
Beryllium	Nickel							
	Selenium							
Chromium (total)	Silver							
Chromium (3+)	Thallium							
Chromium (6+)	Tin 							
Cobalt	Zinc							
Copper								
CONVENTIONAL/AN	CILLARY PARAMETERS							
Ammonia	Total Suspended Solids							
Cyanides	Total Settleable Solids							
Total Organic Carbon (TOC)	Total Solids/Dry Weight							
Total Petroleum Hydrocarbons (TPH)	Total Volatile Solids							
Total Recovered TPH	Specific Gravity							
Total Phenols	рН							
Acid Volatile Sulfides	Total Moisture Content							
Total Sulfides	Total Lipid							
Grain Size								
LPAH C	OMPOUNDS							
Naphthalene	Phenanthrene							
Acenaphthylene	Anthracene							
Acenaphthene	Methylnaphthalene							
Fluorene	2-Methylnaphthalene							
HPAH C	OMPOUNDS							
Fluoranthene	Benzo(a)pyrene							
Pyrene	Indeno[1,2,3-c,d]pyrene							
Benzo(a)anthracene	Dibenzo[a,h]anthracene							
Chrysene	Benzo[g,h,i]perylene							
Benzo(b&k)fluoranthene								
	OGEN COMPOUNDS							
Benzidine	Nitrobenzene							
3,3'-Dichlorobenzidine	N-Nitrosodimethyl amine							
2,4-Dinitrotoluene	N-Nitrosodi-n-propylamine							
2,6-Dinitrotoluene	N-Nitrosodiphenylamine							
1,2-Diphenylhydrazine								
	ATE ESTERS							
Dimethyl Phthalate	Butyl Benzyl Phthalate							
Diethyl Phthalate	Bis[2-ethylhexyl] Phthalate							
Di-n-Butyl Phthalate	Di-n-octyl Phthalate							
	TITUTED PHENOLS							
Phenol	2-Nitrophenol							

2-Methylphenol	4-Nitrophenol	
4-Methylphenol	2,4-Dinitrophenol	
2,4-Dimethylphenol	4,6-Dinitrophenol	
Pentachlorophenol	2-Chlorophenol	
2,4,6-Trichlorophenol	2,4-Dichlorophenol	
4-Chloro-3-methylphenol	4,6-Dinitro-o-cresol	
POLYCHLORINA	TED BIPHENYLS (PCB)	
PCB Congeners & Aroclors	Total PCB	
PE	STICIDES	
Aldrin	Beta-BHC	
Chlordane and Derivatives	Delta-BHC	
Dieldrin	Gamma-BHC (Lindane)	
4,4'-DDD	Toxaphene	
4,4'-DDE	Methoxychlor	
4,4'-DDT	Chlorbenside	
Endosulfan and Derivatives	Dacthal	
Endrin and Derivatives	Total Chlorinated Pesticides	
Heptachlor and Derivatives	Malathion	
Alpha-BHC	Parathion	
CHLORINATE	DHYDROCARBONS	
1,3-Dichlorobenzene	2-Chloronapthalene	
1,4-Dichlorobenzene	Hexachlorocyclopentadiene	
1,2-Dichlorobenzene	Hexachloroethane	
1,2,4-Trichlorobenzene	Hexachlorobutadiene	
Hexachlorobenzene		
VOLATILE ORGAN	NIC COMPOUNDS (VOC)	
Benzene	Trichloroethene	
Chloroform	Tetrachloroethene	
Ethylbenzene	Total Xylenes	
Toluene		
HALOGEN	IATED ETHERS	
Bis(2-chloroethyl)ether	Bis(2-chloroisopropyl)ether	
4-Chlorophenyl phenyl ether	Bis(2-Chloroethoxy)methane	
4-Bromophenyl phenyl ether		
MISCE	LLANEOUS	
Isophorone	Methyl Ethyl Keytone	
Benzyl Alcohol	Resin Acids and Guaiacols	
Benzoic Acid		

5.2 Laboratory Quality Control

Documentation of all laboratory quality control (QC) activities performed specifically in conjunction with this project is furnished along with sample results in Appendix C. The laboratory QC program included:

NELAP-certified Laboratory – NWDLS has current accreditation status consistent with standards adopted by the National Environmental Laboratory Accreditation Conference (NELAC).

Method Blanks – Method blanks were performed at a frequency of one per batch of samples, per matrix type, per sample extraction or preparation method.

Laboratory Control Samples – Laboratory control samples were analyzed at a minimum of 1 per batch of 20 or fewer samples per matrix type, per sample extraction or preparation method, except for analytes for which spiking solutions were not available.

Matrix Spikes – Matrix spikes were performed at a frequency of 1 in 20 samples per matrix type, per sample extraction or preparation method, except for analytes for which spiking solutions were not available. The spike concentration was no greater than 25 to 50 percent of the maximum concentration along the linear segment of the instrument calibration curve for any analyte.

Surrogates – Surrogate compounds were added to all samples, standards, and blanks for all organic chromatography methods, except when the matrix precluded their use or when a surrogate was not available.

Field Equipment Blanks – Analysis of field equipment blanks were performed at a frequency of one per batch of samples collected.

Calibration of Instrumentation – Instrumentation was calibrated and periodic instrument checks were performed according to manufacturer and EPA recommendations and appropriate SOP.

Performance Evaluation – Participation in performance evaluation and method studies available from EPA and ASTM are conducted by NWDLS at least on a semi-annual basis.

Evaluation of Solutions and Reagents – Each new shipment or lot of solvent, reagent, or adsorbent is evaluated for purity in accordance with appropriate SOP.

Preparation and Verification of Standards – Standards are prepared and verified by NWDLS in accordance with appropriate SOP.

QC Limits and Control Charts – Calculation of QC limits and preparation of control charts are performed by NWDLS in accordance with appropriate SOP.

Out-of-Control Events – Any out-of-control events or outlier data were noted and corrective action was taken in accordance with appropriate SOP.

5.3 Chemical Analyses

The laboratory analysis report provided by NWDLS for the chemical analyses of the water, elutriate, and sediment samples is included in Appendix B. The laboratory data is also provided in electronic data deliverable (EDD) format in Appendix D. Concentrations of COC that were detected in the water, elutriate, and sediment samples are described in the following sections.

Chemical analytical data are reported with a number of conventions and qualifications. Values quantified at concentrations greater than the laboratory reporting limit (LRL) are recorded as per laboratory reports. Analytes that were detected above the laboratory detection limit (LDL) but below the LRL represent estimated concentrations with high uncertainty and are qualified as "J." Analytes that were not detected above the LDL are reported as below detection limit (BDL) and are assigned a value of one half the LDL where pertinent. The method detection limit (MDL) is a statistically derived expression of theoretical detection capability and is based on standard deviation of replicate spiked samples taken through all steps of analytical procedure, based on standard procedure from 40 Code of Federal Regulations (CFR) Part 136. The LDL is the MDL modified to account for matrix interferences, dilution, or other factors which increase the detection limit, so that the laboratory has confidence that an analyte actually has or has not been detected at that limit. Analytes detected because of laboratory introduction of an analyte, independent of field conditions, are qualified as "B."

5.3.1 Water Quality

Standard water quality parameters were measured for all sampling stations. Table 3 summarizes the water quality parameters recorded for each station at the time in which water samples were collected.

The total water depth for the sampling locations ranged from 26.0 to 44.0 ft. Water quality measurements were collected at 10 ft below the water surface. The water temperature observed for all sites resulted in little variation, ranging from 29.38 to 30.25°C.

Specific conductance for all sampling locations ranged from 56.42 to 56.59 mS/cm. Salinity for all sampling locations ranged from 33.4 to 33.8 psu. DO ranged from 66.9 to 75.3 %sat and from 4.21 to 4.73 mg/L. Measurements observed for pH varied little among sites, ranging from 8.01 to 8.06 SU. Turbidity ranged from 6.5 to 7.4 NTU.

<u>Table 3</u> Water Quality Data FLNG Terminal, Dock 1 Project Brazoria County, Texas

Station ID	Date	Time	Total Depth	Depth Profile	Profile Sample Depth	Water Temp.	Sp. Cond.	Salinity	Disso Oxy		pН	Turbidity
			(ft)		(ft)	(°C)	(mS/cm)	(psu)	(% sat)	(mg/L)	(SU)	(NTU)
QI-16-01	8/4/2016	9:41	26.0	Middle	10.0	30.18	56.42	33.40	67.5	4.23	8.01	7.4
QI-16-02	8/4/2016	9:56	35.0	Middle	10.0	30.25	56.54	33.80	70.3	4.40	8.04	6.5
QI-16-03	8/4/2016	10:58	37.0	Middle	10.0	29.38	56.59	33.80	66.9	4.21	8.02	8.4
QI-16-04	8/4/2016	11:14	34.0	Middle	10.0	29.94	56.42	34.40	72.9	4.58	8.04	6.8
QI-16-05	8/4/2016	11:29	34.0	Middle	10.0	30.18	56.56	33.80	75.3	4.73	8.06	6.8
QI-16-06	8/4/2016	11:44	44.0	Middle	10.0	29.90	56.56	34.50	71,7	4.58	8.05	6.8

5.3.2 Water and Elutriate Chemistry

The results of chemical analysis for COC detected in water and elutriate samples are presented in Tables 4 and 5, respectively, and include both the TCEQ TSWQS and the EPA national recommended ambient water quality criteria (AWQC) for the protection of aquatic life. Since the sediment and water samples used to prepare elutriate are from grab samples from a marine environment, the acute marine TSWQS and acute WQC (criteria maximum concentration [CMC]) are appropriate for comparison. (NOTE: Since the project area is within Texas state waters, only the TSWQS must be met; thus, the EPA CMCs are provided only as a reference.) The ammonia CMC is specific to each individual pH, temperature, and salinity and the values given in Tables 4 and 5 are for the average of the pH, temperature, and salinity values of these parameters in Table 3. An examination of Table 4, indicates that none of the COC concentrations detected in any of the water samples were found to be in exceedance of any acute state TSWQS or federal CMC.

Elutriates were prepared by NWDLS personnel from site sediment and corresponding aquatic site water, combined at a 1:4 ratio, respectively. For trace metals analysis, with the exception of mercury and selenium, the elutriate samples were filtered or centrifuged to remove suspended material. Therefore, the elutriate samples provide information on those constituents that move into the water column during dredging and open-water placement. An examination of Table 5 indicates that none of the COC concentrations detected in any of the elutriate samples were found to be in exceedance of any acute state TSWQS or federal CMC.

					COC Detection Results														
Parameter	Units	TDL	SDL	WQS*	CMC*	QI-16-0	1	QI-16-02		QI-16-03		QI-16-0	4	QI-16-05		QI-16-06		EQUIP (Metal Bla	
Arsenic	μg/L	1	0.5	149	69	3.77		4.41		4.49		4.21		4.65		4.09		BDL	
Copper	μg/L	1	0.25	13.5	4.8	1.06	J	1.4	J	1.07	J	1.17	J	1.06	J	1.29	J	0.265	Γ.
Nickel	μg/L	1	0.25	118	74	1.02	J	1.01	J	0.776	J	0.917	J	1.04	J	1.09	J	0.074	Γ.
Selenium	μg/L	2	1.665	564	290	14.5		13.8		14.7		17.3		15.4		15.9		BDL	-
Zinc	μg/L	1	0.5	92.7	90	5.01	J	7.41	J	4.06	J	5.88	J	6.22	J	9.31	J	1.45	Γ.
Ammonia as N	mg/L	0.03	0.05	N/A	23.7	BDL		BDL		BDL		BDL		BDL		BDL		N/A	-
Total Organic Carbon	%	0.1	0.00005	N/A	N/A	0.00027	59	0.000285	1	0.000190	6	0.00021	97	0.0002349		0.0001972	2	N/A	
TPH, C6-C35	mg/L	0.1	3.22	N/A	N/A	BDL		BDL		BDL		BDL		BDL		BDL		N/A	
Bis(2-ethylhexyl)phthalate	μg/L	2	0.25	N/A	N/A	BDL		BDL		BDL		BDL		BDL		BDL		N/A	
*Texas Water Quality Standa J = The reported value is betw B = Analyte was found in the	veen the	limit of d	letection (N						ing	the highest b	rief	ly (acute lin	nit)	without resultir	ng ir	an unaccepta	able	effect.	

<u>Table 4</u> Concentrations of Detected Compounds in Water Samples FLNG Terminal, Dock 1 Project Brazoria County, Texas

TDL = Target Detection Level; SDL = Sample Detection Level

										со	C I	Detection Re	esu	lts				
Parameter	Units	TDL	SDL	WQS*	CMC*	QI-16-01		QI-16-02		QI-16-03		QI-16-04		QI-16-05		QI-16-06		Duplicate
Arsenic	μg/L	1	0.5	149	69	BDL		7.58	J	13	J	13	J	12.1	J	12.4	J	12.5 J
Beryllium	μg/L	0.2	0.05	N/A	N/A	BDL		BDL		BDL		BDL		BDL		BDL		BDL
Cadmium	μg/L	1	0.25	40	40	BDL		BDL		BDL		BDL		BDL		BDL		BDL
Chromium	μg/L	1	0.375	N/A	N/A	BDL		BDL		BDL		BDL		BDL		BDL		BDL
Copper	μg/L	1	0.25	13.5	4.8	1.02	J	0.691	J	0.528	J	0.481	J	0.902	J	0.41	J	0.537 J
Lead	μg/L	1	0.125	133	210	BDL		BDL		0.154	J	BDL		0.18	J	BDL		0.234 J
Nickel	μg/L	1	0.25	118	74	2.17	J	1.59	J	1.94	J	1.27	J	1.98	J	1.35	J	2.88 J
Selenium	μg/L	2	0.25	564	290	16.6	J	18.9	J	16.9	J	12.2	J	11.9	J	14.5	J	13.3 J
Silver	μg/L	1	1.665	2	1.9	BDL		BDL		BDL		BDL		BDL		BDL		BDL
Zinc	μg/L	1	0.5	92.7	90	7.3	J	4.39	J	5.09	J	3.54	J	8.95	J	4.61	J	4.7 J
Ammonia as N	mg/L	0.03	0.05	N/A	23.7	1.46		1.63		1.26		1.89		1.41		2.11		1.92
Total Organic Carbon	%	0.1	0.00005	N/A	N/A	0.0003182		0.0003118		0.0003839)	0.0004035		0.000390	1	0.0004079)	0.0003312

<u>Table 5</u> Concentrations of Detected Compounds in Elutriate Samples FLNG Terminal, Dock 1 Project Brazoria County, Texas

*Texas Water Quality Standards and EPA Saltwater Criterion Maximum Concentration (CMC) for estimating the highest briefly (acute limit) without resulting in an unacceptable effect.

J = The reported value is between the limit of detection (MDL) and the practical quantitation limit (RL).

B = Analyte was found in the associated method blank.

Dup = Duplicate Sample; BDL = Below Detection Limits

TDL = Target Detection Level; SDL = Sample Detection Level

5.3.3 Sediment Chemistry

Sediment concentrations of detected analytes are presented in Table 6. There are no enforceable sediment quality criteria or standards with which to compare concentrations in the sediment. However, there are several different guidelines that are used to look for a cause for concern in sediment samples, one of which is effects range low (ERL). ERL was developed by a technique that demonstrates no cause and effect from the chemicals in the data set, and when ERL derived from sets of data from different areas are compared, the results are inconsistent (USACE, 1998). Since the ERL is not based on cause-and-effect data, it is used only to determine a possible "cause of concern" and represents a benchmark concentration at which adverse effects *may* occur. When an exceedance in an ERL occurs, the effects range medium (ERM) benchmark value is then evaluated, as this is the concentration at which adverse effects are *likely* to occur, given the reservations noted above. The ERL for each analyte presented in Table 6 is derived from those given in the National Oceanic and Atmospheric Administration (NOAA) 2008 Screening Quick Reference Tables (SQuiRT) (Buchman, 2008).

An examination of Table 6 indicates that there were no exceedances of the ERL.

Since these sediments are destined for any upland confined placement area (UCPA), it is customary (Hauch, 2012) to also compare to the Human Health Protective Concentration Levels (PCL), provided by the TCEQ as part of the Texas Risk Reduction Program (TRRP, 30 TAC §350). The PCLs in the TCEQ TRRP Table 4, last revised March 4, 2016, are the ^{TOT}SOIL_{COMB} PCLs. These values represent the results from the combined equations for ingestion of surface soil + dermal contact with surface soil + inhalation of surface soil volatiles and particulates + consumption of garden vegetables grown in contaminated surface soil. An examination of Table 6 indicates that no exceedances of any PCL values occurred.

							I, Dock 1 ounty, Tex		-				
Parameter	Units	NOAA ERL*	NOAA ERM**	TDL	Max SDL	TCEQ PCL***	COC Detection Results						
							QI-16-01	QI-16-02	QI-16-03	QI-16-04	QI-16-05	QI-16-06	Duplicate
Antimony	mg/kg	N/A	N/A	2.5	0.011	15	BDL	BDL	BDL	BDL	BDL	BDL	BDL
Arsenic	mg/kg	8.2	70	0.3	0.07	24	2.57	2.62	2.63	2.52	2.25	2.25	2.39
Beryllium	mg/kg	N/A	N/A	1	0.011	38	0.351	0.358	0.355	0.349	0.319	0.326	0.352
Cadmium	mg/kg	1.2	9.6	0.1	0.011	52	0.052 J	0.051 J	0.058 J	0.056 J	0.041 J	0.046 J	0.05 J
Chromium	mg/kg	81	370	1	0.084	33000	5.82	5.93	5.87	5.85	5.39	5.55	5.64
Trivalent Chromium	mg/kg	N/A	N/A	1	1.425	33000	5.82	5.93	5.86	5.81	5.39	5.55	5.64
Copper	mg/kg	34	270	1	0.057	1300	5.31	5.39	5.91	5.71	4.9	5.06	5.24
Lead	mg/kg	46.7	218	0.3	0.014	500	5.05	5.18	5.25	5.13	4.68	4.67	5.06
Mercury	mg/kg	0.15	0.71	0.2	0.029	3.60	BDL	BDL	BDL	0.074	BDL	BDL	BDL
Nickel	mg/kg	20.9	51.6	0.5	0.028	840	6.82	6.94	6.82	6.61	6.26	6.31	6.37
Selenium	mg/kg	N/A	N/A	0.5	0.28	310	1.05	1.04	1.07	1	0.946	0.96	0.908
Silver	mg/kg	1	3.7	0.2	0.006	97	0.019	0.018	0.025	0.025	0.018	0.002	0.022
Thallium	mg/kg	N/A	N/A	0.2	0.026	6.3	0.042 J	0.042 J	0.043 J	0.043 J	0.038 J	0.004	0.004
Zinc	mg/kg	150	410	2	0.114	9900	18.4	18.4	21.5	21.2	17.5	19.4	20.1
Ammonia as N	mg/kg	N/A	N/A	0.1	57	1500	56	71 J	60 J	BDL	59 J	65 J	78 J
Total Organic Carbon	%	N/A	N/A	0.1	0.071	N/A	0.7995	0.8648	0.8859	0.6962	0.6236	0.9625	0.5662
TPH, C6-C35	mg/kg	N/A	N/A	5	28.5	2300	BDL	BDL	BDL	BDL	BDL	BDL	BDL
% Solids	%	N/A	N/A	0.1	0.01	N/A	40.04	41.03	39.05	37.95	34.59	35.28	37.33

Table 6Concentrations of Detected Compounds in Sediment SamplesFLNG Terminal, Dock 1 ProjectBrazoria County, Texas

*NOAA ERL = Effects Range Low; one of NOAA's acute guidelines for the minimum concentration of contaminants in saltwater at which adverse effects may occur. Values highlighted in yellow were observed in exceedance of the ERL.

**NOAA ERM = Effects Range Median; one of NOAA's acute guidelines for the concentration of contaminants in saltwater sediment at which adverse effects are likely to occur.

***TCEQ PCL = Protective Concentration Levels for Human Health are site-specific and path-specific calculated values to represent the results from the combined equations for ingestion of surface soil + dermal contacts with surface soil + inhalation of surface soil volatiles and particulates + consumtion of garden vegetables grown in contaminated surface soil.

Dup = Duplicate Sample

BDL = Below Detection Limit

J = The reported value is between the limit of detection (MDL) and the practical quantitation limit (RL).

5.3.4 Sediment Grain Size

None of the samples contained gravel or large particles (Table 7). The aquatic sediment samples, which are representative of the material proposed for hydraulic dredge removal, ranged in composition among stations between 1.2 and 2.8 percent sand, 57.2 and 61.0 percent silt, and 38.1 and 41.3 percent clay.

<u>Table 7</u> Summary of Laser Grain-Size Composition FLNG Terminal, Dock 1 Project Brazoria County, Texas

					Sec	diment Sa	amples					
Completio	Gravel			Sand					Silt			Clay
Sample ID	Grn %	Crs %	Med %	Fine %	Vf %	Total	Med %	Fine %	Vf %	Total	Clay %	
QI-16-01	0.0	0.0	0.0	0.1	1.9	2.1	4.7	11.5	20.3	23.3	59.8	38.1
QI-16-02	0.0	0.0	0.0	0.1	1.3	1.4	4.0	10.2	19.2	23.8	57.2	41.3
QI-16-03	0.0	0.0	0.0	0.1	2.0	2.1	5.2	11.7	20.1	22.6	59.7	38.2
QI-16-04	0.0	0.0	0.0	0.2	2.6	2.8	5.7	11.4	19.9	22.9	59.9	37.3
QI-16-05	0.0	0.0	0.0	0.1	1.3	1.4	3.9	11.1	21.3	24.7	61.0	37.6
QI-16-06	0.0	0.0	0.0	0.1	1.1	1.2	3.5	10.7	20.7	23.6	58.5	40.3
Duplicate	0.0	0.0	0.0	0.1	1.7	1.8	4.4	11.4	21.0	23.3	60.1	38.1

6.0 Summary

All sampling stations as depicted in Figure 1 and noted in the SAP provided in Appendix A, were collected by LEI personnel according to the requirements within the USACE-approved SAP. Samples were collected from a total of six sampling locations. Additionally, one duplicate sample was collected.

Water quality parameters taken at the time of collection, which include the sampling location GPS coordinates, are presented in Table 3. Included in Tables 2 and 6 are a list of parameters for each analysis required and the concentrations of detected parameters in sediment, respectively. Also included in the tables are appropriate standards, criteria, or screening values to which the detected parameters can be compared.

Water, elutriate, and sediment results show that no acute WQS were exceeded in the concentrations of the compounds detected in any of the water or elutriate samples. There were no exceedances of ERL, ERM or TCEQ PCL benchmark values.

7.0 Conclusion

÷

Based on the results of this assessment, there is nothing in the chemical analyses that would indicate a concern with the dredging or placement of these sediments in an UCPA under the guidance provided by the ITM and/or SAP.

8.0 References

- Buchman, M. F. 2008. NOAA Screening Quick Reference Tables. NOAA OR7R Report 08-1. Seattle, Washington. Office of Response and Restoration Division. National Oceanic and Atmospheric Administration, 34 pp.
- Hauch, Rob. 2012. Houston Ship Channel Testing, Galveston District Presentation, dated July 24, 2012. http://www.swg.usace.army.mil/Portals/26/docs/PAO/6%20HSC%20testing.pdf.
- Plumb, R. H., Jr. 1981. Procedure for Handling and Chemical Analysis of Sediment and Water Samples. EPA/CE-81-1. Prepared by State University College at Buffalo, Great Lakes Laboratory, Buffalo, NY U.S. Environmental Protection Agency and U.S. Army Corps of Engineers, Waterways Experiment Station, Vicksburg, MS.
- U.S. Army Corps of Engineers. 2003. "Evaluation of dredged material proposed for disposal at island, nearshore, or upland confined disposal facilities - Testing Manual," Technical Report ERDC/EL TR-03-1, U.S. Army Engineer Research and Development Center, Vicksburg, MS.
- ———. 1998. Use of Sediment Quality Guidelines (SQG) in Dredged Material Management. Dredging Research Technical Note EEDP-04-29. USACE Waterways Experiment Station. May 1998.
- U.S. Environmental Protection Agency (EPA). 1993. Interim Reports on Data and Methods for Assessment of 2, 3, 7, 8-Tetrachlorodibenzo-p-dioxin Risk to Aquatic Life and Associated Wildlife. EPA/600/ R93/055.
- ———. 1995. QA/QC Guidance for Sampling and Analysis of Sediments, Water and Tissues for Dredged Material Evaluations (Chemical Evaluations). EPA-823-B-95-001. Office of Water Office of Science and Technology, Standards and Applied Science Division. U.S. Environmental Protection Agency, Washington, DC 20460.
- ———. 1998. Evaluation of Dredged Material Proposed For Discharge in Waters of the U.S. Testing Manual, Inland Testing Manual. EPA-823-B-98-004, Washington, D.C.

Appendix A

Sampling and Analysis Plan (SAP)

July 18, 2016

US Army Corps of Engineers Ms. Lisa Finn 2000 Fort Point Road Galveston, Texas 77550

Subject: Sampling and Analysis Plan for Sediment and Water Collection, Testing, and Analysis for Maintenance Dredging Freeport LNG Dock 1 Freeport, Texas

Dear Ms. Finn,

Attached please find a draft sampling and analysis plan for sediment and water sample collection, testing, and analysis in conjunction with immediate maintenance dredging required at Dock 1 of the Quintana Terminal located in Freeport, Texas. Record rain fall in Brazoria County has led to abnormally high shoaling rates at the dock. Dredging is required immediately in anticipation of a ship arriving in September 2016 at Dock 1. Based on the most recent survey data, the current depths would cause the ship ground.

Please reply with your approval so that we may initiate field work. Should you have any questions or concerns, please contact Erin Piper or me. Erin can be contacted at Epiper@freeportIng.com and I can be contacted at marisa@lloydeng.com.

Sincerely,

Lloyd Engineering, Inc. TXBPE # 2846

Manuelle

Marisa Weber Director of Environmental Services

SAMPLING AND ANALYSIS PLAN SAMPLING AND CHEMICAL ANALYSIS DOCK 1 AT QUINTANA TERMINAL FREEPORT ENTRANCE CHANNEL, BRAZORIA COUNTY, FREEPORT, TEXAS

Objectives

Sediment and water samples will be collected from the dredge footprint area of Dock 1 Quintana Terminal located along the western shoreline of the Freeport Entrance Channel in Freeport, Brazoria County, Texas, for the purpose of conducting testing to characterize the maintenance dredge material to be excavated. The evaluation will be comprised of chemical analyses of sediment, water, and elutriate samples, and grain-size analyses of sediment samples. The dredging project will require the hydraulic dredging of approximately 320,000 cubic yards of material to a maximum project depth of -46.5 feet NADV88 plus 2 feet advanced maintenance at the dock breasting line; however, only 150,000 cubic yards of material will be placed at federal Dredge Material Placement Area (DMPA) 85. The remaining material will be placed at an FLNG owned and operated DMPA or other approved placement area.

Six water, sediment and elutriate samples plus one duplicate will be collected from the proposed dredging footprint (Table 1). By following this sampling and analysis plan (SAP), all regulatory requirements for the USACE to place material at DMPA 85 will be met. Samples will be collected and tested to determine whether adverse impacts would result from the dredging and dredged material placement operations performed during the dredging project. Field sampling protocol and laboratory analyses will be conducted according to the USACE document, "Sampling and Analysis Plan-Private Dredging Application, USACE Galveston District, Galveston TX" (2015)¹.

Table 1Sample Collection Sites and Analyses to be Performed Dock 1 Quintana Terminal MaintenanceDredging

Sample ID	Sample Matrix	Latitude	Longitude	Analyses
QI-16-01	Sediment, Elutriate	28°56.24.24" N	95°18'16.83″ W	W, S, E, GS*
QI-16-02	Sediment. Elutriate	28°56'24.64" N	95°18'20.56" W	W, S, E, GS*
QI-16-03	Sediment, Elutriate	28°56'22.12 N	95°18'20.54" W	W, S, E, GS*
QI-16-04	Sediment, Elutriate	28°56'22.16 N	95°18'25.43" W	W, S, E, GS*
QI-16-05	Sediment, Elutriate	28°56'19.41 N	95°18'26.08" W	W, S, E, GS*
QI-16- 06	Sediment, Elutriate	28°56'27.12 N	95°18'28.62" W	W, S, E, GS*
QI-16-07	Sediment, Elutriate	DUPLICATE	DUPLICATE	W, S, E, GS*

W = Chemical analysis of a water sample

S = Chemical analysis of a sediment sample

E = Chemical analysis of an elutriate sample

GS = Physical analysis of sediment grain-size

¹ U.S. Army Corps of Engineers. 2015. Sampling and Analysis Plan-Private Dredging Application, USACE Galveston District, Galveston TX.

Prior to sample collection, all containers and sampling equipment will be cleaned according to protocols described in Plumb (1981)², or other appropriate guidance manuals. Care will be taken to avoid contamination to sampling devices from the boat deck or other surfaces. Powderless latex gloves will be worn during sample collection. Navigation to and documentation of all sample sites will be accomplished via a handheld global positioning system (GPS) unit.

Water Sampling

Three water samples will be collected using a suitable non-metallic bilge pump with a food-grade hose or a peristaltic pump. The depth of each water sample will be between mid-depth to one-third of the way to the bottom of the water column. Prior to filling sample containers, the pump will be allowed to run, to purge the existing hose and ensure water collected is representative of the sample location. Water samples will then be collected in polyethylene or glass bottles, pre-cleaned, and prepared with preservatives by the chemistry laboratory. Water samples to be analyzed for metals will be collected using a variable-speed non-contaminating peristaltic pump and Teflon tubing. Water samples to be analyzed for metals other than mercury and selenium are to be filtered through a clean 0.45-micrometer (µm) filter prior to dispensing into containers with acid preservatives, or they will be filtered in the lab. Pre-cleaned brown-glass bottles will be used for organic analyses. All bottles will be filled completely with no air bubbles or headspace.

During water collection, in situ standard water quality parameters will be recorded at each sample site using a multi-parameter sonde instrument. Water quality parameters include dissolved oxygen, recorded in milligrams per liter (mg/L); pH, recorded in standard units (SU); salinity, recorded in practical salinity units (psu); conductivity, recorded in millisiemens per centimeter (mS/cm); water temperature, recorded in degrees Celsius (°C); and water depth, recorded in feet (ft). In addition to water quality parameters, ambient water and weather conditions, as well as the tidal stage at the time of sample collection, will be recorded on field data sheets.

Sediment Sampling

Six surface sediment samples will be collected from the mudline to the depth of dredge using a petit ponar attached to a rope. Prior to collection at each site and between samples the sampling device will be cleaned with Alconox soap, rinsed with deionized water, and rinsed with ambient water; water depth to the sediment surface will also be recorded. Each sample will be placed into a pre-cleaned glass jar. The jar will be filled completely to avoid any head space and to ensure total sample volume. The lid will be tightly secured and the sample bottle placed into an ice chest.

² Plumb, R. H., Jr. 1981. Procedure for Handling and Chemical Analysis of Sediment and Water Samples. EPA/CE-81-1. Prepared by State University College at Buffalo, Great Lakes Laboratory, Buffalo, N.Y. U.S. Environmental Protection Agency and U.S. Army Corps of Engineers Waterways Experiment Station, Vicksburg, MS.

Figure 1: Proposed Sample Locations for Dock 1

Sample Preservation and Storage

Collected samples will be stored at 2 to 4°C but never frozen after collection. Analyses are to be performed within the recommended holding times, as described in the referenced guidance documents.

Chain of Custody

A chain of custody form will be completed according to appropriate guidance manuals and will accompany the samples until laboratory analysis.

Chemical Analyses

Each sample will be analyzed in a laboratory for the analyses shown in Table 2. All chemical analyses will be performed by a laboratory accredited by an accrediting authority recognized by the National Environmental Laboratory Accreditation Program (NELAP) for the analytes/analyte groups and matrices to be analyzed. Parameters to be analyzed are listed in Table 2, along with required detection limits. Sediment samples will be reported as dry weight.

Detected concentrations of contaminants of concern (COC) reported by the laboratory will be evaluated by comparing detected compound concentrations with standard benchmark values provided in the federal and state regulatory agencies' reference guidance documents. Should a detected compound exceed the recommended benchmark value in one or more samples, it shall be documented and discussed in the report.

Table 2

Target Detection Levels (TDL) for Required Analyses of Sediment and Water/Elutriate for Maintenance and New Work Dredging by the USACE^a

Analyte	Sediment ¹	Water/Elutriate ¹
Metals ^b	mg/kg	μg/L
Antimony	2.5	3
Arsenic	0.3 °	1

Analyte	Sediment ¹	Water/Elutriate ¹
Beryllium ^f	1 c	0.2
Cadmium	0.1	1
Chromium (total)	1 ^c	1
Chromium (3+) ^f	1	1
Chromium (6+) ^f	1	1
Copper	1 ^c	1
Lead	0.3 °	1
Mercury	0.2	0.2
Nickel	0.5 °	1
Selenium	0.5 ^c	2
Silver	0.2	1 ^d
Thallium	0.2	1
Zinc	2 °	1
Conventional/Ancillary Parameters	mg/kg	mg/L
Ammonia	0.1	0.03
Cyanides	2	0.1 °
Total Organic Carbon	0.1%	0.1%
Total Petroleum Hydrocarbons	5	0.1
Grain Size	1%	-
Total Solids/Dry Weight	0.1%	-
Total Volatile Solids ^g	0.1%	-
LPAH Compounds	μg/kg	µg/L
Naphthalene	20	0.8 ^c
Acenaphthylene	20	1.0 °
Acenaphthene	20	0.75 °
Fluorene	20	0.6 ^c
Phenanthrene	20	0.5 °
Anthracene	20	0.6 ^c
2-Methylnaphthalene ^g	20	0.9 ^b
HPAH Compounds	μg/kg	μg/L
Fluoranthene	20	0.9 ^c
Pyrene	20	1.5 °
Benzo(a)anthracene	20	0.4 ^c
Chrysene	20	0.3 °
Benzo(b&k)fluoranthene	20	0.6 °
Benzo(a)pyrene	20	0.3 °
Indeno[1,2,3-c,d]pyrene	20	1.2 °
Dibenzo[a,h]anthracene	20	1.3 °
Benzo[g,h,i]perylene	20	1.2 °

Analyte	Sediment ¹	Water/Elutriate ¹
Organonitrogen Compounds	μg/kg	μg/L
Benzidine ^f	5	1
3,3-Dichlorobenzidine ^f	300 °	3 °
2,4-Dinitrotoluene ^f	200 °	2 °
2,6-Dinitrotoluene ^f	200 °	2 °
1,2-Diphenylhydrazine ^f	10	1
Nitrobenzene ^f	160 °	0.9 °
N-Nitrosodimethyl amine ^f	-	3.1 °
N-Nitrosodi-n-propylamine ^f	150 °	0.9 ^c
N-Nitrosodiphenylamine ^f	20	2.1 °
Phthalate Esters	μg/kg	μg/L
Dimethyl Phthalate	50	1 °
Diethyl Phthalate	50	1 °
Di-n-butyl Phthalate	50	1 ^c
Butyl Benzyl Phthalate	50	4 °
Bis[2-ethylhexyl] Phthalate	50	2 °
Di-n-octyl Phthalate	50	3 °
Phenols/Substituted Phenols	μg/kg	μg/L
Phenol	100	10
2,4-Dimethylphenol	20	10
Pentachlorophenol	100	50
2,4,6-Trichlorophenol ^f	140 °	0.9 ^c
4-Chloro-3-methylphenol ^f	140 °	0.7 °
2-Nitrophenol ^f	200 °	2 °
4-Nitrophenol ^f	500 °	5 °
2,4-Dinitrophenol ^f	500 °	5 °
2-Chlorophenol ^f	110 °	0.9 ^c
2,4-Dichlorophenol ^f	120 °	0.8 ^c
4,6-Dinitro-o-cresol ^f	600	10
2-Methylphenol ^g	50	10
4-Methylphenol ^g	100	10
Polychlorinated Biphenyls	μg/kg	μg/L
Total PCB	1	0.01
Pesticides	μg/kg	μg/L
Aldrin	3 °	0.03 °
Chlordane and Derivatives	3 °	0.03 °
Dieldrin	5 °	0.02
4,4'-DDD	5 °	0.1
4,4'-DDE	5 °	0.1
4,4'-DDT	5 °	0.1

Analyte	Sediment ¹	Water/Elutriate ¹		
Endosulfan and Derivatives ^f	5 °	0.1		
Endrin and Derivatives ^f	5 °	0.1		
Heptachlor and Derivatives	3 °	0.1		
Alpha-BHC ^f	3 °	0.03		
Beta-BHC ^f	3 °	0.03		
Delta-BHC ^f	3 °	0.03		
Gamma-BHC (Lindane)	3 °	0.1		
Toxaphene ^f	50	0.5		
Chlorinated Hydrocarbons	µg/kg	μg/L		
1,3-Dichlorobenzene ^f	20	0.9 ^c		
1,4-Dichlorobenzene ^f	20	1 °		
1,2-Dichlorobenzene ^f	20	0.8 ^c		
1,2,4-Trichlorobenzene ^f	10	0.9 ^c		
Hexachlorobenzene ^f	10	0.4 °		
2-Chloronapthalene ^f	160 °	0.8 °		
Hexachlorocyclopentadiene ^f	300 °	3.0 °		
Hexachloroethane	100	0.9 °		
Hexachlorobutadiene	20	0.9 °		
Halogenated Ethers	µg/kg	μg/L		
Bis(2-chloroethyl)ether	130 °	0.9 °		
4-chlorophenyl phenyl ether	170 °	0.6 °		
4-Bromophenyl phenyl ether	160 °	0.4 °		
Bis(2-chloroisopropyl)ether	140 ^c	0.7 °		
Bis(2-Chloroethoxy)methane	130 °	1 °		
Volatile Organics				
Trichloroethene ^g	10	2 ^b		
Tetrachloroethene ^g	10	2 ^b		
Ethylbenzene ^g	10	5		
Total Xylene (sum of o-, m-, p-) ^g	10	5		

Analyte	Sediment ¹	Water/Elutriate ¹
Miscellaneous	μg/kg	μg/L
Isophorone	10	1
Benzyl alcohol ^g	50	1.5 ^b
Benzoic acid ^g	100	2.0 ^b
Dibenzofuran ^g	50	0.7 ^b
Hexachloroethane ^g	100	0.9 ^b
Hexachlorobutadiene g	20	0.9 ^b
N-Nitrosodiphenylamine ^g	20	0.9 ^b

kg = kilogram; L = liter; mg = milligram; μ g = microgram; NA = Not applicable–testing done on sediments only.

^a The primary source of these TDLs was EPA 823-B-95-001, QA/QC Guidance for Sampling and Analysis of Sediments, Water and Tissues for Dredged Material Evaluations.

^b Metals shall be expressed as Dissolved values in water samples, except for mercury and selenium, which shall be reported as Total Recoverable Concentrations.

^c These values are based on recommendations from the EPA Region 6 Laboratory in Houston; these values were based on data or other technical basis.

^d The values in parentheses are based on EPA "clean techniques" (EPA 1600 series methods), which are applicable in instances where other TDLs are inadequate to assess EPA water quality criteria.

^e This value recommended by Houston Lab using colorimetric method.

^f Analytes originated from the USACE list for analysis.

^g Analytes originated from the Port of Houston Authority list for analysis.

Laboratory Quality Control

The Laboratory Quality Control (QC) program will include, but will not be limited to:

- a. **NELAC Accreditation** The laboratory will have current accreditation status consistent with standards adopted by the National Environmental Laboratory Accreditation Conference (NELAC).
- b. **Method Blanks** Will be performed at a frequency of one per batch of samples, per matrix type, per sample extraction or preparation method.
- c. Laboratory Control Samples Will be analyzed at a minimum of 1 per batch of 20 or fewer samples per matrix type, per sample extraction or preparation method, except for analytes for which spiking solutions are not available.
- d. Matrix Spikes Will be performed at a frequency of 1 in 20 samples per matrix type, per sample extraction or preparation method, except for analytes for which spiking solutions are not available. The spike concentration will be no greater than 25 to 50 percent of the maximum concentration along the linear segment of the instrument calibration curve for any analyte.
- e. **Matrix Spike Duplicates** Will be analyzed at a minimum of 1 in 20 samples per matrix type, per sample extraction or preparation method.
- f. **Surrogates** Surrogate compounds must be added to all samples, standards, and blanks for all organic chromatography methods except when the matrix precludes its use or when a surrogate is not available.

- g. Field Equipment Blanks Analysis will be performed at a frequency of one per batch of samples collected.
- h. Calibration of instrumentation and performance of periodic instrument checks according to manufacturer and EPA recommendations, and appropriate Standard Operating Procedures (SOP).
- Participation in performance evaluation and method studies available from EPA, American Society for Testing and Materials (ASTM), or other agency. Performance evaluation under such a program is to be conducted at least on a semi-annual basis.
- j. Each new shipment or lot of solvent, reagent, or adsorbent will be evaluated for purity in accordance with appropriate SOPs.
- k. Standards will be prepared and verified in accordance with appropriate SOPs.
- I. Calculation of QC limits and preparation of control charts will be performed in accordance with appropriate SOPs.
- m. Out-of-control events or outlier data will be noted and corrective action will be taken in accordance with appropriate SOPs.

Documentation of all QC activities performed specifically in conjunction with this project will be furnished along with sample results. Copies of all raw data, lab notes, chromatograms, standard curves, etc. will be available upon request.

Report

LEI will provide a brief letter report describing sampling activities, along with the completed water quality data sheets, the reduced chemical data, and QC data described above. The report will conform to the format described in the guidance document (USACE 2015)³.

Schedule

The execution of this task will take approximately 30 days, depending on agency comments and review (Table 3).

Task	No. Days After Agency Approval
Field Work (Sample Collection)	5
Laboratory – Chemical Analyses Completion	20
Submission of Data Report	5

Table 3 Estimated Project Timeline

³ U.S. Army Corps of Engineers. 2015. Sampling and Analysis Plan-Private Dredging Application, USACE Galveston District, Galveston TX.

Appendix B

Chemical Data

LABORATORY ANALYSIS REPORT

8725 Fawn Trail - The Woodlands, TX 77385 - www.NWDLS.com - (936) 321-6060

Project ID :

Quintana Terminal Dock 1

Report To: Lloyd Engineering, Inc. 6565 West Loop, Suite 708

Attn: Marisa Weber

Bellaire, TX 77401

Dear Marisa Weber,

The following test results meet all NELAP requirements for analytes for which certification is available. Any deviations from our quality system will be noted in the case narrative. All analyses performed by North Water District Laboratory Services, Inc. unless noted.

For questions regarding this report, contact Monica Martin at 936-321-6060.

O. R.L

Monica O. Martin Laboratory Director

CASE NARRATIVE

8725 Fawn Trail - The Woodlands, TX 77385 - www.NWDLS.com - (936) 321-6060

Client Name:	Lloyd Engineering, Inc.
Project ID:	Quintana Terminal Dock 1
Date Received:	08/04/2016
Collected By:	Marisa Weber

A total of 22 samples were collected on 08/04/2016. They were received at NWDLS on 08/04/2016 properly thermally preserved and intact. These samples received a job number of 1608151. The lab sample (job sample) IDs, client sample IDs, and dates of collection can be found at the top of each result page. Except as noted below, all method specified calibrations and quality control performance criteria were met for this job. For additional information, please refer to the included quality control data pages, chain of custodies, and provided EDD.

Semivolatile Organic Compounds by SW846 8270D

-Samples and Batch QC had surrogate recoveries outside the laboratory specified control limits due to suspect matrix interference. -Qb16081826, Qb16081827, Qb16081603: Batch QC had recoveries and relative percent differences outside the laboratory specified control limits for accuracy and precision.

Organochlorine Pesticides by SW846 8081B

-Samples and Batch QC had surrogate recoveries outside the laboratory specified control limits due to suspect matrix interference. -Qb16081604: Batch QC had recoveries and relative percent differences outside the laboratory specified control limits for accuracy and precision.

Polychorinated Biphenyls by SW846 8082A -Samples and Batch QC had surrogate recoveries outside the laboratory specified control limits due to suspect matrix interference.

Total Petroleum Hydrocarbons by TX1005

-Batch QC had surrogate recoveries outside the laboratory specified control limits due to suspect matrix interference.

-Qb16081701: Batch QC had recoveries outside the laboratory specified control limits for accuracy.

-Qb16081707, Qb16081709: Batch QC had recoveries and relative percent differences outside the laboratory specified control limits for accuracy and precision. -Qb16081708: Batch QC had relative percent differences outside the laboratory specified control limits for precision.

Metals, Dissolved by EPA 200.8 -Qb16081703: DUP and MS had recoveries and relative percent differences outside the laboratory specified control limits for accuracy and precision.

Metals, Total by EPA 200.8

-Qb16081702: DUP had relative percent difference outside the laboratory specified control limits for precision.

-Qb16083002: MS had recoveries outside the laboratory specified control limits for accuracy.

Mmartin

Lab Director

SAMPLE RESULTS

8725 Fawn Trail - The Woodlands, TX 77385 - www.NWDLS.com - (936) 321-6060

Client Name: Llo	yd Engineering, Inc.	Attn:	Attn: Marisa Weber		
Project ID: Qu	intana Terminal Dock 1				
Job ID :	1608151	Sample M	atrix: Water		
Client Sample ID:	QI-16-EQUIP	Date Colle	cted: 08/04/2016		
Job Sample ID:	1608151.01	Time Colle	ected: 13:00		
Other Information:					

Test Method	Parameter	Result	Q	Units	DF	LRL	SDL	%Rec Ctrl Limit Date/Time Analyzed	Analyst
Calculation	Chromium, Dissolved Trivalent		Batch ID: Qb16082601		Prep Info:				
	Trivalent Chromium	< 1.50	U	ug/L	1	3.00	1.50	08/26/2016 06:23	MM
EPA 200.8	Metals, Dissolved		Batch ID: (2b16081703	Prep Info:	PB160817	703 EPA 200	0.2 08/17/2016 11:50	CL
	Antimony	< 0.200	U	ug/L	1	1.00	0.200	08/19/2016 23:50	CL
	Arsenic	< 0.100	U	ug/L	1	0.500	0.100	08/19/2016 23:50	CL
	Beryllium	< 0.010	U	ug/L	1	0.200	0.010	08/24/2016 14:21	CL
	Cadmium	< 0.050	U	ug/L	1	1.00	0.050	08/19/2016 23:50	CL
	Chromium	< 0.075	U	ug/L	1	3.00	0.075	08/19/2016 23:50	CL
	Copper	0.265	J	ug/L	1	1.00	0.050	08/19/2016 23:50	CL
	Lead	< 0.025	U	ug/L	1	0.500	0.025	08/19/2016 23:50	CL
	Nickel	0.074	J	ug/L	1	1.00	0.050	08/24/2016 14:21	CL
	Silver	< 0.025	U	ug/L	1	0.500	0.025	08/19/2016 23:50	CL
	Thallium	< 0.025	U	ug/L	1	0.500	0.025	08/19/2016 23:50	CL
	Zinc	1.49	J	ug/L	1	2.00	0.100	08/24/2016 14:21	CL
EPA 200.8	Metals, Total by ICP-MS		Batch ID: (2b16081702	Prep Info:	PB160817	'02 EPA 200	0.2 08/17/2016 11:50	CL
	Selenium	< 0.333	U	ug/L	1	2.00	0.333	08/19/2016 13:52	CL
EPA 245.1	Mercury, Total		Batch ID:	2b16081901	Prep Info:	PB160819	01 EPA 245	5.1 08/10/2016 12:20	MBW
	Mercury	< 0.150	U	ug/L	1	0.200	0.150	08/11/2016 21:29	MBW
SM 3500-Cr B	Chromium, Dissolved Hexavalent		Batch ID:	2b16081813	Prep Info:				
	Chromium, Hexavalent	< 1.50	U	ug/L	1	3.00	1.50	08/04/2016 17:08	ARC

lient Name: Lloy	yd Engineering, Inc.		Attn: Marisa Weber		
Project ID: Qui	intana Terminal Dock 1				
	_				
Job ID :	1608151		Sample Matrix:	Water	
Client Sample ID:	QI-16-01-W		Date Collected:	08/04/201	
Job Sample ID:	1608151.02		Time Collected:	12:43	
Other Information:					

Test Method	Parameter	Result	Q	Units	DF	LRL	SDL	%Rec Ctrl Limit Date/Time Analyzed	Analyst
Calculation	Chromium, Dissolved Trivalent		Batch ID: Q	b16082601	Prep Info:				
	Trivalent Chromium	< 1.50	U	ug/L	1	3.00	1.50	08/26/2016 06:23	MM
EPA 200.8	Metals, Dissolved		Batch ID: Q	b16081703	Prep Info:	PB16081	703 EPA 200	0.2 08/17/2016 11:50	CL
	Antimony	< 1.00	U	ug/L	5	5.00	1.00	08/20/2016 00:32	CL
	Arsenic	3.77		ug/L	5	2.50	0.500	08/20/2016 00:32	CL
	Beryllium	< 0.100	U	ug/L	10	2.00	0.100	08/24/2016 14:39	CL
	Cadmium	< 0.250	U	ug/L	5	5.00	0.250	08/20/2016 00:32	CL
	Chromium	< 0.375	U	ug/L	5	15.0	0.375	08/20/2016 00:32	CL
	Copper	1.06	J	ug/L	5	5.00	0.250	08/20/2016 00:32	CL
	Lead	< 0.125	U	ug/L	5	2.50	0.125	08/20/2016 00:32	CL
	Nickel	1.02	J	ug/L	10	10.0	0.500	08/24/2016 14:39	CL
	Silver	< 0.125	U	ug/L	5	2.50	0.125	08/20/2016 00:32	CL
	Thallium	< 0.125	U	ug/L	5	2.50	0.125	08/20/2016 00:32	CL
	Zinc	5.01	J	ug/L	10	20.0	1.00	08/24/2016 14:39	CL
EPA 200.8	Metals, Total by ICP-MS		Batch ID: Q	b16081702	Prep Info:	PB16081	702 EPA 200	0.2 08/17/2016 11:50	CL
	Selenium	14.5		ug/L	5	10.0	1.66	08/19/2016 14:10	CL
EPA 245.1	Mercury, Total		Batch ID: Q	b16081901	Prep Info:	PB16081	901 EPA 245	5.1 08/10/2016 12:20	MBW
	Mercury	< 0.150	U	ug/L	1	0.200	0.150	08/11/2016 21:32	MBW
EPA 415.1	Total Organic Carbon		Batch ID: Q	b16081821	Prep Info:				
	Total Organic Carbon	0.000276		%	1	0.0001	0.00005	08/16/2016 16:30	ARC
SM 3500-Cr B	Chromium, Dissolved Hexavalent		Batch ID: Q	b16081813	Prep Info:				

Client Name: Lloy	yd Engineering, Inc.	Attn: Marisa Weber
Project ID: Qui	ntana Terminal Dock 1	
	_	
Job ID :	1608151	Sample Matrix: Water
Client Sample ID:	QI-16-01-W	Date Collected: 08/04/2016
Job Sample ID:	1608151.02	Time Collected: 12:43
Other Information:		

Test Method	Parameter	Result	Q	Units	DF	LRL	SDL	%Rec Ctrl Li	mit Date/Time Analyzed	Analyst
SM 3500-Cr B	Chromium, Dissolved Hexavalent		Batch ID: Q	b16081813	Prep Info:					
	Chromium, Hexavalent	< 1.50	U	ug/L	1	3.00	1.50		08/04/2016 17:08	ARC
SM 4500-CN C, E	Cyanide, Total		Batch ID: Q	b16081819	Prep Info:	PB160818	811 SM	4500-CN C	08/09/2016 13:35	ARC
	Cyanide, Total	< 0.005	U	mg/L	1	0.010	0.005		08/09/2016 16:10	ARC
SM 4500-NH3 D	Ammonia as Nitrogen		Batch ID: Q	Batch ID: Qb16081824						
	Ammonia as N	< 0.050	U	mg/L	1	0.100	0.050		08/15/2016 11:30	ARC
SW846 8081B	Organochlorine Pesticides		Batch ID:	Batch ID: Pr						
	2,4,5,6 Tetrachloro-m-xylene(surr)	138		%	1			60-140	08/12/2016 03:18	
	Decachlorobiphenyl(surr)	132		%	1			60-140	08/12/2016 03:18	
SW846 8081B	Organochlorine Pesticides		Batch ID: Q	b16081604	Prep Info:	PB160816	504 SW	/846 3511	08/09/2016 16:34	
	4,4-DDD	< 0.003	U	ug/L	1	0.012	0.003		08/12/2016 03:18	
	4,4-DDE	< 0.003	U	ug/L	1	0.012	0.003		08/12/2016 03:18	
	4,4-DDT	< 0.003	U	ug/L	1	0.012	0.003		08/12/2016 03:18	
	a-BHC	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 03:18	
	a-Chlordane	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 03:18	
	Aldrin	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 03:18	
	b-BHC	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 03:18	
	Chlordane	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 03:18	
	d-BHC	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 03:18	
	Dieldrin	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 03:18	
	Endosulfan I	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 03:18	

lient Name: Lloy	yd Engineering, Inc.	Attn: Marisa	Attn: Marisa Weber			
Project ID: Qui	intana Terminal Dock 1					
	_					
Job ID :	1608151	Sample Matrix:	Water			
Client Sample ID:	QI-16-01-W	Date Collected:	08/04/2016			
Job Sample ID:	1608151.02	Time Collected:	12:43			
Other Information:						

Test Method	Parameter	Result	Q	Units	DF	LRL	SDL	%Rec Ctrl Li	mit Date/Time Analyzed	Analyst
SW846 8081B	Organochlorine Pesticides		Batch ID: Qb	16081604	Prep Info:	PB160816	04 SW8	46 3511	08/09/2016 16:34	
	Endosulfan II	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 03:18	
	Endosulfan sulfate	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 03:18	
	Endrin	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 03:18	
	Endrin aldehyde	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 03:18	
	Endrin ketone	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 03:18	
	g-BHC	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 03:18	
	Heptachlor	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 03:18	
	Heptachlor epoxide	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 03:18	
	Toxaphene	< 0.150	U	ug/L	1	0.300	0.150		08/12/2016 03:18	
	y-Chlordane	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 03:18	
SW846 8082A	Polychlorinated Biphenyls		Batch ID:		Prep Info:					
	2,4,5,6 Tetrachloro-m-xylene(surr)	146	S	%	1			60-140	08/11/2016 02:50	
	Decachlorobiphenyl(surr)	130		%	1			60-140	08/11/2016 02:50	
SW846 8082A	Polychlorinated Biphenyls		Batch ID: Qb	16081602	Prep Info:	PB160816	02 SW8	46 3511	08/08/2016 14:10	
	Total PCBs	< 0.006	U	ug/L	1	0.012	0.006		08/11/2016 02:50	
SW846 8260C	Volatile Organic Compounds		Batch ID:		Prep Info:					
	1,2-Dichloroethane-d4(surr)	96.0		%	1			50-150	08/08/2016 14:05	EM
	4-Bromofluorobenzene(surr)	81.6		%	1			50-150	08/08/2016 14:05	EM
	Dibromofluoromethane(surr)	96.9		%	1			50-150	08/08/2016 14:05	EM
	Toluene-d8(surr)	96.1		%	1			50-150	08/08/2016 14:05	EM

Client Name: Llo	yd Engineering, Inc.	Attn: Marisa Weber
Project ID: Qu	intana Terminal Dock 1	
Job ID :	1608151	Sample Matrix: Water
Client Sample ID:	QI-16-01-W	Date Collected: 08/04/201
Job Sample ID:	1608151.02	Time Collected: 12:43
Other Information:		

Test Method	Parameter	Result	Q	Units	DF	LRL	SDL	%Rec Ctrl Lir	mit Date/Time Analyzed	Analyst
SW846 8260C	Volatile Organic Compounds		Batch ID: Qb	L6081704	Prep Info:					
	Ethylbenzene	< 1.00	U	ug/L	1	5.00	1.00		08/08/2016 14:05	JM
	Tetrachloroethylene	< 1.00	U	ug/L	1	5.00	1.00		08/08/2016 14:05	JM
	Trichloroethylene	< 1.00	U	ug/L	1	5.00	1.00		08/08/2016 14:05	JM
	xylenes (total)	< 1.00	U	ug/L	1	5.00	1.00		08/08/2016 14:05	JM
SW846 8270D	Semivolatile Organic Compounds		Batch ID:		Prep Info:					
	2,4,6-Tribromophenol(surr)	133		%	1			60-140	08/18/2016 23:19	JLL
	2-Fluorobiphenyl(surr)	92.1		%	1			60-140	08/18/2016 23:19	JLL
	2-Fluorophenol(surr)	157	S	%	1			60-140	08/18/2016 23:19	JLL
	Nitrobenzene-d5(surr)	170	S	%	1			60-140	08/18/2016 23:19	JLL
	Phenol-d5(surr)	122		%	1			60-140	08/18/2016 23:19	JLL
	Terphenyl-d14(surr)	107		%	1			60-140	08/18/2016 23:19	JLL
SW846 8270D	Semivolatile Organic Compounds		Batch ID: Qb	16081826	Prep Info:	PB16081	812 SW	846 3511	08/05/2016 11:03	JLL
	1,2,4-Trichlorobenzene	< 0.281	U	ug/L	1	0.562	0.281		08/16/2016 00:49	JLL
	1,2-Dichlorobenzene	< 0.281	U	ug/L	1	0.562	0.281		08/16/2016 00:49	JLL
	1,2-Diphenylhydrazine as Azobenzene	< 0.281	U	ug/L	1	0.562	0.281		08/16/2016 00:49	JLL
	1,3-Dichlorobenzene	< 0.281	U	ug/L	1	0.562	0.281		08/16/2016 00:49	JLL
	1,4-Dichlorobenzene	< 0.281	U	ug/L	1	0.562	0.281		08/16/2016 00:49	JLL
	2,4,6-Trichlorophenol	< 0.56	U	ug/L	1	1.12	0.56		08/16/2016 00:49	JLL
	2,4-Dichlorophenol	< 0.56	U	ug/L	1	1.12	0.56		08/16/2016 00:49	JLL
	2,4-Dimethylphenol	< 0.56	U	ug/L	1	1.12	0.56		08/16/2016 00:49	JLL

ient Name: Lloy	yd Engineering, Inc.	Attn: Marisa We	Attn: Marisa Weber			
Project ID: Qui	intana Terminal Dock 1					
Job ID :	1608151	Sample Matrix:	Water			
Client Sample ID:	QI-16-01-W	Date Collected:	08/04/2016			
Job Sample ID:	1608151.02	Time Collected:	12:43			
Other Information:						

Test Method	Parameter	Result	Q	Units	DF	LRL	SDL	%Rec Ctrl Limit Date/Time Analyzed	Analyst
SW846 8270D	Semivolatile Organic Compounds		Batch ID: Q	b16081826	Prep Info	PB160818	812 SW8	08/05/2016 11:03	JLL
	2,4-Dinitrophenol	< 9.00	U	ug/L	1	18.0	9.00	08/16/2016 00:49	JLL
	2,4-Dinitrotoluene	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 00:49	JLL
	2,6-Dinitrotoluene	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 00:49	JLL
	2-Chloronaphthalene	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 00:49	JLL
	2-Chlorophenol	< 0.56	U	ug/L	1	1.12	0.56	08/16/2016 00:49	JLL
	2-Methylnaphthalene	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 00:49	JLL
	2-Methylphenol	< 0.56	U	ug/L	1	1.12	0.56	08/16/2016 00:49	JLL
	2-Nitrophenol	< 0.56	U	ug/L	1	1.12	0.56	08/16/2016 00:49	JLL
	3,3-Dichlorobenzidine	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 00:49	JLL
	4,6-Dinitro-2-methylphenol	< 0.56	U	ug/L	1	1.12	0.56	08/16/2016 00:49	JLL
	4-Bromophenyl phenyl ether	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 00:49	JLL
	4-Chloro-3-methylphenol	< 0.56	U	ug/L	1	4.50	0.56	08/16/2016 00:49	JLL
	4-Chlorophenyl phenyl ether	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 00:49	JLL
	4-Methylphenol	< 0.56	U	ug/L	1	1.12	0.56	08/16/2016 00:49	JLL
	4-Nitrophenol	< 0.56	U	ug/L	1	1.12	0.56	08/16/2016 00:49	JLL
	Acenaphthene	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 00:49	JLL
	Acenaphthylene	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 00:49	JLL
	Anthracene	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 00:49	JLL
	Benzidine	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 00:49	JLL
	Benzo(a)anthracene	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 00:49	JLL
	Benzo(a)pyrene	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 00:49	JLL

Client Name: Lloy	yd Engineering, Inc.		Attn: Marisa Weber		
Project ID: Qui	intana Terminal Dock 1				
Job ID :	1608151		Sample Matrix:	Water	
Client Sample ID:	QI-16-01-W		Date Collected:	08/04/2016	
Job Sample ID:	1608151.02		Time Collected:	12:43	
Other Information:					

Test Method	Parameter	Result	Q	Units	DF	LRL	SDL	%Rec Ctrl Limit Date/Time Analyzed	Analyst
SW846 8270D	Semivolatile Organic Compounds		Batch ID: (b16081826	Prep Info:	PB160818	312 SW8	46 3511 08/05/2016 11:03	JLL
	Benzo(b)fluoranthene	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 00:49	JLL
	Benzo(g,h,i)perylene	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 00:49	JLL
	Benzo(k)fluoranthene	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 00:49	JLL
	Benzoic acid	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 00:49	JLL
	Benzyl alcohol	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 00:49	JLL
	Bis(2-chloroethoxy) methane	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 00:49	JLL
	Bis(2-chloroethyl) ether	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 00:49	JLL
	Bis(2-chloroisopropyl) ether	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 00:49	JLL
	Bis(2-ethylhexyl)phthalate	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 00:49	JLL
	Butyl benzyl phthalate	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 00:49	JLL
	Chrysene	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 00:49	JLL
	Dibenzo(a,h)anthracene	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 00:49	JLL
	Dibenzofuran	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 00:49	JLL
	Diethyl phthalate	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 00:49	JLL
	Dimethyl phthalate	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 00:49	JLL
	Di-n-butyl phthalate	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 00:49	JLL
	Di-n-octyl Phthalate	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 00:49	JLL
	Fluoranthene	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 00:49	JLL
	Fluorene	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 00:49	JLL
	Hexachlorobenzene	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 00:49	JLL
	Hexachlorobutadiene	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 00:49	JLL

Client Name: Lloy	yd Engineering, Inc.	Attn: Marisa V	Attn: Marisa Weber			
Project ID: Qui	intana Terminal Dock 1					
Job ID :	1608151	Sample Matrix:	Water			
Client Sample ID:	QI-16-01-W	Date Collected:	08/04/2016			
Job Sample ID:	1608151.02	Time Collected:	12:43			
Other Information:						

Test Method	Parameter	Result	Q	Units	DF	LRL	SDL	%Rec Ctrl Lir	mit Date/Time Analyzed	Analyst
SW846 8270D	Semivolatile Organic Compounds		Batch ID: Qb	16081826	Prep Info:	PB160818	312 SW8	46 3511	08/05/2016 11:03	JLL
	Hexachlorocyclopentadiene	< 0.281	U	ug/L	1	0.562	0.281		08/16/2016 00:49	JLL
	Hexachloroethane	< 0.281	U	ug/L	1	0.562	0.281		08/16/2016 00:49	JLL
	Indeno(1,2,3-cd)pyrene	< 0.281	U	ug/L	1	0.562	0.281		08/16/2016 00:49	JLL
	Isophorone	< 0.281	U	ug/L	1	0.562	0.281		08/16/2016 00:49	JLL
	Naphthalene	< 0.281	U	ug/L	1	0.562	0.281		08/16/2016 00:49	JLL
	Nitrobenzene	< 0.281	U	ug/L	1	0.562	0.281		08/16/2016 00:49	JLL
	n-Nitrosodimethylamine	< 0.281	U	ug/L	1	0.562	0.281		08/16/2016 00:49	JLL
	n-nitroso-di-n-propylamine	< 0.281	U	ug/L	1	0.562	0.281		08/16/2016 00:49	JLL
	n-Nitrosodiphenylamine	< 0.281	U	ug/L	1	0.562	0.281		08/16/2016 00:49	JLL
	Pentachlorophenol	< 0.56	U	ug/L	1	1.12	0.56		08/16/2016 00:49	JLL
	Phenanthrene	< 0.281	U	ug/L	1	0.562	0.281		08/16/2016 00:49	JLL
	Phenol	< 0.56	U	ug/L	1	1.12	0.56		08/16/2016 00:49	JLL
	Pyrene	< 0.281	U	ug/L	1	0.562	0.281		08/16/2016 00:49	JLL
TCEQ 1005	Total Petroleum Hydrocarbons		Batch ID:		Prep Info:					
	1-Chlorooctadecane(surr)	89.0		%	1			70-130	08/12/2016 18:35	EM
	1-Chlorooctane(surr)	93.1		%	1			70-130	08/12/2016 18:35	EM
TCEQ 1005	Total Petroleum Hydrocarbons		Batch ID: Qb	16081701	Prep Info:	PB160817	701 TCE	Q 1005	08/05/2016 11:27	EM
	ТРН, С6-С35	< 3.22	U	mg/L	1	10.0	3.22		08/12/2016 18:35	EM

Client Name: Lloy	yd Engineering, Inc.	Attn: Marisa We	Attn: Marisa Weber				
Project ID: Qui	intana Terminal Dock 1						
	_						
Job ID :	1608151	Sample Matrix:	Water				
Client Sample ID:	QI-16-02-W	Date Collected:	08/04/2016				
Job Sample ID:	1608151.03	Time Collected:	12:13				
Other Information:							

Test Method	Parameter	Result	Q	Units	DF	LRL	SDL	%Rec Ctrl Limit Date/Time Analyzed	Analyst
Calculation	Chromium, Dissolved Trivalent		Batch ID: Q	b16082601	Prep Info:				
	Trivalent Chromium	< 1.50	U	ug/L	1	3.00	1.50	08/26/2016 06:23	MM
EPA 200.8	Metals, Dissolved		Batch ID: Q	b16081703	Prep Info:	PB16081	703 EPA 200.	2 08/17/2016 11:50	CL
	Antimony	< 1.00	U	ug/L	5	5.00	1.00	08/20/2016 00:38	CL
	Arsenic	4.41		ug/L	5	2.50	0.500	08/20/2016 00:38	CL
	Beryllium	< 0.100	U	ug/L	10	2.00	0.100	08/24/2016 14:45	CL
	Cadmium	< 0.250	U	ug/L	5	5.00	0.250	08/20/2016 00:38	CL
	Chromium	< 0.375	U	ug/L	5	15.0	0.375	08/20/2016 00:38	CL
	Copper	1.40	J	ug/L	5	5.00	0.250	08/20/2016 00:38	CL
	Lead	0.268	J	ug/L	5	2.50	0.125	08/20/2016 00:38	CL
	Nickel	1.01	J	ug/L	10	10.0	0.500	08/24/2016 14:45	CL
	Silver	< 0.125	U	ug/L	5	2.50	0.125	08/20/2016 00:38	CL
	Thallium	< 0.125	U	ug/L	5	2.50	0.125	08/20/2016 00:38	CL
	Zinc	7.41	J	ug/L	10	20.0	1.00	08/24/2016 14:45	CL
EPA 200.8	Metals, Total by ICP-MS		Batch ID: Q	b16081702	Prep Info:	PB16081	702 EPA 200.	2 08/17/2016 11:50	CL
	Selenium	13.8		ug/L	5	10.0	1.66	08/19/2016 14:16	CL
EPA 245.1	Mercury, Total		Batch ID: Q	2b16081901	Prep Info:	PB16081	901 EPA 245.	1 08/10/2016 12:20	MBW
	Mercury	< 0.150	U	ug/L	1	0.200	0.150	08/11/2016 21:42	MBW
EPA 415.1	Total Organic Carbon		Batch ID: Q	b16081821	Prep Info:				
	Total Organic Carbon	0.000285		%	1	0.0001	0.00005	08/16/2016 16:30	ARC
SM 3500-Cr B	Chromium, Dissolved Hexavalent		Batch ID: Q	b16081813	Prep Info:				

Client Name: Lloy	yd Engineering, Inc.		Attn: Marisa	Attn: Marisa Weber			
Project ID: Qui	intana Terminal Dock 1						
Job ID :	1608151		Sample Matrix:	Water			
Client Sample ID:	QI-16-02-W		Date Collected:	08/04/201			
Job Sample ID:	1608151.03		Time Collected:	12:13			
Other Information:							

Test Method	Parameter	Result	Q	Units	DF	LRL	SDL	%Rec Ctrl Li	mit Date/Time Analyzed	Analyst
SM 3500-Cr B	Chromium, Dissolved Hexavalent		Batch ID: Q	b16081813	Prep Info:					
	Chromium, Hexavalent	< 1.50	U	ug/L	1	3.00	1.50		08/04/2016 17:08	ARC
SM 4500-CN C, E	Cyanide, Total		Batch ID: Q	b16081819	Prep Info:	PB160818	811 SM	1 4500-CN C	08/09/2016 13:35	ARC
	Cyanide, Total	< 0.005	U	mg/L	1	0.010	0.005		08/09/2016 16:10	ARC
SM 4500-NH3 D	Ammonia as Nitrogen		Batch ID: Q	b16081824	Prep Info:					
	Ammonia as N	< 0.050	U	mg/L	1	0.100	0.050		08/15/2016 11:30	ARC
SW846 8081B	081B Organochlorine Pesticides Batch ID:		Prep Info:							
	2,4,5,6 Tetrachloro-m-xylene(surr)	137		%	1			60-140	08/12/2016 03:39	
	Decachlorobiphenyl(surr)	133		%	1			60-140	08/12/2016 03:39	
SW846 8081B	Organochlorine Pesticides		Batch ID: Q	b16081604	Prep Info:	PB160816	604 SW	/846 3511	08/09/2016 16:34	
	4,4-DDD	< 0.003	U	ug/L	1	0.012	0.003		08/12/2016 03:39	
	4,4-DDE	< 0.003	U	ug/L	1	0.012	0.003		08/12/2016 03:39	
	4,4-DDT	< 0.003	U	ug/L	1	0.012	0.003		08/12/2016 03:39	
	a-BHC	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 03:39	
	a-Chlordane	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 03:39	
	Aldrin	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 03:39	
	b-BHC	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 03:39	
	Chlordane	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 03:39	
	d-BHC	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 03:39	
	Dieldrin	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 03:39	
	Endosulfan I	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 03:39	

Client Name: Llo	yd Engineering, Inc.	Attn: Marisa Weber
Project ID: Qu	intana Terminal Dock 1	
Job ID :	1608151	Sample Matrix: Water
Client Sample ID:	QI-16-02-W	Date Collected: 08/04/2016
Job Sample ID:	1608151.03	Time Collected: 12:13
Other Information:		

Test Method	Parameter	Result	Q	Units	DF	LRL	SDL	%Rec Ctrl Li	mit Date/Time Analyzed	Analyst
SW846 8081B	Organochlorine Pesticides		Batch ID: Qb	16081604	Prep Info:	PB160816	04 SW84	6 3511	08/09/2016 16:34	
	Endosulfan II	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 03:39	
	Endosulfan sulfate	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 03:39	
	Endrin	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 03:39	
	Endrin aldehyde	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 03:39	
	Endrin ketone	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 03:39	
	g-BHC	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 03:39	
	Heptachlor	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 03:39	
	Heptachlor epoxide	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 03:39	
	Toxaphene	< 0.150	U	ug/L	1	0.300	0.150		08/12/2016 03:39	
	y-Chlordane	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 03:39	
SW846 8082A	Polychlorinated Biphenyls		Batch ID:		Prep Info:					
	2,4,5,6 Tetrachloro-m-xylene(surr)	145	S	%	1			60-140	08/11/2016 03:11	
	Decachlorobiphenyl(surr)	133		%	1			60-140	08/11/2016 03:11	
SW846 8082A	Polychlorinated Biphenyls		Batch ID: Qb	16081602	Prep Info:	PB160816	02 SW84	6 3511	08/08/2016 14:10	
	Total PCBs	< 0.006	U	ug/L	1	0.012	0.006		08/11/2016 03:11	
SW846 8260C	Volatile Organic Compounds		Batch ID:		Prep Info:					
	1,2-Dichloroethane-d4(surr)	97.9		%	1			50-150	08/08/2016 14:34	EM
	4-Bromofluorobenzene(surr)	83.9		%	1			50-150	08/08/2016 14:34	EM
	Dibromofluoromethane(surr)	98.4		%	1			50-150	08/08/2016 14:34	EM
	Toluene-d8(surr)	96.8		%	1			50-150	08/08/2016 14:34	EM

Client Name: Lloy	yd Engineering, Inc.	Attn: Marisa Weber
Project ID: Qui	ntana Terminal Dock 1	
Job ID :	1608151	Sample Matrix: Water
Client Sample ID:	QI-16-02-W	Date Collected: 08/04/201
Job Sample ID:	1608151.03	Time Collected: 12:13
Other Information:		

Test Method	Parameter	Result	Q	Units	DF	LRL	SDL	%Rec Ctrl Lir	mit Date/Time Analyzed	Analyst
SW846 8260C	Volatile Organic Compounds		Batch ID: Qb	16081704	Prep Info:					
	Ethylbenzene	< 1.00	U	ug/L	1	5.00	1.00		08/08/2016 14:34	JM
	Tetrachloroethylene	< 1.00	U	ug/L	1	5.00	1.00		08/08/2016 14:34	JM
	Trichloroethylene	< 1.00	U	ug/L	1	5.00	1.00		08/08/2016 14:34	JM
	xylenes (total)	< 1.00	U	ug/L	1	5.00	1.00		08/08/2016 14:34	JM
SW846 8270D	Semivolatile Organic Compounds		Batch ID:		Prep Info:					
	2,4,6-Tribromophenol(surr)	132		%	1			60-140	08/16/2016 01:22	JLL
	2-Fluorobiphenyl(surr)	88.4		%	1			60-140	08/16/2016 01:22	JLL
	2-Fluorophenol(surr)	177	S	%	1			60-140	08/16/2016 01:22	JLL
	Nitrobenzene-d5(surr)	175	S	%	1			60-140	08/16/2016 01:22	JLL
	Phenol-d5(surr)	127		%	1			60-140	08/16/2016 01:22	JLL
	Terphenyl-d14(surr)	101		%	1			60-140	08/16/2016 01:22	JLL
SW846 8270D	Semivolatile Organic Compounds		Batch ID: Qb	16081826	Prep Info:	PB16081	812 SW	846 3511	08/05/2016 11:03	JLL
	1,2,4-Trichlorobenzene	< 0.281	U	ug/L	1	0.562	0.281		08/16/2016 01:22	JLL
	1,2-Dichlorobenzene	< 0.281	U	ug/L	1	0.562	0.281		08/16/2016 01:22	JLL
	1,2-Diphenylhydrazine as Azobenzene	< 0.281	U	ug/L	1	0.562	0.281		08/16/2016 01:22	JLL
	1,3-Dichlorobenzene	< 0.281	U	ug/L	1	0.562	0.281		08/16/2016 01:22	JLL
	1,4-Dichlorobenzene	< 0.281	U	ug/L	1	0.562	0.281		08/16/2016 01:22	JLL
	2,4,6-Trichlorophenol	< 0.56	U	ug/L	1	1.12	0.56		08/16/2016 01:22	JLL
	2,4-Dichlorophenol	< 0.56	U	ug/L	1	1.12	0.56		08/16/2016 01:22	JLL
	2,4-Dimethylphenol	< 0.56	U	ug/L	1	1.12	0.56		08/16/2016 01:22	JLL

Client Name: Llo	oyd Engineering, Inc.		Attn: Marisa V	Attn: Marisa Weber			
Project ID: Qu	uintana Terminal Dock 1						
Job ID :	1608151		Sample Matrix:	Water			
Client Sample ID:	QI-16-02-W		Date Collected:	08/04/2016			
Job Sample ID:	1608151.03		Time Collected:	12:13			
Other Information:	:						

Test Method	Parameter	Result	Q	Units	DF	LRL	SDL	%Rec Ctrl Limit Date/Time Analyzed	Analyst
SW846 8270D	Semivolatile Organic Compounds		Batch ID: Q	2b16081826	Prep Info:	PB160818	812 SW8	08/05/2016 11:03	JLL
	2,4-Dinitrophenol	< 9.00	U	ug/L	1	18.0	9.00	08/16/2016 01:22	JLL
	2,4-Dinitrotoluene	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 01:22	JLL
	2,6-Dinitrotoluene	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 01:22	JLL
	2-Chloronaphthalene	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 01:22	JLL
	2-Chlorophenol	< 0.56	U	ug/L	1	1.12	0.56	08/16/2016 01:22	JLL
	2-Methylnaphthalene	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 01:22	JLL
	2-Methylphenol	< 0.56	U	ug/L	1	1.12	0.56	08/16/2016 01:22	JLL
	2-Nitrophenol	< 0.56	U	ug/L	1	1.12	0.56	08/16/2016 01:22	JLL
	3,3-Dichlorobenzidine	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 01:22	JLL
	4,6-Dinitro-2-methylphenol	< 0.56	U	ug/L	1	1.12	0.56	08/16/2016 01:22	JLL
	4-Bromophenyl phenyl ether	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 01:22	JLL
	4-Chloro-3-methylphenol	< 0.56	U	ug/L	1	4.50	0.56	08/16/2016 01:22	JLL
	4-Chlorophenyl phenyl ether	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 01:22	JLL
	4-Methylphenol	< 0.56	U	ug/L	1	1.12	0.56	08/16/2016 01:22	JLL
	4-Nitrophenol	< 0.56	U	ug/L	1	1.12	0.56	08/16/2016 01:22	JLL
	Acenaphthene	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 01:22	JLL
	Acenaphthylene	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 01:22	JLL
	Anthracene	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 01:22	JLL
	Benzidine	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 01:22	JLL
	Benzo(a)anthracene	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 01:22	JLL
	Benzo(a)pyrene	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 01:22	JLL

Client Name: Lloy	yd Engineering, Inc. Attn: Marisa Weber				
Project ID: Qui	intana Terminal Dock 1				
Job ID :	1608151	Sample Matrix:	Water		
Client Sample ID:	QI-16-02-W	Date Collected:	08/04/2016		
Job Sample ID:	1608151.03	Time Collected:	12:13		
Other Information:					

Test Method	Parameter	Result	Q	Units	DF	LRL	SDL	%Rec Ctrl Limit Date/Time Analyzed	Analyst
SW846 8270D	Semivolatile Organic Compounds		Batch ID: Q	2b16081826	Prep Info: PB16081812 9			46 3511 08/05/2016 11:03	JLL
	Benzo(b)fluoranthene	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 01:22	JLL
	Benzo(g,h,i)perylene	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 01:22	JLL
	Benzo(k)fluoranthene	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 01:22	JLL
	Benzoic acid	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 01:22	JLL
	Benzyl alcohol	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 01:22	JLL
	Bis(2-chloroethoxy) methane	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 01:22	JLL
	Bis(2-chloroethyl) ether	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 01:22	JLL
	Bis(2-chloroisopropyl) ether	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 01:22	JLL
	Bis(2-ethylhexyl)phthalate	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 01:22	JLL
	Butyl benzyl phthalate	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 01:22	JLL
	Chrysene	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 01:22	JLL
	Dibenzo(a,h)anthracene	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 01:22	JLL
	Dibenzofuran	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 01:22	JLL
	Diethyl phthalate	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 01:22	JLL
	Dimethyl phthalate	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 01:22	JLL
	Di-n-butyl phthalate	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 01:22	JLL
	Di-n-octyl Phthalate	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 01:22	JLL
	Fluoranthene	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 01:22	JLL
	Fluorene	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 01:22	JLL
	Hexachlorobenzene	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 01:22	JLL
	Hexachlorobutadiene	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 01:22	JLL

ient Name: Lloy	yd Engineering, Inc.	Attn: Marisa W	Attn: Marisa Weber			
Project ID: Qui	intana Terminal Dock 1					
Job ID :	1608151	Sample Matrix:	Water			
Client Sample ID:	QI-16-02-W	Date Collected:	08/04/2016			
Job Sample ID:	1608151.03	Time Collected:	12:13			
Other Information:						

Test Method	Parameter	Result	Q	Units	DF	LRL	SDL	%Rec Ctrl Li	mit Date/Time Analyzed	Analyst
SW846 8270D	Semivolatile Organic Compounds		Batch ID: Qb	16081826	Prep Info:	PB160818	312 SW	846 3511	08/05/2016 11:03	JLL
	Hexachlorocyclopentadiene	< 0.281	U	ug/L	1	0.562	0.281		08/16/2016 01:22	JLL
	Hexachloroethane	< 0.281	U	ug/L	1	0.562	0.281		08/16/2016 01:22	JLL
	Indeno(1,2,3-cd)pyrene	< 0.281	U	ug/L	1	0.562	0.281		08/16/2016 01:22	JLL
	Isophorone	< 0.281	U	ug/L	1	0.562	0.281		08/16/2016 01:22	JLL
	Naphthalene	< 0.281	U	ug/L	1	0.562	0.281		08/16/2016 01:22	JLL
	Nitrobenzene	< 0.281	U	ug/L	1	0.562	0.281		08/16/2016 01:22	JLL
	n-Nitrosodimethylamine	< 0.281	U	ug/L	1	0.562	0.281		08/16/2016 01:22	JLL
	n-nitroso-di-n-propylamine	< 0.281	U	ug/L	1	0.562	0.281		08/16/2016 01:22	JLL
	n-Nitrosodiphenylamine	< 0.281	U	ug/L	1	0.562	0.281		08/16/2016 01:22	JLL
	Pentachlorophenol	< 0.56	U	ug/L	1	1.12	0.56		08/16/2016 01:22	JLL
	Phenanthrene	< 0.281	U	ug/L	1	0.562	0.281		08/16/2016 01:22	JLL
	Phenol	< 0.56	U	ug/L	1	1.12	0.56		08/16/2016 01:22	JLL
	Pyrene	< 0.281	U	ug/L	1	0.562	0.281		08/16/2016 01:22	JLL
TCEQ 1005	Total Petroleum Hydrocarbons		Batch ID:		Prep Info:					
	1-Chlorooctadecane(surr)	86.2		%	1			70-130	08/12/2016 19:34	EM
	1-Chlorooctane(surr)	89.5		%	1			70-130	08/12/2016 19:34	EM
TCEQ 1005	Total Petroleum Hydrocarbons		Batch ID: Qb	16081701	Prep Info: PB16081701 TC			EQ 1005	08/05/2016 11:27	EM
	ТРН, С6-С35	< 3.22	U	mg/L	1	10.0	3.22		08/12/2016 19:34	EM

Client Name: Lloy	byd Engineering, Inc. Attn: Marisa Weber					
Project ID: Qui	intana Terminal Dock 1					
Job ID :	1608151	Sample Matrix:	Water			
Client Sample ID:	QI-16-03-W	Date Collected:	08/04/2016			
Job Sample ID:	1608151.04	Time Collected:	11:13			
Other Information:						

Test Method	Parameter	Result	Q	Units	DF	LRL	SDL	%Rec Ctrl Limit Date/Time Analyzed	Analyst
Calculation	Chromium, Dissolved Trivalent		Batch ID: Q	b16082601	Prep Info:				
	Trivalent Chromium	< 1.50	U	ug/L	1	3.00	1.50	08/26/2016 06:23	MM
EPA 200.8	Metals, Dissolved		Batch ID: Q	b16081703	Prep Info:	PB16081	703 EPA 200.	2 08/17/2016 11:50	CL
	Antimony	< 1.00	U	ug/L	5	5.00	1.00	08/20/2016 00:44	CL
	Arsenic	4.49		ug/L	5	2.50	0.500	08/20/2016 00:44	CL
	Beryllium	< 0.100	U	ug/L	10	2.00	0.100	08/24/2016 14:51	CL
	Cadmium	< 0.250	U	ug/L	5	5.00	0.250	08/20/2016 00:44	CL
	Chromium	< 0.375	U	ug/L	5	15.0	0.375	08/20/2016 00:44	CL
	Copper	1.07	J	ug/L	5	5.00	0.250	08/20/2016 00:44	CL
	Lead	< 0.125	U	ug/L	5	2.50	0.125	08/20/2016 00:44	CL
	Nickel	0.776	J	ug/L	10	10.0	0.500	08/24/2016 14:51	CL
	Silver	< 0.125	U	ug/L	5	2.50	0.125	08/20/2016 00:44	CL
	Thallium	< 0.125	U	ug/L	5	2.50	0.125	08/20/2016 00:44	CL
	Zinc	4.06	J	ug/L	10	20.0	1.00	08/24/2016 14:51	CL
EPA 200.8	Metals, Total by ICP-MS		Batch ID: Q	b16081702	Prep Info:	PB16081	702 EPA 200.	2 08/17/2016 11:50	CL
	Selenium	14.7		ug/L	5	10.0	1.66	08/19/2016 14:22	CL
EPA 245.1	Mercury, Total		Batch ID: Q	b16081901	Prep Info:	PB16081	901 EPA 245.	1 08/10/2016 12:20	MBW
	Mercury	< 0.150	U	ug/L	1	0.200	0.150	08/11/2016 21:46	MBW
EPA 415.1	Total Organic Carbon		Batch ID: Q	b16081821	Prep Info:				
	Total Organic Carbon	0.000191		%	1	0.0001	0.00005	08/16/2016 16:30	ARC
SM 3500-Cr B	Chromium, Dissolved Hexavalent		Batch ID: Q	b16081813	Prep Info:				

Client Name: Lloy	yd Engineering, Inc.	Attn: Mar	Attn: Marisa Weber			
Project ID: Qui	intana Terminal Dock 1					
Job ID :	1608151	Sample Matrix:	Water			
Client Sample ID:	QI-16-03-W	Date Collected	: 08/04/201			
Job Sample ID:	1608151.04	Time Collected	: 11:13			
Other Information:						

Test Method	Parameter	Result	Q	Units	DF	LRL	SDL	%Rec Ctrl Li	mit Date/Time Analyzed	Analyst
SM 3500-Cr B	Chromium, Dissolved Hexavalent		Batch ID: Q	b16081813	Prep Info:					
	Chromium, Hexavalent	< 1.50	U	ug/L	1	3.00	1.50		08/04/2016 17:08	ARC
SM 4500-CN C, E	Cyanide, Total		Batch ID: Q	b16081819	Prep Info:	PB160818	811 SM	1 4500-CN C	08/09/2016 13:35	ARC
	Cyanide, Total	< 0.005	U	mg/L	1	0.010	0.005		08/09/2016 16:10	ARC
SM 4500-NH3 D	Ammonia as Nitrogen		Batch ID: Qb16081824 P		Prep Info:					
	Ammonia as N	< 0.050	U	mg/L	1	0.100	0.050		08/15/2016 11:30	ARC
SW846 8081B	Organochlorine Pesticides		Batch ID:		Prep Info:					
	2,4,5,6 Tetrachloro-m-xylene(surr)	142	S	%	1			60-140	08/12/2016 03:59	
	Decachlorobiphenyl(surr)	133		%	1			60-140	08/12/2016 03:59	
SW846 8081B	Organochlorine Pesticides		Batch ID: Q	b16081604	Prep Info:	PB160816	504 SV	/846 3511	08/09/2016 16:34	
	4,4-DDD	< 0.003	U	ug/L	1	0.012	0.003		08/12/2016 03:59	
	4,4-DDE	< 0.003	U	ug/L	1	0.012	0.003		08/12/2016 03:59	
	4,4-DDT	< 0.003	U	ug/L	1	0.012	0.003		08/12/2016 03:59	
	a-BHC	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 03:59	
	a-Chlordane	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 03:59	
	Aldrin	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 03:59	
	b-BHC	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 03:59	
	Chlordane	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 03:59	
	d-BHC	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 03:59	
	Dieldrin	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 03:59	
	Endosulfan I	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 03:59	

ient Name: Llo	yd Engineering, Inc.	Attn: Marisa Web	Attn: Marisa Weber			
Project ID: Qu	intana Terminal Dock 1					
Job ID :	1608151	Sample Matrix: V	Vater			
Client Sample ID:	QI-16-03-W	Date Collected: 0	8/04/2016			
Job Sample ID:	1608151.04	Time Collected: 1	1:13			
Other Information:						

Test Method	Parameter	Result	Q	Units	DF	LRL	SDL	%Rec Ctrl Li	imit Date/Time Analyzed	Analyst
SW846 8081B	Organochlorine Pesticides		Batch ID: Qb	16081604	Prep Info:	PB160816	04 SW84	6 3511	08/09/2016 16:34	
	Endosulfan II	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 03:59	
	Endosulfan sulfate	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 03:59	
	Endrin	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 03:59	
	Endrin aldehyde	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 03:59	
	Endrin ketone	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 03:59	
	g-BHC	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 03:59	
	Heptachlor	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 03:59	
	Heptachlor epoxide	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 03:59	
	Toxaphene	< 0.150	U	ug/L	1	0.300	0.150		08/12/2016 03:59	
	y-Chlordane	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 03:59	
SW846 8082A	Polychlorinated Biphenyls		Batch ID:		Prep Info:					
	2,4,5,6 Tetrachloro-m-xylene(surr)	153	S	%	1			60-140	08/11/2016 04:13	
	Decachlorobiphenyl(surr)	128		%	1			60-140	08/11/2016 04:13	
SW846 8082A	Polychlorinated Biphenyls		Batch ID: Qb	16081602	Prep Info:	PB160816	02 SW84	6 3511	08/08/2016 14:10	
	Total PCBs	< 0.006	U	ug/L	1	0.012	0.006		08/11/2016 04:13	
SW846 8260C	Volatile Organic Compounds		Batch ID:		Prep Info:					
	1,2-Dichloroethane-d4(surr)	99.0		%	1			50-150	08/08/2016 15:04	EM
	4-Bromofluorobenzene(surr)	78.7		%	1			50-150	08/08/2016 15:04	EM
	Dibromofluoromethane(surr)	96.9		%	1			50-150	08/08/2016 15:04	EM
	Toluene-d8(surr)	94.5		%	1			50-150	08/08/2016 15:04	EM

Client Name: Llo	d Engineering, Inc.	Attn: Marisa Weber
Project ID: Qui	ntana Terminal Dock 1	
Job ID :	1608151	Sample Matrix: Water
Client Sample ID:	QI-16-03-W	Date Collected: 08/04/20
Job Sample ID:	1608151.04	Time Collected: 11:13
Other Information:		

Test Method	Parameter	Result	Q	Units	DF	LRL	SDL	%Rec Ctrl Li	mit Date/Time Analyzed	Analyst
SW846 8260C	Volatile Organic Compounds		Batch ID: Qb	16081704	Prep Info:					
	Ethylbenzene	< 1.00	U	ug/L	1	5.00	1.00		08/08/2016 15:04	JM
	Tetrachloroethylene	< 1.00	U	ug/L	1	5.00	1.00		08/08/2016 15:04	JM
	Trichloroethylene	< 1.00	U	ug/L	1	5.00	1.00		08/08/2016 15:04	JM
	xylenes (total)	< 1.00	U	ug/L	1	5.00	1.00		08/08/2016 15:04	JM
SW846 8270D	Semivolatile Organic Compounds		Batch ID:		Prep Info:					
	2,4,6-Tribromophenol(surr)	97.4		%	1			60-140	08/16/2016 01:54	JLL
	2-Fluorobiphenyl(surr)	86.8		%	1			60-140	08/16/2016 01:54	JLL
	2-Fluorophenol(surr)	150	S	%	1			60-140	08/16/2016 01:54	JLL
	Nitrobenzene-d5(surr)	177	S	%	1			60-140	08/16/2016 01:54	JLL
	Phenol-d5(surr)	126		%	1			60-140	08/16/2016 01:54	JLL
	Terphenyl-d14(surr)	101		%	1			60-140	08/16/2016 01:54	JLL
SW846 8270D	Semivolatile Organic Compounds		Batch ID: Qb	16081826	Prep Info:	PB16081	812 SW	846 3511	08/05/2016 11:03	JLL
	1,2,4-Trichlorobenzene	< 0.281	U	ug/L	1	0.562	0.281		08/16/2016 01:54	JLL
	1,2-Dichlorobenzene	< 0.281	U	ug/L	1	0.562	0.281		08/16/2016 01:54	JLL
	1,2-Diphenylhydrazine as Azobenzene	< 0.281	U	ug/L	1	0.562	0.281		08/16/2016 01:54	JLL
	1,3-Dichlorobenzene	< 0.281	U	ug/L	1	0.562	0.281		08/16/2016 01:54	JLL
	1,4-Dichlorobenzene	< 0.281	U	ug/L	1	0.562	0.281		08/16/2016 01:54	JLL
	2,4,6-Trichlorophenol	< 0.56	U	ug/L	1	1.12	0.56		08/16/2016 01:54	JLL
	2,4-Dichlorophenol	< 0.56	U	ug/L	1	1.12	0.56		08/16/2016 01:54	JLL
	2,4-Dimethylphenol	< 0.56	U	ug/L	1	1.12	0.56		08/16/2016 01:54	JLL

Client Name: Llo	yd Engineering, Inc.	Attn: Marisa	Weber
Project ID: Qu	iintana Terminal Dock 1		
Job ID :	1608151	Sample Matrix:	Water
Client Sample ID:	QI-16-03-W	Date Collected:	08/04/2016
Job Sample ID:	1608151.04	Time Collected:	11:13
Other Information:			

Test Method	Parameter	Result	Q	Units	DF	LRL	SDL	%Rec Ctrl Limit Date/Time Analyzed	Analyst
SW846 8270D	Semivolatile Organic Compounds		Batch ID: (b16081826	Prep Info:	PB160818	312 SW8	08/05/2016 11:03	JLL
	2,4-Dinitrophenol	< 9.00	U	ug/L	1	18.0	9.00	08/16/2016 01:54	JLL
	2,4-Dinitrotoluene	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 01:54	JLL
	2,6-Dinitrotoluene	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 01:54	JLL
	2-Chloronaphthalene	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 01:54	JLL
	2-Chlorophenol	< 0.56	U	ug/L	1	1.12	0.56	08/16/2016 01:54	JLL
	2-Methylnaphthalene	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 01:54	JLL
	2-Methylphenol	< 0.56	U	ug/L	1	1.12	0.56	08/16/2016 01:54	JLL
	2-Nitrophenol	< 0.56	U	ug/L	1	1.12	0.56	08/16/2016 01:54	JLL
	3,3-Dichlorobenzidine	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 01:54	JLL
	4,6-Dinitro-2-methylphenol	< 0.56	U	ug/L	1	1.12	0.56	08/16/2016 01:54	JLL
	4-Bromophenyl phenyl ether	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 01:54	JLL
	4-Chloro-3-methylphenol	< 0.56	U	ug/L	1	4.50	0.56	08/16/2016 01:54	JLL
	4-Chlorophenyl phenyl ether	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 01:54	JLL
	4-Methylphenol	< 0.56	U	ug/L	1	1.12	0.56	08/16/2016 01:54	JLL
	4-Nitrophenol	< 0.56	U	ug/L	1	1.12	0.56	08/16/2016 01:54	JLL
	Acenaphthene	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 01:54	JLL
	Acenaphthylene	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 01:54	JLL
	Anthracene	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 01:54	JLL
	Benzidine	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 01:54	JLL
	Benzo(a)anthracene	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 01:54	JLL
	Benzo(a)pyrene	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 01:54	JLL

Client Name: Lloy	yd Engineering, Inc.		Attn: Marisa V	Veber
Project ID: Qui	intana Terminal Dock 1			
	_			_
Job ID :	1608151		Sample Matrix:	Water
Client Sample ID:	QI-16-03-W		Date Collected:	08/04/2016
Job Sample ID:	1608151.04		Time Collected:	11:13
Other Information:				

Test Method	Parameter	Result	Q	Units	DF	LRL	SDL	%Rec Ctrl Limit Date/Time Analyzed	Analyst
SW846 8270D	Semivolatile Organic Compounds		Batch ID: (b16081826	Prep Info:	PB160818	812 SW8	46 3511 08/05/2016 11:03	JLL
	Benzo(b)fluoranthene	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 01:54	JLL
	Benzo(g,h,i)perylene	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 01:54	JLL
	Benzo(k)fluoranthene	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 01:54	JLL
	Benzoic acid	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 01:54	JLL
	Benzyl alcohol	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 01:54	JLL
	Bis(2-chloroethoxy) methane	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 01:54	JLL
	Bis(2-chloroethyl) ether	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 01:54	JLL
	Bis(2-chloroisopropyl) ether	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 01:54	JLL
	Bis(2-ethylhexyl)phthalate	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 01:54	JLL
	Butyl benzyl phthalate	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 01:54	JLL
	Chrysene	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 01:54	JLL
	Dibenzo(a,h)anthracene	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 01:54	JLL
	Dibenzofuran	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 01:54	JLL
	Diethyl phthalate	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 01:54	JLL
	Dimethyl phthalate	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 01:54	JLL
	Di-n-butyl phthalate	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 01:54	JLL
	Di-n-octyl Phthalate	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 01:54	JLL
	Fluoranthene	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 01:54	JLL
	Fluorene	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 01:54	JLL
	Hexachlorobenzene	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 01:54	JLL
	Hexachlorobutadiene	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 01:54	JLL

ient Name: Llo	yd Engineering, Inc.	Attn: Marisa Web	er
Project ID: Qu	intana Terminal Dock 1		
Job ID :	1608151	Sample Matrix: V	Vater
Client Sample ID:	QI-16-03-W	Date Collected: 0	8/04/2016
Job Sample ID:	1608151.04	Time Collected: 1	1:13
Other Information:			

Test Method	Parameter	Result	Q	Units	DF	LRL	SDL	%Rec Ctrl Li	mit Date/Time Analyzed	Analyst
SW846 8270D	Semivolatile Organic Compounds		Batch ID: Qt	16081826	Prep Info:	PB160818	812 SW	/846 3511	08/05/2016 11:03	JLL
	Hexachlorocyclopentadiene	< 0.281	U	ug/L	1	0.562	0.281		08/16/2016 01:54	JLL
	Hexachloroethane	< 0.281	U	ug/L	1	0.562	0.281		08/16/2016 01:54	JLL
	Indeno(1,2,3-cd)pyrene	< 0.281	U	ug/L	1	0.562	0.281		08/16/2016 01:54	JLL
	Isophorone	< 0.281	U	ug/L	1	0.562	0.281		08/16/2016 01:54	JLL
	Naphthalene	< 0.281	U	ug/L	1	0.562	0.281		08/16/2016 01:54	JLL
	Nitrobenzene	< 0.281	U	ug/L	1	0.562	0.281		08/16/2016 01:54	JLL
	n-Nitrosodimethylamine	< 0.281	U	ug/L	1	0.562	0.281		08/16/2016 01:54	JLL
	n-nitroso-di-n-propylamine	< 0.281	U	ug/L	1	0.562	0.281		08/16/2016 01:54	JLL
	n-Nitrosodiphenylamine	< 0.281	U	ug/L	1	0.562	0.281		08/16/2016 01:54	JLL
	Pentachlorophenol	< 0.56	U	ug/L	1	1.12	0.56		08/16/2016 01:54	JLL
	Phenanthrene	< 0.281	U	ug/L	1	0.562	0.281		08/16/2016 01:54	JLL
	Phenol	< 0.56	U	ug/L	1	1.12	0.56		08/16/2016 01:54	JLL
	Pyrene	< 0.281	U	ug/L	1	0.562	0.281		08/16/2016 01:54	JLL
TCEQ 1005	Total Petroleum Hydrocarbons		Batch ID:		Prep Info:					
	1-Chlorooctadecane(surr)	90.0		%	1			70-130	08/12/2016 20:03	EM
	1-Chlorooctane(surr)	96.4		%	1			70-130	08/12/2016 20:03	EM
TCEQ 1005	Total Petroleum Hydrocarbons		Batch ID: Qb	16081701	Prep Info:	PB160817	701 TC	EQ 1005	08/05/2016 11:27	EM
	ТРН, С6-С35	< 3.22	U	mg/L	1	10.0	3.22		08/12/2016 20:03	EM

Client Name: Lloy	yd Engineering, Inc.		Attn: Marisa V	Veber
Project ID: Qui	intana Terminal Dock 1			
	_			
Job ID :	1608151		Sample Matrix:	Water
Client Sample ID:	QI-16-04-W		Date Collected:	08/04/201
Job Sample ID:	1608151.05		Time Collected:	10:58
Other Information:				

Test Method	Parameter	Result	Q	Units	DF	LRL	SDL	%Rec Ctrl Limit Date/Time Analyzed	Analyst
Calculation	Chromium, Dissolved Trivalent		Batch ID: Q	b16082601	Prep Info:				
	Trivalent Chromium	< 1.50	U	ug/L	1	3.00	1.50	08/26/2016 06:23	MM
EPA 200.8	Metals, Dissolved		Batch ID: Q	b16081703	Prep Info:	PB16081	703 EPA 200.	2 08/17/2016 11:50	CL
	Antimony	< 1.00	U	ug/L	5	5.00	1.00	08/20/2016 00:50	CL
	Arsenic	4.21		ug/L	5	2.50	0.500	08/20/2016 00:50	CL
	Beryllium	< 0.100	U	ug/L	10	2.00	0.100	08/24/2016 14:57	CL
	Cadmium	< 0.250	U	ug/L	5	5.00	0.250	08/20/2016 00:50	CL
	Chromium	< 0.375	U	ug/L	5	15.0	0.375	08/20/2016 00:50	CL
	Copper	1.17	J	ug/L	5	5.00	0.250	08/20/2016 00:50	CL
	Lead	< 0.125	U	ug/L	5	2.50	0.125	08/20/2016 00:50	CL
	Nickel	0.917	J	ug/L	10	10.0	0.500	08/24/2016 14:57	CL
	Silver	< 0.125	U	ug/L	5	2.50	0.125	08/20/2016 00:50	CL
	Thallium	< 0.125	U	ug/L	5	2.50	0.125	08/20/2016 00:50	CL
	Zinc	5.88	J	ug/L	10	20.0	1.00	08/24/2016 14:57	CL
EPA 200.8	Metals, Total by ICP-MS		Batch ID: Q	b16081702	Prep Info:	PB16081	702 EPA 200.	2 08/17/2016 11:50	CL
	Selenium	17.3		ug/L	5	10.0	1.66	08/19/2016 14:52	CL
EPA 245.1	Mercury, Total		Batch ID: Q	b16081902	Prep Info:	PB16081	902 EPA 245.	1 08/17/2016 13:08	MBW
	Mercury	< 0.150	U	ug/L	1	0.200	0.150	08/19/2016 08:25	MBW
EPA 415.1	Total Organic Carbon		Batch ID: Q	b16081821	Prep Info:				
	Total Organic Carbon	0.00022		%	1	0.0001	0.00005	08/16/2016 16:30	ARC
SM 3500-Cr B	Chromium, Dissolved Hexavalent		Batch ID: Q	b16081813	Prep Info:				

Client Name: Lloy	yd Engineering, Inc.		Attn: Marisa Weber			
Project ID: Qui	intana Terminal Dock 1					
Job ID :	1608151		Sample Matrix:	Water		
Client Sample ID:	QI-16-04-W		Date Collected:	08/04/2016		
Job Sample ID:	1608151.05		Time Collected:	10:58		
Other Information:						

Test Method	Parameter	Result	Q	Units	DF	LRL	SDL	%Rec Ctrl Li	mit Date/Time Analyzed	Analyst
SM 3500-Cr B	Chromium, Dissolved Hexavalent		Batch ID: Q	b16081813	Prep Info:					
	Chromium, Hexavalent	< 1.50	U	ug/L	1	3.00	1.50		08/04/2016 17:08	ARC
SM 4500-CN C, E	Cyanide, Total		Batch ID: Q	b16081819	Prep Info:	PB160818	811 SM	4500-CN C	08/09/2016 13:35	ARC
	Cyanide, Total	< 0.005	U	mg/L	1	0.010	0.005		08/09/2016 16:10	ARC
SM 4500-NH3 D	Ammonia as Nitrogen		Batch ID: Q	b16081824	Prep Info:					
	Ammonia as N	< 0.050	U	mg/L	1	0.100	0.050		08/15/2016 11:30	ARC
SW846 8081B	Organochlorine Pesticides		Batch ID:		Prep Info:					
	2,4,5,6 Tetrachloro-m-xylene(surr)	149	S	%	1			60-140	08/12/2016 05:01	
	Decachlorobiphenyl(surr)	133		%	1			60-140	08/12/2016 05:01	
SW846 8081B	Organochlorine Pesticides		Batch ID: Q	b16081604	Prep Info:	PB160816	504 SW	/846 3511	08/09/2016 16:34	
	4,4-DDD	< 0.003	U	ug/L	1	0.012	0.003		08/12/2016 05:01	
	4,4-DDE	< 0.003	U	ug/L	1	0.012	0.003		08/12/2016 05:01	
	4,4-DDT	< 0.003	U	ug/L	1	0.012	0.003		08/12/2016 05:01	
	a-BHC	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 05:01	
	a-Chlordane	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 05:01	
	Aldrin	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 05:01	
	b-BHC	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 05:01	
	Chlordane	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 05:01	
	d-BHC	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 05:01	
	Dieldrin	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 05:01	
	Endosulfan I	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 05:01	

Client Name: Llo	yd Engineering, Inc.	Attn: Marisa Weber
Project ID: Qu	intana Terminal Dock 1	
Job ID :	1608151	Sample Matrix: Water
Client Sample ID:	QI-16-04-W	Date Collected: 08/04/201
Job Sample ID:	1608151.05	Time Collected: 10:58
Other Information:		

Test Method	Parameter	Result	Q	Units	DF	LRL	SDL	%Rec Ctrl Li	mit Date/Time Analyzed	Analyst
SW846 8081B	Organochlorine Pesticides		Batch ID: Qb	16081604	Prep Info:	PB160816	04 SW8	46 3511	08/09/2016 16:34	
	Endosulfan II	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 05:01	
	Endosulfan sulfate	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 05:01	
	Endrin	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 05:01	
	Endrin aldehyde	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 05:01	
	Endrin ketone	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 05:01	
	g-BHC	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 05:01	
	Heptachlor	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 05:01	
	Heptachlor epoxide	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 05:01	
	Toxaphene	< 0.150	U	ug/L	1	0.300	0.150		08/12/2016 05:01	
	y-Chlordane	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 05:01	
SW846 8082A	Polychlorinated Biphenyls		Batch ID:		Prep Info:					
	2,4,5,6 Tetrachloro-m-xylene(surr)	152	S	%	1			60-140	08/11/2016 04:33	
	Decachlorobiphenyl(surr)	128		%	1			60-140	08/11/2016 04:33	
SW846 8082A	Polychlorinated Biphenyls		Batch ID: Qb	16081602	Prep Info:	PB160816	02 SW8	46 3511	08/08/2016 14:10	
	Total PCBs	< 0.006	U	ug/L	1	0.012	0.006		08/11/2016 04:33	
SW846 8260C	Volatile Organic Compounds		Batch ID:		Prep Info:					
	1,2-Dichloroethane-d4(surr)	97.6		%	1			50-150	08/08/2016 15:33	EM
	4-Bromofluorobenzene(surr)	79.6		%	1			50-150	08/08/2016 15:33	EM
	Dibromofluoromethane(surr)	95.5		%	1			50-150	08/08/2016 15:33	EM
	Toluene-d8(surr)	96.2		%	1			50-150	08/08/2016 15:33	EM

Client Name: Llo	d Engineering, Inc.	Attn: Marisa We	Attn: Marisa Weber		
Project ID: Qu	ntana Terminal Dock 1				
Job ID :	1608151	Sample Matrix:	Water		
Client Sample ID:	QI-16-04-W	Date Collected:	08/04/2016		
Job Sample ID:	1608151.05	Time Collected:	10:58		
Other Information:					

Test Method	Parameter	Result	Q	Units	DF	LRL	SDL	%Rec Ctrl Li	mit Date/Time Analyzed	Analyst
SW846 8260C	Volatile Organic Compounds	Result	Batch ID: Qb:		Prep Info:		JDL			,
50010 02000	Ethylbenzene	< 1.00	U	ug/L	1	5.00	1.00		08/08/2016 15:33	JM
	Tetrachloroethylene	< 1.00	U	ug/L	1	5.00	1.00		08/08/2016 15:33	JM
	Trichloroethylene	< 1.00 < 1.00	U		1	5.00	1.00		08/08/2016 15:33	JM
				ug/L						
	xylenes (total)	< 1.00	U	ug/L	1	5.00	1.00		08/08/2016 15:33	JM
SW846 8270D	Semivolatile Organic Compounds		Batch ID:		Prep Info:					
	2,4,6-Tribromophenol(surr)	160	S	%	1			60-140	08/16/2016 18:14	JLL
	2-Fluorobiphenyl(surr)	84.4		%	1			60-140	08/16/2016 18:14	JLL
	2-Fluorophenol(surr)	188	S	%	1			60-140	08/16/2016 18:14	JLL
	Nitrobenzene-d5(surr)	89.6		%	1			60-140	08/16/2016 18:14	JLL
	Phenol-d5(surr)	91.3		%	1			60-140	08/16/2016 18:14	JLL
	Terphenyl-d14(surr)	95.7		%	1			60-140	08/16/2016 18:14	JLL
SW846 8270D	Semivolatile Organic Compounds		Batch ID: Qbi	16081826	Prep Info:	PB16081	812 SW	846 3511	08/05/2016 11:03	JLL
	1,2,4-Trichlorobenzene	< 0.281	U	ug/L	1	0.562	0.281		08/16/2016 18:14	JLL
	1,2-Dichlorobenzene	< 0.281	U	ug/L	1	0.562	0.281		08/16/2016 18:14	JLL
	1,2-Diphenylhydrazine as Azobenzene	< 0.281	U	ug/L	1	0.562	0.281		08/16/2016 18:14	JLL
	1,3-Dichlorobenzene	< 0.281	U	ug/L	1	0.562	0.281		08/16/2016 18:14	JLL
	1,4-Dichlorobenzene	< 0.281	U	ug/L	1	0.562	0.281		08/16/2016 18:14	JLL
	2,4,6-Trichlorophenol	< 0.56	U	ug/L	1	1.12	0.56		08/16/2016 18:14	JLL
	2,4-Dichlorophenol	< 0.56	U	ug/L	1	1.12	0.56		08/16/2016 18:14	JLL
	2,4-Dimethylphenol	< 0.56	U	ug/L	1	1.12	0.56		08/16/2016 18:14	JLL

Client Name: Llo	oyd Engineering, Inc.	Attn: Marisa W	Attn: Marisa Weber				
Project ID: Qu	uintana Terminal Dock 1						
Job ID :	1608151	Sample Matrix:	Water				
Client Sample ID:	QI-16-04-W	Date Collected:	08/04/2016				
Job Sample ID:	1608151.05	Time Collected:	10:58				
Other Information:	:						

Test Method	Parameter	Result	Q	Units	DF	LRL	SDL	%Rec Ctrl Limit Date/Time Analyzed	Analyst
SW846 8270D	Semivolatile Organic Compounds		Batch ID:	2b16081826	Prep Info:	PB160818	812 SW8	46 3511 08/05/2016 11:03	JLL
	2,4-Dinitrophenol	< 9.00	U	ug/L	1	18.0	9.00	08/16/2016 18:14	JLL
	2,4-Dinitrotoluene	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 18:14	JLL
	2,6-Dinitrotoluene	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 18:14	JLL
	2-Chloronaphthalene	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 18:14	JLL
	2-Chlorophenol	< 0.56	U	ug/L	1	1.12	0.56	08/16/2016 18:14	JLL
	2-Methylnaphthalene	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 18:14	JLL
	2-Methylphenol	< 0.56	U	ug/L	1	1.12	0.56	08/16/2016 18:14	JLL
	2-Nitrophenol	< 0.56	U	ug/L	1	1.12	0.56	08/16/2016 18:14	JLL
	3,3-Dichlorobenzidine	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 18:14	JLL
	4,6-Dinitro-2-methylphenol	< 0.56	U	ug/L	1	1.12	0.56	08/16/2016 18:14	JLL
	4-Bromophenyl phenyl ether	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 18:14	JLL
	4-Chloro-3-methylphenol	< 0.56	U	ug/L	1	4.50	0.56	08/16/2016 18:14	JLL
	4-Chlorophenyl phenyl ether	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 18:14	JLL
	4-Methylphenol	< 0.56	U	ug/L	1	1.12	0.56	08/16/2016 18:14	JLL
	4-Nitrophenol	< 0.56	U	ug/L	1	1.12	0.56	08/16/2016 18:14	JLL
	Acenaphthene	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 18:14	JLL
	Acenaphthylene	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 18:14	JLL
	Anthracene	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 18:14	JLL
	Benzidine	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 18:14	JLL
	Benzo(a)anthracene	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 18:14	JLL
	Benzo(a)pyrene	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 18:14	JLL

Client Name: Lloy	yd Engineering, Inc.		Attn: Marisa Weber				
Project ID: Qui	intana Terminal Dock 1						
Job ID :	1608151			Sample Matrix:	Water		
Client Sample ID:	QI-16-04-W			Date Collected:	08/04/2016		
Job Sample ID:	1608151.05			Time Collected:	10:58		
Other Information:							

Test Method	Parameter	Result	Q	Units	DF	LRL	SDL	%Rec Ctrl Limit Date/Time Analyzed	Analyst
SW846 8270D	Semivolatile Organic Compounds		Batch ID: Q	b16081826	Prep Info:	PB160818	312 SW8	46 3511 08/05/2016 11:03	JLL
	Benzo(b)fluoranthene	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 18:14	JLL
	Benzo(g,h,i)perylene	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 18:14	JLL
	Benzo(k)fluoranthene	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 18:14	JLL
	Benzoic acid	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 18:14	JLL
	Benzyl alcohol	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 18:14	JLL
	Bis(2-chloroethoxy) methane	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 18:14	JLL
	Bis(2-chloroethyl) ether	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 18:14	JLL
	Bis(2-chloroisopropyl) ether	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 18:14	JLL
	Bis(2-ethylhexyl)phthalate	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 18:14	JLL
	Butyl benzyl phthalate	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 18:14	JLL
	Chrysene	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 18:14	JLL
	Dibenzo(a,h)anthracene	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 18:14	JLL
	Dibenzofuran	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 18:14	JLL
	Diethyl phthalate	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 18:14	JLL
	Dimethyl phthalate	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 18:14	JLL
	Di-n-butyl phthalate	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 18:14	JLL
	Di-n-octyl Phthalate	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 18:14	JLL
	Fluoranthene	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 18:14	JLL
	Fluorene	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 18:14	JLL
	Hexachlorobenzene	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 18:14	JLL
	Hexachlorobutadiene	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 18:14	JLL

Client Name: Llo	yd Engineering, Inc.	Attn: Marisa V	Attn: Marisa Weber			
Project ID: Qui	intana Terminal Dock 1					
Job ID :	1608151	Sample Matrix:	Water			
Client Sample ID:	QI-16-04-W	Date Collected:	08/04/2016			
Job Sample ID:	1608151.05	Time Collected:	10:58			
Other Information:						

Development	Develt	0	11.21.4	DE		CDI		ait Data (Time Analysis)	A
	Result					-		. ,	Analyst
Semivolatile Organic Compounds		Batch ID: Qb	16081826	Prep Info:	PB160818	312 SW8	46 3511	08/05/2016 11:03	JLL
Hexachlorocyclopentadiene	< 0.281	U	ug/L	1	0.562	0.281		08/16/2016 18:14	JLL
Hexachloroethane	< 0.281	U	ug/L	1	0.562	0.281		08/16/2016 18:14	JLL
Indeno(1,2,3-cd)pyrene	< 0.281	U	ug/L	1	0.562	0.281		08/16/2016 18:14	JLL
Isophorone	< 0.281	U	ug/L	1	0.562	0.281		08/16/2016 18:14	JLL
Naphthalene	< 0.281	U	ug/L	1	0.562	0.281		08/16/2016 18:14	JLL
Nitrobenzene	< 0.281	U	ug/L	1	0.562	0.281		08/16/2016 18:14	JLL
n-Nitrosodimethylamine	< 0.281	U	ug/L	1	0.562	0.281		08/16/2016 18:14	JLL
n-nitroso-di-n-propylamine	< 0.281	U	ug/L	1	0.562	0.281		08/16/2016 18:14	JLL
n-Nitrosodiphenylamine	< 0.281	U	ug/L	1	0.562	0.281		08/16/2016 18:14	JLL
Pentachlorophenol	< 0.56	U	ug/L	1	1.12	0.56		08/16/2016 18:14	JLL
Phenanthrene	< 0.281	U	ug/L	1	0.562	0.281		08/16/2016 18:14	JLL
Phenol	< 0.56	U	ug/L	1	1.12	0.56		08/16/2016 18:14	JLL
Pyrene	< 0.281	U	ug/L	1	0.562	0.281		08/16/2016 18:14	JLL
Total Petroleum Hydrocarbons		Batch ID:		Prep Info:					
1-Chlorooctadecane(surr)	94.2		%	1			70-130	08/12/2016 20:32	EM
1-Chlorooctane(surr)	104		%	1			70-130	08/12/2016 20:32	EM
Total Petroleum Hydrocarbons		Batch ID: Qb	16081701	Prep Info:	PB160817	701 TCE	Q 1005	08/05/2016 11:27	EM
ТРН, С6-С35	< 3.22	U	mg/L	1	10.0	3.22		08/12/2016 20:32	EM
	HexachloroethaneIndeno(1,2,3-cd)pyreneIsophoroneNaphthaleneNitrobenzenen-Nitrosodimethylaminen-nitroso-di-n-propylaminen-NitrosodiphenylaminePentachlorophenolPhenanthrenePhenolPyreneTotal Petroleum Hydrocarbons1-Chlorooctane(surr)1-Chlorooctane(surr)Total Petroleum Hydrocarbons	Semivolatile Organic CompoundsHexachlorocyclopentadiene< 0.281	Semivolatile Organic CompoundsBatch ID: QbHexachlorocyclopentadiene< 0.281	Semivolatile Organic CompoundsBatch ID: Qb16081826Hexachlorocyclopentadiene< 0.281	Semivolatile Organic Compounds Batch ID: Qb16081826 Prep Info: Hexachlorocyclopentadiene < 0.281	Semivolatile Organic Compounds Batch ID: Qb16081826 Prep Info: PB16081826 Hexachlorocyclopentadiene < 0.281	Semivolatile Organic Compounds Batch ID: Qb16081826 Prep Info: PB16081812 SW8 Hexachlorocyclopentadiene < 0.281	Semivolatile Organic Compounds Batch ID: Qb16081826 Prep Info: PB16081812 SW846 3511 Hexachlorocyclopentadiene < 0.281	Semivolatile Organic Compounds Batch ID: Qb16081826 Prep Info: PB16081812 SW846 3511 08/05/2016 11:03 Hexachlorocyclopentadiene < 0.281

Client Name: Lloy	yd Engineering, Inc.	Attn:	Attn: Marisa Weber				
Project ID: Qui	intana Terminal Dock 1						
Job ID :	1608151	Sample	Matrix: Wa	ater			
Client Sample ID:	QI-16-05-W	Date Col	lected: 08	/04/2016			
Job Sample ID:	1608151.06	Time Col	lected: 10	:00			
Other Information:							

Test Method	Parameter	Result	Q	Units	DF	LRL	SDL	%Rec Ctrl Limit Date/Time Analyzed	Analyst
Calculation	Chromium, Dissolved Trivalent		Batch ID: Q	b16082601	Prep Info:				
	Trivalent Chromium	< 1.50	U	ug/L	1	3.00	1.50	08/26/2016 06:23	MM
EPA 200.8	Metals, Dissolved		Batch ID: Q	b16081703	Prep Info:	PB16081	703 EPA 200.	2 08/17/2016 11:50	CL
	Antimony	< 1.00	U	ug/L	5	5.00	1.00	08/20/2016 00:56	CL
	Arsenic	4.65		ug/L	5	2.50	0.500	08/20/2016 00:56	CL
	Beryllium	< 0.100	U	ug/L	10	2.00	0.100	08/24/2016 15:03	CL
	Cadmium	< 0.250	U	ug/L	5	5.00	0.250	08/20/2016 00:56	CL
	Chromium	< 0.375	U	ug/L	5	15.0	0.375	08/20/2016 00:56	CL
	Copper	1.06	J	ug/L	5	5.00	0.250	08/20/2016 00:56	CL
	Lead	< 0.125	U	ug/L	5	2.50	0.125	08/20/2016 00:56	CL
	Nickel	1.04	J	ug/L	10	10.0	0.500	08/24/2016 15:03	CL
	Silver	< 0.125	U	ug/L	5	2.50	0.125	08/20/2016 00:56	CL
	Thallium	< 0.125	U	ug/L	5	2.50	0.125	08/20/2016 00:56	CL
	Zinc	6.22	J	ug/L	10	20.0	1.00	08/24/2016 15:03	CL
EPA 200.8	Metals, Total by ICP-MS		Batch ID: Q	b16081702	Prep Info:	PB16081	702 EPA 200.	2 08/17/2016 11:50	CL
	Selenium	15.4		ug/L	5	10.0	1.66	08/19/2016 14:58	CL
EPA 245.1	Mercury, Total		Batch ID: Q	b16081901	Prep Info:	PB16081	901 EPA 245.	1 08/10/2016 12:20	MBW
	Mercury	< 0.150	U	ug/L	1	0.200	0.150	08/11/2016 21:49	MBW
EPA 415.1	Total Organic Carbon		Batch ID: Q	b16081821	Prep Info:				
	Total Organic Carbon	0.000235		%	1	0.0001	0.00005	08/16/2016 16:30	ARC
SM 3500-Cr B	Chromium, Dissolved Hexavalent		Batch ID: Q	b16081813	Prep Info:				

Client Name: Lloy	yd Engineering, Inc. Attn: Marisa Weber					
Project ID: Qui	intana Terminal Dock 1					
Job ID :	1608151				Sample Matrix:	Water
Client Sample ID:	QI-16-05-W				Date Collected:	08/04/2016
Job Sample ID:	1608151.06				Time Collected:	10:00
Other Information:						

Test Method	Parameter	Result	Q	Units	DF	LRL	SDL	%Rec Ctrl Li	mit Date/Time Analyzed	Analyst
SM 3500-Cr B	Chromium, Dissolved Hexavalent		Batch ID: Q	b16081813	Prep Info:					
	Chromium, Hexavalent	< 1.50	U	ug/L	1	3.00	1.50		08/04/2016 17:08	ARC
SM 4500-CN C, E	Cyanide, Total		Batch ID: Q	b16081819	Prep Info:	PB160818	811 SM	1 4500-CN C	08/09/2016 13:35	ARC
	Cyanide, Total	< 0.005	U	mg/L	1	0.010	0.005		08/09/2016 16:10	ARC
SM 4500-NH3 D	Ammonia as Nitrogen		Batch ID: Q	b16081824	Prep Info:					
	Ammonia as N	< 0.050	U	mg/L	1	0.100	0.050		08/15/2016 11:30	ARC
SW846 8081B	Organochlorine Pesticides		Batch ID:		Prep Info:					
	2,4,5,6 Tetrachloro-m-xylene(surr)	154	S	%	1			60-140	08/12/2016 05:22	
	Decachlorobiphenyl(surr)	128		%	1			60-140	08/12/2016 05:22	
SW846 8081B	Organochlorine Pesticides		Batch ID: Q	b16081604	Prep Info:	PB160816	504 SV	/846 3511	08/09/2016 16:34	
	4,4-DDD	< 0.003	U	ug/L	1	0.012	0.003		08/12/2016 05:22	
	4,4-DDE	< 0.003	U	ug/L	1	0.012	0.003		08/12/2016 05:22	
	4,4-DDT	< 0.003	U	ug/L	1	0.012	0.003		08/12/2016 05:22	
	a-BHC	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 05:22	
	a-Chlordane	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 05:22	
	Aldrin	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 05:22	
	b-BHC	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 05:22	
	Chlordane	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 05:22	
	d-BHC	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 05:22	
	Dieldrin	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 05:22	
	Endosulfan I	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 05:22	

Client Name: Llo	yd Engineering, Inc.	Attn:	Attn: Marisa Weber			
Project ID: Qu	intana Terminal Dock 1					
Job ID :	1608151	Sample Mat	rix: Water			
Client Sample ID:	QI-16-05-W	Date Collec	ted: 08/04/2016			
Job Sample ID:	1608151.06	Time Collec	ted: 10:00			
Other Information:						

Test Method	Parameter	Result	Q	Units	DF	LRL	SDL	%Rec Ctrl Li	mit Date/Time Analyzed	Analyst
SW846 8081B	Organochlorine Pesticides		Batch ID: Qb	16081604	Prep Info:	PB160816	604 SW8	46 3511	08/09/2016 16:34	
	Endosulfan II	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 05:22	
	Endosulfan sulfate	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 05:22	
	Endrin	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 05:22	
	Endrin aldehyde	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 05:22	
	Endrin ketone	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 05:22	
	g-BHC	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 05:22	
	Heptachlor	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 05:22	
	Heptachlor epoxide	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 05:22	
	Toxaphene	< 0.150	U	ug/L	1	0.300	0.150		08/12/2016 05:22	
	y-Chlordane	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 05:22	
SW846 8082A	Polychlorinated Biphenyls		Batch ID:		Prep Info:					
	2,4,5,6 Tetrachloro-m-xylene(surr)	155	S	%	1			60-140	08/11/2016 04:54	
	Decachlorobiphenyl(surr)	133		%	1			60-140	08/11/2016 04:54	
SW846 8082A	Polychlorinated Biphenyls		Batch ID: Qb	16081602	Prep Info:	PB160816	602 SW8	46 3511	08/08/2016 14:10	
	Total PCBs	< 0.006	U	ug/L	1	0.012	0.006		08/11/2016 04:54	
SW846 8260C	Volatile Organic Compounds		Batch ID:		Prep Info:					
	1,2-Dichloroethane-d4(surr)	98.8		%	1			50-150	08/08/2016 16:03	EM
	4-Bromofluorobenzene(surr)	81.5		%	1			50-150	08/08/2016 16:03	EM
	Dibromofluoromethane(surr)	96.1		%	1			50-150	08/08/2016 16:03	EM
	Toluene-d8(surr)	95.9		%	1			50-150	08/08/2016 16:03	EM

Client Name: Llo	d Engineering, Inc.	Attn: Marisa Weber
Project ID: Qui	ntana Terminal Dock 1	
Job ID :	1608151	Sample Matrix: Water
Client Sample ID:	QI-16-05-W	Date Collected: 08/04/20
Job Sample ID:	1608151.06	Time Collected: 10:00
Other Information:		

Test Method	Parameter	Result	Q	Units	DF	LRL	SDL	%Rec Ctrl Li	mit Date/Time Analyzed	Analyst
SW846 8260C	Volatile Organic Compounds		Batch ID: Qb	16081704	Prep Info:					
	Ethylbenzene	< 1.00	U	ug/L	1	5.00	1.00		08/08/2016 16:03	JM
	Tetrachloroethylene	< 1.00	U	ug/L	1	5.00	1.00		08/08/2016 16:03	JM
	Trichloroethylene	< 1.00	U	ug/L	1	5.00	1.00		08/08/2016 16:03	JM
	xylenes (total)	< 1.00	U	ug/L	1	5.00	1.00		08/08/2016 16:03	JM
SW846 8270D	Semivolatile Organic Compounds		Batch ID:		Prep Info:					
	2,4,6-Tribromophenol(surr)	153	S	%	1			60-140	08/16/2016 18:46	JLL
	2-Fluorobiphenyl(surr)	82.5		%	1			60-140	08/16/2016 18:46	JLL
	2-Fluorophenol(surr)	101		%	1			60-140	08/16/2016 18:46	JLL
	Nitrobenzene-d5(surr)	103		%	1			60-140	08/16/2016 18:46	JLL
	Phenol-d5(surr)	94.6		%	1			60-140	08/16/2016 18:46	JLL
	Terphenyl-d14(surr)	90.5		%	1			60-140	08/16/2016 18:46	JLL
SW846 8270D	Semivolatile Organic Compounds		Batch ID: Qb	16081826	Prep Info:	PB16081	812 SW	/846 3511	08/05/2016 11:03	JLL
	1,2,4-Trichlorobenzene	< 0.281	U	ug/L	1	0.562	0.281		08/16/2016 18:46	JLL
	1,2-Dichlorobenzene	< 0.281	U	ug/L	1	0.562	0.281		08/16/2016 18:46	JLL
	1,2-Diphenylhydrazine as Azobenzene	< 0.281	U	ug/L	1	0.562	0.281		08/16/2016 18:46	JLL
	1,3-Dichlorobenzene	< 0.281	U	ug/L	1	0.562	0.281		08/16/2016 18:46	JLL
	1,4-Dichlorobenzene	< 0.281	U	ug/L	1	0.562	0.281		08/16/2016 18:46	JLL
	2,4,6-Trichlorophenol	< 0.56	U	ug/L	1	1.12	0.56		08/16/2016 18:46	JLL
	2,4-Dichlorophenol	< 0.56	U	ug/L	1	1.12	0.56		08/16/2016 18:46	JLL
	2,4-Dimethylphenol	< 0.56	U	ug/L	1	1.12	0.56		08/16/2016 18:46	JLL

Client Name: Llo	yd Engineering, Inc.	Attn: Marisa Weber
Project ID: Qu	intana Terminal Dock 1	
Job ID :	1608151	Sample Matrix: Water
Client Sample ID:	QI-16-05-W	Date Collected: 08/04/
Job Sample ID:	1608151.06	Time Collected: 10:00
Other Information:		

Test Method	Parameter	Result	Q	Units	DF	LRL	SDL	%Rec Ctrl Limit Date/Time Analyzed	Analyst
SW846 8270D	Semivolatile Organic Compounds		Batch ID: (2b16081826	Prep Info:	PB160818	312 SW8	08/05/2016 11:03	JLL
	2,4-Dinitrophenol	< 9.00	U	ug/L	1	18.0	9.00	08/16/2016 18:46	JLL
	2,4-Dinitrotoluene	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 18:46	JLL
	2,6-Dinitrotoluene	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 18:46	JLL
	2-Chloronaphthalene	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 18:46	JLL
	2-Chlorophenol	< 0.56	U	ug/L	1	1.12	0.56	08/16/2016 18:46	JLL
	2-Methylnaphthalene	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 18:46	JLL
	2-Methylphenol	< 0.56	U	ug/L	1	1.12	0.56	08/16/2016 18:46	JLL
	2-Nitrophenol	< 0.56	U	ug/L	1	1.12	0.56	08/16/2016 18:46	JLL
	3,3-Dichlorobenzidine	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 18:46	JLL
	4,6-Dinitro-2-methylphenol	< 0.56	U	ug/L	1	1.12	0.56	08/16/2016 18:46	JLL
	4-Bromophenyl phenyl ether	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 18:46	JLL
	4-Chloro-3-methylphenol	< 0.56	U	ug/L	1	4.50	0.56	08/16/2016 18:46	JLL
	4-Chlorophenyl phenyl ether	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 18:46	JLL
	4-Methylphenol	< 0.56	U	ug/L	1	1.12	0.56	08/16/2016 18:46	JLL
	4-Nitrophenol	< 0.56	U	ug/L	1	1.12	0.56	08/16/2016 18:46	JLL
	Acenaphthene	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 18:46	JLL
	Acenaphthylene	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 18:46	JLL
	Anthracene	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 18:46	JLL
	Benzidine	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 18:46	JLL
	Benzo(a)anthracene	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 18:46	JLL
	Benzo(a)pyrene	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 18:46	JLL

Client Name: Lloy	yd Engineering, Inc.		Attn: Marisa	Attn: Marisa Weber		
Project ID: Qui	intana Terminal Dock 1					
Job ID :	1608151		Sample Matrix:	Water		
Client Sample ID:	QI-16-05-W		Date Collected:	08/04/2010		
Job Sample ID:	1608151.06		Time Collected:	10:00		
Other Information:						

Test Method	Parameter	Result	Q	Units	DF	LRL	SDL	%Rec Ctrl Limit Date/Time Analyzed	Analyst
SW846 8270D	Semivolatile Organic Compounds		Batch ID: Q	b16081826	Prep Info:	PB160818	312 SW8	346 351108/05/2016 11:03	JLL
	Benzo(b)fluoranthene	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 18:46	JLL
	Benzo(g,h,i)perylene	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 18:46	JLL
	Benzo(k)fluoranthene	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 18:46	JLL
	Benzoic acid	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 18:46	JLL
	Benzyl alcohol	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 18:46	JLL
	Bis(2-chloroethoxy) methane	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 18:46	JLL
	Bis(2-chloroethyl) ether	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 18:46	JLL
	Bis(2-chloroisopropyl) ether	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 18:46	JLL
	Bis(2-ethylhexyl)phthalate	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 18:46	JLL
	Butyl benzyl phthalate	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 18:46	JLL
	Chrysene	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 18:46	JLL
	Dibenzo(a,h)anthracene	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 18:46	JLL
	Dibenzofuran	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 18:46	JLL
	Diethyl phthalate	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 18:46	JLL
	Dimethyl phthalate	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 18:46	JLL
	Di-n-butyl phthalate	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 18:46	JLL
	Di-n-octyl Phthalate	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 18:46	JLL
	Fluoranthene	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 18:46	JLL
	Fluorene	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 18:46	JLL
	Hexachlorobenzene	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 18:46	JLL
	Hexachlorobutadiene	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 18:46	JLL

ent Name: Llo	yd Engineering, Inc.	Attn: Marisa Web	Attn: Marisa Weber			
Project ID: Qui	intana Terminal Dock 1					
Job ID :	1608151	Sample Matrix: V	Vater			
Client Sample ID:	QI-16-05-W	Date Collected: 0	08/04/2016			
Job Sample ID:	1608151.06	Time Collected: 1	L0:00			
Other Information:						

Test Method	Parameter	Result	Q	Units	DF	LRL	SDL	%Rec Ctrl Li	mit Date/Time Analyzed	Analyst
SW846 8270D	Semivolatile Organic Compounds		Batch ID: Qt	16081826	Prep Info:	PB160818	312 SW	846 3511	08/05/2016 11:03	JLL
	Hexachlorocyclopentadiene	< 0.281	U	ug/L	1	0.562	0.281		08/16/2016 18:46	JLL
	Hexachloroethane	< 0.281	U	ug/L	1	0.562	0.281		08/16/2016 18:46	JLL
	Indeno(1,2,3-cd)pyrene	< 0.281	U	ug/L	1	0.562	0.281		08/16/2016 18:46	JLL
	Isophorone	< 0.281	U	ug/L	1	0.562	0.281		08/16/2016 18:46	JLL
	Naphthalene	< 0.281	U	ug/L	1	0.562	0.281		08/16/2016 18:46	JLL
	Nitrobenzene	< 0.281	U	ug/L	1	0.562	0.281		08/16/2016 18:46	JLL
	n-Nitrosodimethylamine	< 0.281	U	ug/L	1	0.562	0.281		08/16/2016 18:46	JLL
	n-nitroso-di-n-propylamine	< 0.281	U	ug/L	1	0.562	0.281		08/16/2016 18:46	JLL
	n-Nitrosodiphenylamine	< 0.281	U	ug/L	1	0.562	0.281		08/16/2016 18:46	JLL
	Pentachlorophenol	< 0.56	U	ug/L	1	1.12	0.56		08/16/2016 18:46	JLL
	Phenanthrene	< 0.281	U	ug/L	1	0.562	0.281		08/16/2016 18:46	JLL
	Phenol	< 0.56	U	ug/L	1	1.12	0.56		08/16/2016 18:46	JLL
	Pyrene	< 0.281	U	ug/L	1	0.562	0.281		08/16/2016 18:46	JLL
TCEQ 1005	Total Petroleum Hydrocarbons		Batch ID:		Prep Info:					
	1-Chlorooctadecane(surr)	100		%	1			70-130	08/12/2016 18:05	EM
	1-Chlorooctane(surr)	105		%	1			70-130	08/12/2016 18:05	EM
TCEQ 1005	Total Petroleum Hydrocarbons		Batch ID: Qt	016081701	Prep Info:	PB160817	701 TCI	EQ 1005	08/05/2016 11:27	EM
	ТРН, С6-С35	< 3.22	U	mg/L	1	10.0	3.22		08/12/2016 18:05	EM

ent Name: Lloy	yd Engineering, Inc.		Attn: Marisa W	Attn: Marisa Weber			
Project ID: Qui	intana Terminal Dock 1						
	_						
Job ID :	1608151		Sample Matrix:	Water			
Client Sample ID:	QI-16-06-W		Date Collected:	08/04/20			
Job Sample ID:	1608151.07		Time Collected:	09:41			
Other Information:							

Test Method	Parameter	Result	Q	Units	DF	LRL	SDL	%Rec Ctrl Limit Date/Time Analyzed	Analyst
Calculation	Chromium, Dissolved Trivalent		Batch ID: Q	b16082601	Prep Info:				
	Trivalent Chromium	< 1.50	U	ug/L	1	3.00	1.50	08/26/2016 06:23	MM
EPA 200.8	Metals, Dissolved		Batch ID: Q	b16081703	Prep Info:	PB16081	703 EPA 200	0.2 08/17/2016 11:50	CL
	Antimony	< 1.00	U	ug/L	5	5.00	1.00	08/20/2016 01:02	CL
	Arsenic	4.09		ug/L	5	2.50	0.500	08/20/2016 01:02	CL
	Beryllium	< 0.100	U	ug/L	10	2.00	0.100	08/24/2016 15:09	CL
	Cadmium	< 0.250	U	ug/L	5	5.00	0.250	08/20/2016 01:02	CL
	Chromium	0.385	J	ug/L	5	15.0	0.375	08/20/2016 01:02	CL
	Copper	1.29	J	ug/L	5	5.00	0.250	08/20/2016 01:02	CL
	Lead	0.168	J	ug/L	5	2.50	0.125	08/20/2016 01:02	CL
	Nickel	1.09	J	ug/L	10	10.0	0.500	08/24/2016 15:09	CL
	Silver	< 0.125	U	ug/L	5	2.50	0.125	08/20/2016 01:02	CL
	Thallium	< 0.125	U	ug/L	5	2.50	0.125	08/20/2016 01:02	CL
	Zinc	9.31	J	ug/L	10	20.0	1.00	08/24/2016 15:09	CL
EPA 200.8	Metals, Total by ICP-MS		Batch ID: Q	b16081702	Prep Info:	PB16081	702 EPA 200	0.2 08/17/2016 11:50	CL
	Selenium	15.9		ug/L	5	10.0	1.66	08/19/2016 15:04	CL
EPA 245.1	Mercury, Total		Batch ID: Q	b16081902	Prep Info:	PB16081	902 EPA 245	08/17/2016 13:08	MBW
	Mercury	< 0.150	U	ug/L	1	0.200	0.150	08/19/2016 08:25	MBW
EPA 415.1	Total Organic Carbon		Batch ID: Q	b16081821	Prep Info:	Prep Info:			
	Total Organic Carbon	0.000197		%	1	0.0001	0.00005	08/16/2016 16:30	ARC
SM 3500-Cr B	Chromium, Dissolved Hexavalent		Batch ID: Q	b16081813	Prep Info:				

nt Name: Llog	yd Engineering, Inc.		Attn: Marisa Weber			
Project ID: Qui	intana Terminal Dock 1					
Job ID :	1608151		Sample Matrix:	Water		
Client Sample ID:	QI-16-06-W		Date Collected:	08/04/201		
Job Sample ID:	1608151.07		Time Collected:	09:41		
Other Information:						

Test Method	Parameter	Result	Q	Units	DF	LRL	SDL	%Rec Ctrl Li	mit Date/Time Analyzed	Analyst
SM 3500-Cr B	Chromium, Dissolved Hexavalent		Batch ID: Q	b16081813	Prep Info:					
	Chromium, Hexavalent	< 1.50	U	ug/L	1	3.00	1.50		08/04/2016 17:08	ARC
SM 4500-CN C, E	Cyanide, Total		Batch ID: Q	b16081819	Prep Info:	PB160818	811 SM	1 4500-CN C	08/09/2016 13:35	ARC
	Cyanide, Total	< 0.005	U	mg/L	1	0.010	0.005		08/09/2016 16:10	ARC
SM 4500-NH3 D	Ammonia as Nitrogen		Batch ID: Qb16081824		Prep Info:					
	Ammonia as N	< 0.050	U	mg/L	1	0.100	0.050		08/15/2016 11:30	ARC
SW846 8081B	Organochlorine Pesticides		Batch ID:		Prep Info:					
	2,4,5,6 Tetrachloro-m-xylene(surr)	147	S	%	1			60-140	08/12/2016 05:43	
	Decachlorobiphenyl(surr)	128		%	1			60-140	08/12/2016 05:43	
SW846 8081B	Organochlorine Pesticides		Batch ID: Q	b16081604	Prep Info:	PB160816	504 SV	/846 3511	08/09/2016 16:34	
	4,4-DDD	< 0.003	U	ug/L	1	0.012	0.003		08/12/2016 05:43	
	4,4-DDE	< 0.003	U	ug/L	1	0.012	0.003		08/12/2016 05:43	
	4,4-DDT	< 0.003	U	ug/L	1	0.012	0.003		08/12/2016 05:43	
	a-BHC	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 05:43	
	a-Chlordane	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 05:43	
	Aldrin	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 05:43	
	b-BHC	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 05:43	
	Chlordane	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 05:43	
	d-BHC	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 05:43	
	Dieldrin	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 05:43	
	Endosulfan I	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 05:43	

Client Name: Llo	yd Engineering, Inc.	Attn: Marisa Weber
Project ID: Qu	intana Terminal Dock 1	
Job ID :	1608151	Sample Matrix: Water
Client Sample ID:	QI-16-06-W	Date Collected: 08/04/20
Job Sample ID:	1608151.07	Time Collected: 09:41
Other Information:		

Test Method	Parameter	Result	0	Units	DF	LRL	SDL	%Rec Ctrl I i	mit Date/Time Analyzed	Analyst
SW846 8081B	Organochlorine Pesticides	Result	Batch ID: Qb		Prep Info:			46 3511	08/09/2016 16:34	
	Endosulfan II	< 0.003	U	ug/L	. 1	0.006	0.003		08/12/2016 05:43	
	Endosulfan sulfate	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 05:43	
	Endrin	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 05:43	
	Endrin aldehyde	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 05:43	
	Endrin ketone	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 05:43	
	g-BHC	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 05:43	
	Heptachlor	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 05:43	
	Heptachlor epoxide	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 05:43	
	Toxaphene	< 0.150	U	ug/L	1	0.300	0.150		08/12/2016 05:43	
	y-Chlordane	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 05:43	
SW846 8082A	Polychlorinated Biphenyls		Batch ID:		Prep Info:					
	2,4,5,6 Tetrachloro-m-xylene(surr)	158	S	%	1			60-140	08/11/2016 05:15	
	Decachlorobiphenyl(surr)	132		%	1			60-140	08/11/2016 05:15	
SW846 8082A	Polychlorinated Biphenyls		Batch ID: Qb	16081602	Prep Info:	PB160816	02 SW8	46 3511	08/08/2016 14:10	
	Total PCBs	< 0.006	U	ug/L	1	0.012	0.006		08/11/2016 05:15	
SW846 8260C	Volatile Organic Compounds		Batch ID:		Prep Info:					
	1,2-Dichloroethane-d4(surr)	99.0		%	1			50-150	08/08/2016 16:32	EM
	4-Bromofluorobenzene(surr)	82.5		%	1			50-150	08/08/2016 16:32	EM
	Dibromofluoromethane(surr)	100		%	1			50-150	08/08/2016 16:32	EM
	Toluene-d8(surr)	95.8		%	1			50-150	08/08/2016 16:32	EM

Client Name: Llo	yd Engineering, Inc.	Attn: Marisa Weber
Project ID: Qui	ntana Terminal Dock 1	
	_	
Job ID :	1608151	Sample Matrix: Water
Client Sample ID:	QI-16-06-W	Date Collected: 08/04/2016
Job Sample ID:	1608151.07	Time Collected: 09:41
Other Information:		

Test Method	Parameter	Result	0	Units	DF	LRL	SDL	%Rec Ctrl Li	mit Date/Time Analyzed	Analyst
SW846 8260C	Volatile Organic Compounds		Batch ID: Qb:		Prep Info:		-			. ,
	Ethylbenzene	< 1.00	U	ug/L	1	5.00	1.00		08/08/2016 16:32	JM
	Tetrachloroethylene	< 1.00	U	ug/L	1	5.00	1.00		08/08/2016 16:32	JM
	Trichloroethylene	< 1.00	U	ug/L	1	5.00	1.00		08/08/2016 16:32	JM
	xylenes (total)	< 1.00	U	ug/L	1	5.00	1.00		08/08/2016 16:32	JM
SW846 8270D	Semivolatile Organic Compounds		Batch ID:		Prep Info:					
	2,4,6-Tribromophenol(surr)	107		%	1			60-140	08/16/2016 19:18	JLL
	2-Fluorobiphenyl(surr)	84.4		%	1			60-140	08/16/2016 19:18	JLL
	2-Fluorophenol(surr)	165	S	%	1			60-140	08/16/2016 19:18	JLL
	Nitrobenzene-d5(surr)	102		%	1			60-140	08/16/2016 19:18	JLL
	Phenol-d5(surr)	99.4		%	1			60-140	08/16/2016 19:18	JLL
	Terphenyl-d14(surr)	101		%	1			60-140	08/16/2016 19:18	JLL
SW846 8270D	Semivolatile Organic Compounds		Batch ID: Qb	16081826	Prep Info:	PB16081	812 SW	846 3511	08/05/2016 11:03	JLL
	1,2,4-Trichlorobenzene	< 0.281	U	ug/L	1	0.562	0.281		08/16/2016 19:18	JLL
	1,2-Dichlorobenzene	< 0.281	U	ug/L	1	0.562	0.281		08/16/2016 19:18	JLL
	1,2-Diphenylhydrazine as Azobenzene	< 0.281	U	ug/L	1	0.562	0.281		08/16/2016 19:18	JLL
	1,3-Dichlorobenzene	< 0.281	U	ug/L	1	0.562	0.281		08/16/2016 19:18	JLL
	1,4-Dichlorobenzene	< 0.281	U	ug/L	1	0.562	0.281		08/16/2016 19:18	JLL
	2,4,6-Trichlorophenol	< 0.56	U	ug/L	1	1.12	0.56		08/16/2016 19:18	JLL
	2,4-Dichlorophenol	< 0.56	U	ug/L	1	1.12	0.56		08/16/2016 19:18	JLL
	2,4-Dimethylphenol	< 0.56	U	ug/L	1	1.12	0.56		08/16/2016 19:18	JLL

Client Name: Llo	yd Engineering, Inc.	Attn: Marisa Weber
Project ID: Qu	intana Terminal Dock 1	
Job ID :	1608151	Sample Matrix: Water
Client Sample ID:	QI-16-06-W	Date Collected: 08/04/201
Job Sample ID:	1608151.07	Time Collected: 09:41
Other Information:		

Test Method	Parameter	Result	Q	Units	DF	LRL	SDL	%Rec Ctrl Limit Date/Time Analyzed	Analyst
SW846 8270D	Semivolatile Organic Compounds		Batch ID: (2b16081826	Prep Info:	PB160818	312 SW8	08/05/2016 11:03	JLL
	2,4-Dinitrophenol	< 9.00	U	ug/L	1	18.0	9.00	08/16/2016 19:18	JLL
	2,4-Dinitrotoluene	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 19:18	JLL
	2,6-Dinitrotoluene	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 19:18	JLL
	2-Chloronaphthalene	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 19:18	JLL
	2-Chlorophenol	< 0.56	U	ug/L	1	1.12	0.56	08/16/2016 19:18	JLL
	2-Methylnaphthalene	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 19:18	JLL
	2-Methylphenol	< 0.56	U	ug/L	1	1.12	0.56	08/16/2016 19:18	JLL
	2-Nitrophenol	< 0.56	U	ug/L	1	1.12	0.56	08/16/2016 19:18	JLL
	3,3-Dichlorobenzidine	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 19:18	JLL
	4,6-Dinitro-2-methylphenol	< 0.56	U	ug/L	1	1.12	0.56	08/16/2016 19:18	JLL
	4-Bromophenyl phenyl ether	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 19:18	JLL
	4-Chloro-3-methylphenol	< 0.56	U	ug/L	1	4.50	0.56	08/16/2016 19:18	JLL
	4-Chlorophenyl phenyl ether	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 19:18	JLL
	4-Methylphenol	< 0.56	U	ug/L	1	1.12	0.56	08/16/2016 19:18	JLL
	4-Nitrophenol	< 0.56	U	ug/L	1	1.12	0.56	08/16/2016 19:18	JLL
	Acenaphthene	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 19:18	JLL
	Acenaphthylene	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 19:18	JLL
	Anthracene	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 19:18	JLL
	Benzidine	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 19:18	JLL
	Benzo(a)anthracene	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 19:18	JLL
	Benzo(a)pyrene	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 19:18	JLL

Client Name: Llo	yd Engineering, Inc.	Attn: Marisa Weber	Attn: Marisa Weber			
Project ID: Qui	intana Terminal Dock 1					
	_					
Job ID :	1608151	Sample Matrix: Wate	er			
Client Sample ID:	QI-16-06-W	Date Collected: 08/0	4/2016			
Job Sample ID:	1608151.07	Time Collected: 09:4	1			
Other Information:						

Test Method	Parameter	Result	Q	Units	DF	LRL	SDL	%Rec Ctrl Limit Date/Time Analyzed	Analyst
SW846 8270D	Semivolatile Organic Compounds		Batch ID: Q	b16081826	Prep Info:	PB160818	312 SW8	46 3511 08/05/2016 11:03	JLL
	Benzo(b)fluoranthene	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 19:18	JLL
	Benzo(g,h,i)perylene	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 19:18	JLL
	Benzo(k)fluoranthene	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 19:18	JLL
	Benzoic acid	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 19:18	JLL
	Benzyl alcohol	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 19:18	JLL
	Bis(2-chloroethoxy) methane	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 19:18	JLL
	Bis(2-chloroethyl) ether	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 19:18	JLL
	Bis(2-chloroisopropyl) ether	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 19:18	JLL
	Bis(2-ethylhexyl)phthalate	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 19:18	JLL
	Butyl benzyl phthalate	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 19:18	JLL
	Chrysene	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 19:18	JLL
	Dibenzo(a,h)anthracene	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 19:18	JLL
	Dibenzofuran	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 19:18	JLL
	Diethyl phthalate	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 19:18	JLL
	Dimethyl phthalate	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 19:18	JLL
	Di-n-butyl phthalate	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 19:18	JLL
	Di-n-octyl Phthalate	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 19:18	JLL
	Fluoranthene	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 19:18	JLL
	Fluorene	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 19:18	JLL
	Hexachlorobenzene	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 19:18	JLL
	Hexachlorobutadiene	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 19:18	JLL

Client Name: Lloy	yd Engineering, Inc.		Attn: Marisa V	Attn: Marisa Weber			
Project ID: Qui	intana Terminal Dock 1						
Job ID :	1608151		Sample Matrix:	Water			
Client Sample ID:	QI-16-06-W		Date Collected:	08/04/2016			
Job Sample ID:	1608151.07		Time Collected:	09:41			
Other Information:							

Test Method	Parameter	Result	Q	Units	DF	LRL	SDL	%Rec Ctrl Lir	mit Date/Time Analyzed	Analyst
SW846 8270D	Semivolatile Organic Compounds		Batch ID: Qb	16081826	Prep Info:	PB160818	812 SW8	46 3511	08/05/2016 11:03	JLL
	Hexachlorocyclopentadiene	< 0.281	U	ug/L	1	0.562	0.281		08/16/2016 19:18	JLL
	Hexachloroethane	< 0.281	U	ug/L	1	0.562	0.281		08/16/2016 19:18	JLL
	Indeno(1,2,3-cd)pyrene	< 0.281	U	ug/L	1	0.562	0.281		08/16/2016 19:18	JLL
	Isophorone	< 0.281	U	ug/L	1	0.562	0.281		08/16/2016 19:18	JLL
	Naphthalene	< 0.281	U	ug/L	1	0.562	0.281		08/16/2016 19:18	JLL
	Nitrobenzene	< 0.281	U	ug/L	1	0.562	0.281		08/16/2016 19:18	JLL
	n-Nitrosodimethylamine	< 0.281	U	ug/L	1	0.562	0.281		08/16/2016 19:18	JLL
	n-nitroso-di-n-propylamine	< 0.281	U	ug/L	1	0.562	0.281		08/16/2016 19:18	JLL
	n-Nitrosodiphenylamine	< 0.281	U	ug/L	1	0.562	0.281		08/16/2016 19:18	JLL
	Pentachlorophenol	< 0.56	U	ug/L	1	1.12	0.56		08/16/2016 19:18	JLL
	Phenanthrene	< 0.281	U	ug/L	1	0.562	0.281		08/16/2016 19:18	JLL
	Phenol	< 0.56	U	ug/L	1	1.12	0.56		08/16/2016 19:18	JLL
	Pyrene	< 0.281	U	ug/L	1	0.562	0.281		08/16/2016 19:18	JLL
TCEQ 1005	Total Petroleum Hydrocarbons		Batch ID:		Prep Info:					
	1-Chlorooctadecane(surr)	90.4		%	1			70-130	08/12/2016 21:01	EM
	1-Chlorooctane(surr)	91.6		%	1			70-130	08/12/2016 21:01	EM
TCEQ 1005	Total Petroleum Hydrocarbons		Batch ID: Qb	16081701	Prep Info:	PB160817	701 TCE	Q 1005	08/05/2016 11:27	EM
	ТРН, С6-С35	< 3.22	U	mg/L	1	10.0	3.22		08/12/2016 21:01	EM

Client Name: Lloy	yd Engineering, Inc. Attn: Marisa Weber				
Project ID: Qui	intana Terminal Dock 1				
Job ID :	1608151		Sa	ample Matrix:	Water
Client Sample ID:	QI-16-07-W		Di	ate Collected:	08/04/20
Job Sample ID:	1608151.08		Ti	ime Collected:	10:40
Other Information:					

Test Method	Parameter	Result	Q	Units	DF	LRL	SDL	%Rec Ctrl Limit Date/Time Analyzed	Analyst
Calculation	Chromium, Dissolved Trivalent		Batch ID: Q	b16082601	Prep Info:			. ,	
	Trivalent Chromium	< 1.50	U	ug/L	1	3.00	1.50	08/26/2016 06:23	MM
EPA 200.8	Metals, Dissolved		Batch ID: Q	b16081703	Prep Info:	PB16081	703 EPA 200.	.2 08/17/2016 11:50	CL
	Antimony	< 1.00	U	ug/L	5	5.00	1.00	08/20/2016 01:08	CL
	Arsenic	4.34		ug/L	5	2.50	0.500	08/20/2016 01:08	CL
	Beryllium	< 0.100	U	ug/L	10	2.00	0.100	08/24/2016 15:15	CL
	Cadmium	< 0.250	U	ug/L	5	5.00	0.250	08/20/2016 01:08	CL
	Chromium	< 0.375	U	ug/L	5	15.0	0.375	08/20/2016 01:08	CL
	Copper	1.01	J	ug/L	5	5.00	0.250	08/20/2016 01:08	CL
	Lead	< 0.125	U	ug/L	5	2.50	0.125	08/20/2016 01:08	CL
	Nickel	0.885	J	ug/L	10	10.0	0.500	08/24/2016 15:15	CL
	Silver	< 0.125	U	ug/L	5	2.50	0.125	08/20/2016 01:08	CL
	Thallium	< 0.125	U	ug/L	5	2.50	0.125	08/20/2016 01:08	CL
	Zinc	5.29	J	ug/L	10	20.0	1.00	08/24/2016 15:15	CL
EPA 200.8	Metals, Total by ICP-MS		Batch ID: Q	b16081702	Prep Info:	PB16081	702 EPA 200.	.2 08/17/2016 11:50	CL
	Selenium	14.6		ug/L	5	10.0	1.66	08/19/2016 15:10	CL
EPA 245.1	Mercury, Total		Batch ID: Q	b16081902	Prep Info:	PB16081	902 EPA 245.	.1 08/17/2016 13:08	MBW
	Mercury	< 0.150	U	ug/L	1	0.200	0.150	08/19/2016 08:25	MBW
EPA 415.1	Total Organic Carbon		Batch ID: Q	b16081821	Prep Info:				
	Total Organic Carbon	0.000233		%	1	0.0001	0.00005	08/16/2016 16:30	ARC
SM 3500-Cr B	Chromium, Dissolved Hexavalent		Batch ID: Q	b16081813	Prep Info:				

Client Name: Lloy	d Engineering, Inc.	Attn: Marisa	Attn: Marisa Weber			
Project ID: Qui	ntana Terminal Dock 1					
Job ID :	1608151	Sample Matrix:	Water			
Client Sample ID:	QI-16-07-W	Date Collected:	08/04/2016			
Job Sample ID:	1608151.08	Time Collected:	10:40			
Other Information:						

Test Method	Parameter	Result	Q	Units	DF	LRL	SDL	%Rec Ctrl Li	mit Date/Time Analyzed	Analyst
SM 3500-Cr B	Chromium, Dissolved Hexavalent		Batch ID: Q	b16081813	Prep Info:					
	Chromium, Hexavalent	< 1.50	U	ug/L	1	3.00	1.50		08/04/2016 17:08	ARC
SM 4500-CN C, E	Cyanide, Total		Batch ID: Q	b16081819	Prep Info:	PB160818	811 SM	1 4500-CN C	08/09/2016 13:35	ARC
	Cyanide, Total	< 0.005	U	mg/L	1	0.010	0.005		08/09/2016 16:10	ARC
SM 4500-NH3 D	Ammonia as Nitrogen		Batch ID: Q	b16081824	Prep Info:					
	Ammonia as N	< 0.050	U	mg/L	1	0.100	0.050		08/15/2016 11:30	ARC
SW846 8081B	Organochlorine Pesticides		Batch ID:		Prep Info:					
	2,4,5,6 Tetrachloro-m-xylene(surr)	151	S	%	1			60-140	08/12/2016 06:03	
	Decachlorobiphenyl(surr)	129		%	1			60-140	08/12/2016 06:03	
SW846 8081B	Organochlorine Pesticides		Batch ID: Q	b16081604	Prep Info:	PB160816	504 SV	V846 3511	08/09/2016 16:34	
	4,4-DDD	< 0.003	U	ug/L	1	0.012	0.003		08/12/2016 06:03	
	4,4-DDE	< 0.003	U	ug/L	1	0.012	0.003		08/12/2016 06:03	
	4,4-DDT	< 0.003	U	ug/L	1	0.012	0.003		08/12/2016 06:03	
	a-BHC	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 06:03	
	a-Chlordane	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 06:03	
	Aldrin	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 06:03	
	b-BHC	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 06:03	
	Chlordane	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 06:03	
	d-BHC	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 06:03	
	Dieldrin	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 06:03	
	Endosulfan I	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 06:03	

Client Name: Llo	yd Engineering, Inc.	Attn: Marisa Weber
Project ID: Qu	intana Terminal Dock 1	
Job ID :	1608151	Sample Matrix: Water
Client Sample ID:	QI-16-07-W	Date Collected: 08/04/201
Job Sample ID:	1608151.08	Time Collected: 10:40
Other Information:		

Test Method	Parameter	Result	Q	Units	DF	LRL	SDL	%Rec Ctrl Li	mit Date/Time Analyzed	Analyst
SW846 8081B	Organochlorine Pesticides		Batch ID: Qb	16081604	Prep Info:	PB160816	04 SW84	6 3511	08/09/2016 16:34	
	Endosulfan II	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 06:03	
	Endosulfan sulfate	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 06:03	
	Endrin	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 06:03	
	Endrin aldehyde	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 06:03	
	Endrin ketone	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 06:03	
	g-BHC	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 06:03	
	Heptachlor	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 06:03	
	Heptachlor epoxide	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 06:03	
	Toxaphene	< 0.150	U	ug/L	1	0.300	0.150		08/12/2016 06:03	
	y-Chlordane	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 06:03	
SW846 8082A	Polychlorinated Biphenyls		Batch ID:		Prep Info:					
	2,4,5,6 Tetrachloro-m-xylene(surr)	154	S	%	1			60-140	08/11/2016 05:35	
	Decachlorobiphenyl(surr)	137		%	1			60-140	08/11/2016 05:35	
SW846 8082A	Polychlorinated Biphenyls		Batch ID: Qb	16081602	Prep Info:	PB160816	02 SW84	6 3511	08/08/2016 14:10	
	Total PCBs	< 0.006	U	ug/L	1	0.012	0.006		08/11/2016 05:35	
SW846 8260C	Volatile Organic Compounds		Batch ID:		Prep Info:					
	1,2-Dichloroethane-d4(surr)	100		%	1			50-150	08/08/2016 17:02	EM
	4-Bromofluorobenzene(surr)	83.0		%	1			50-150	08/08/2016 17:02	EM
	Dibromofluoromethane(surr)	95.2		%	1			50-150	08/08/2016 17:02	EM
	Toluene-d8(surr)	95.8		%	1			50-150	08/08/2016 17:02	EM

Client Name: Llo	/d Engineering, Inc.	Attn: Marisa Weber	Attn: Marisa Weber			
Project ID: Qu	ntana Terminal Dock 1					
	_					
Job ID :	1608151	Sample Matrix: Wa	iter			
Client Sample ID:	QI-16-07-W	Date Collected: 08/	/04/2016			
Job Sample ID:	1608151.08	Time Collected: 10:	40			
Other Information:						

Test Method	Parameter	Result	Q	Units	DF	LRL	SDL	%Rec Ctrl Li	mit Date/Time Analyzed	Analyst
SW846 8260C	Volatile Organic Compounds		Batch ID: Qb	16081704	Prep Info:					
	Ethylbenzene	< 1.00	U	ug/L	1	5.00	1.00		08/08/2016 17:02	JM
	Tetrachloroethylene	< 1.00	U	ug/L	1	5.00	1.00		08/08/2016 17:02	JM
	Trichloroethylene	< 1.00	U	ug/L	1	5.00	1.00		08/08/2016 17:02	JM
	xylenes (total)	< 1.00	U	ug/L	1	5.00	1.00		08/08/2016 17:02	JM
SW846 8270D	Semivolatile Organic Compounds		Batch ID:		Prep Info:					
	2,4,6-Tribromophenol(surr)	187	S	%	1			60-140	08/16/2016 19:50	JLL
	2-Fluorobiphenyl(surr)	78.6		%	1			60-140	08/16/2016 19:50	JLL
	2-Fluorophenol(surr)	153	S	%	1			60-140	08/16/2016 19:50	JLL
	Nitrobenzene-d5(surr)	130		%	1			60-140	08/16/2016 19:50	JLL
	Phenol-d5(surr)	114		%	1			60-140	08/16/2016 19:50	JLL
	Terphenyl-d14(surr)	89.1		%	1			60-140	08/16/2016 19:50	JLL
SW846 8270D	Semivolatile Organic Compounds		Batch ID: Qb	16081826	Prep Info:	PB16081	812 SW	/846 3511	08/05/2016 11:03	JLL
	1,2,4-Trichlorobenzene	< 0.281	U	ug/L	1	0.562	0.281		08/16/2016 19:50	JLL
	1,2-Dichlorobenzene	< 0.281	U	ug/L	1	0.562	0.281		08/16/2016 19:50	JLL
	1,2-Diphenylhydrazine as Azobenzene	< 0.281	U	ug/L	1	0.562	0.281		08/16/2016 19:50	JLL
	1,3-Dichlorobenzene	< 0.281	U	ug/L	1	0.562	0.281		08/16/2016 19:50	JLL
	1,4-Dichlorobenzene	< 0.281	U	ug/L	1	0.562	0.281		08/16/2016 19:50	JLL
	2,4,6-Trichlorophenol	< 0.56	U	ug/L	1	1.12	0.56		08/16/2016 19:50	JLL
	2,4-Dichlorophenol	< 0.56	U	ug/L	1	1.12	0.56		08/16/2016 19:50	JLL
	2,4-Dimethylphenol	< 0.56	U	ug/L	1	1.12	0.56		08/16/2016 19:50	JLL

Client Name: Llo	loyd Engineering, Inc. Attn: Marisa Weber					
Project ID: Qu	intana Terminal Dock 1					
Job ID :	1608151	9	Sample Matrix:	Water		
Client Sample ID:	QI-16-07-W	I	Date Collected:	08/04/2016		
Job Sample ID:	1608151.08		Time Collected:	10:40		
Other Information:						

Test Method	Parameter	Result	Q	Units	DF	LRL	SDL	%Rec Ctrl Limit Date/Time Analyzed	Analyst
SW846 8270D	Semivolatile Organic Compounds		Batch ID:	2b16081826	Prep Info:	PB160818	12 SW8	46 3511 08/05/2016 11:03	JLL
	2,4-Dinitrophenol	< 9.00	U	ug/L	1	18.0	9.00	08/16/2016 19:50	JLL
	2,4-Dinitrotoluene	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 19:50	JLL
	2,6-Dinitrotoluene	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 19:50	JLL
	2-Chloronaphthalene	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 19:50	JLL
	2-Chlorophenol	< 0.56	U	ug/L	1	1.12	0.56	08/16/2016 19:50	JLL
	2-Methylnaphthalene	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 19:50	JLL
	2-Methylphenol	< 0.56	U	ug/L	1	1.12	0.56	08/16/2016 19:50	JLL
	2-Nitrophenol	< 0.56	U	ug/L	1	1.12	0.56	08/16/2016 19:50	JLL
	3,3-Dichlorobenzidine	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 19:50	JLL
	4,6-Dinitro-2-methylphenol	< 0.56	U	ug/L	1	1.12	0.56	08/16/2016 19:50	JLL
	4-Bromophenyl phenyl ether	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 19:50	JLL
	4-Chloro-3-methylphenol	< 0.56	U	ug/L	1	4.50	0.56	08/16/2016 19:50	JLL
	4-Chlorophenyl phenyl ether	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 19:50	JLL
	4-Methylphenol	< 0.56	U	ug/L	1	1.12	0.56	08/16/2016 19:50	JLL
	4-Nitrophenol	< 0.56	U	ug/L	1	1.12	0.56	08/16/2016 19:50	JLL
	Acenaphthene	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 19:50	JLL
	Acenaphthylene	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 19:50	JLL
	Anthracene	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 19:50	JLL
	Benzidine	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 19:50	JLL
	Benzo(a)anthracene	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 19:50	JLL
	Benzo(a)pyrene	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 19:50	JLL

Client Name: Lloy	/d Engineering, Inc.		Attn: Marisa Weber			
Project ID: Qui	ntana Terminal Dock 1					
				_		
Job ID :	1608151		Sample Matrix:	Water		
Client Sample ID:	QI-16-07-W		Date Collected:	08/04/2016		
Job Sample ID:	1608151.08		Time Collected:	10:40		
Other Information:						

Test Method	Parameter	Result	Q	Units	DF	LRL	SDL	%Rec Ctrl Limit Date/Time Analyzed	Analyst
SW846 8270D	Semivolatile Organic Compounds		Batch ID: Q	b16081826	Prep Info:	PB160818	812 SW8	46 3511 08/05/2016 11:03	JLL
	Benzo(b)fluoranthene	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 19:50	JLL
	Benzo(g,h,i)perylene	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 19:50	JLL
	Benzo(k)fluoranthene	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 19:50	JLL
	Benzoic acid	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 19:50	JLL
	Benzyl alcohol	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 19:50	JLL
	Bis(2-chloroethoxy) methane	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 19:50	JLL
	Bis(2-chloroethyl) ether	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 19:50	JLL
	Bis(2-chloroisopropyl) ether	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 19:50	JLL
	Bis(2-ethylhexyl)phthalate	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 19:50	JLL
	Butyl benzyl phthalate	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 19:50	JLL
	Chrysene	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 19:50	JLL
	Dibenzo(a,h)anthracene	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 19:50	JLL
	Dibenzofuran	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 19:50	JLL
	Diethyl phthalate	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 19:50	JLL
	Dimethyl phthalate	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 19:50	JLL
	Di-n-butyl phthalate	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 19:50	JLL
	Di-n-octyl Phthalate	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 19:50	JLL
	Fluoranthene	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 19:50	JLL
	Fluorene	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 19:50	JLL
	Hexachlorobenzene	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 19:50	JLL
	Hexachlorobutadiene	< 0.281	U	ug/L	1	0.562	0.281	08/16/2016 19:50	JLL

Client Name: Lloy	yd Engineering, Inc.	At	Attn: Marisa Weber			
Project ID: Qui	intana Terminal Dock 1					
Job ID :	1608151	Samp	ple Matrix:	Water		
Client Sample ID:	QI-16-07-W	Date	Collected:	08/04/2016		
Job Sample ID:	1608151.08	Time	Collected:	10:40		
Other Information:						

Test Method	Parameter	Result	Q	Units	DF	LRL	SDL	%Rec Ctrl Li	mit Date/Time Analyzed	Analyst
SW846 8270D	Semivolatile Organic Compounds		Batch ID: Qb	16081826	Prep Info:	PB160818	312 SW	846 3511	08/05/2016 11:03	JLL
	Hexachlorocyclopentadiene	< 0.281	U	ug/L	1	0.562	0.281		08/16/2016 19:50	JLL
	Hexachloroethane	< 0.281	U	ug/L	1	0.562	0.281		08/16/2016 19:50	JLL
	Indeno(1,2,3-cd)pyrene	< 0.281	U	ug/L	1	0.562	0.281		08/16/2016 19:50	JLL
	Isophorone	< 0.281	U	ug/L	1	0.562	0.281		08/16/2016 19:50	JLL
	Naphthalene	< 0.281	U	ug/L	1	0.562	0.281		08/16/2016 19:50	JLL
	Nitrobenzene	< 0.281	U	ug/L	1	0.562	0.281		08/16/2016 19:50	JLL
	n-Nitrosodimethylamine	< 0.281	U	ug/L	1	0.562	0.281		08/16/2016 19:50	JLL
	n-nitroso-di-n-propylamine	< 0.281	U	ug/L	1	0.562	0.281		08/16/2016 19:50	JLL
	n-Nitrosodiphenylamine	< 0.281	U	ug/L	1	0.562	0.281		08/16/2016 19:50	JLL
	Pentachlorophenol	< 0.56	U	ug/L	1	1.12	0.56		08/16/2016 19:50	JLL
	Phenanthrene	< 0.281	U	ug/L	1	0.562	0.281		08/16/2016 19:50	JLL
	Phenol	< 0.56	U	ug/L	1	1.12	0.56		08/16/2016 19:50	JLL
	Pyrene	< 0.281	U	ug/L	1	0.562	0.281		08/16/2016 19:50	JLL
TCEQ 1005	Total Petroleum Hydrocarbons		Batch ID:		Prep Info:					
	1-Chlorooctadecane(surr)	96.2		%	1			70-130	08/18/2016 13:56	EM
	1-Chlorooctane(surr)	99.2		%	1			70-130	08/18/2016 13:55	EM
TCEQ 1005	Total Petroleum Hydrocarbons		Batch ID: Qb	16081701	Prep Info:	PB160817	701 TCE	Q 1005	08/05/2016 11:27	EM
	ТРН, С6-С35	< 3.22	U	mg/L	1	10.0	3.22		08/18/2016 13:55	EM

Client Name: Lloy	/d Engineering, Inc.	Attn: Marisa Weber
Project ID: Qui	ntana Terminal Dock 1	
Job ID :	1608151	Sample Matrix: Water
Client Sample ID:	QI-16-01-E	Date Collected: 08/04/2016
Job Sample ID:	1608151.09	Time Collected: 12:43
Other Information:		

Test Method	Parameter	Result	Q	Units	DF	LRL	SDL	%Rec Ctrl Limit Date/Time Analyzed	Analyst
Calculation	Chromium, Dissolved Trivalent		Batch ID: Q	b16082601	Prep Info:			. ,	
	Trivalent Chromium	< 1.50	U	ug/L	1	3.00	1.50	08/26/2016 06:23	MM
EPA 200.8	Metals, Dissolved		Batch ID: Q	b16081703	Prep Info:	PB16081	703 EPA 200	.2 08/17/2016 11:50	CL
	Antimony	< 1.00	U	ug/L	5	5.00	1.00	08/20/2016 01:14	CL
	Arsenic	8.72		ug/L	5	2.50	0.500	08/20/2016 01:14	CL
	Beryllium	< 0.100	U	ug/L	10	2.00	0.100	08/24/2016 15:45	CL
	Cadmium	< 0.250	U	ug/L	5	5.00	0.250	08/20/2016 01:14	CL
	Chromium	< 0.375	U	ug/L	5	15.0	0.375	08/20/2016 01:14	CL
	Copper	1.02	J	ug/L	5	5.00	0.250	08/20/2016 01:14	CL
	Lead	< 0.125	U	ug/L	5	2.50	0.125	08/20/2016 01:14	CL
	Nickel	2.17	J	ug/L	10	10.0	0.500	08/24/2016 15:45	CL
	Silver	< 0.125	U	ug/L	5	2.50	0.125	08/20/2016 01:14	CL
	Thallium	< 0.125	U	ug/L	5	2.50	0.125	08/20/2016 01:14	CL
	Zinc	7.13	J	ug/L	10	20.0	1.00	08/24/2016 15:45	CL
EPA 200.8	Metals, Total by ICP-MS		Batch ID: Q	b16081702	Prep Info:	PB16081	702 EPA 200	.2 08/17/2016 11:50	CL
	Selenium	16.6		ug/L	5	10.0	1.66	08/19/2016 15:16	CL
EPA 245.1	Mercury, Total		Batch ID: Q	b16081901	Prep Info:	PB16081	901 EPA 245	.1 08/10/2016 12:20	MBW
	Mercury	< 0.150	U	ug/L	1	0.200	0.150	08/11/2016 21:53	MBW
EPA 415.1	Total Organic Carbon		Batch ID: Q	b16081821	Prep Info:				
	Total Organic Carbon	0.000318		%	1	0.0001	0.00005	08/16/2016 16:30	ARC
SM 3500-Cr B	Chromium, Dissolved Hexavalent		Batch ID: Q	b16081814	Prep Info:				

Client Name: Lloy	/d Engineering, Inc.	Attn: Marisa Weber			
Project ID: Qui	ntana Terminal Dock 1				
			_		
Job ID :	1608151	Sample Matrix:	Water		
Client Sample ID:	QI-16-01-E	Date Collected:	08/04/2016		
Job Sample ID:	1608151.09	Time Collected:	12:43		
Other Information:					

Parameter	Result	Q	Units	DF	LRL	SDL	%Rec Ctrl Li	mit Date/Time Analyzed	Analyst
Chromium, Dissolved Hexavalent		Batch ID: Q	b16081814	Prep Info:					
Chromium, Hexavalent	< 1.50	U	ug/L	1	3.00	1.50		08/09/2016 13:15	ARC
Cyanide, Total		Batch ID: Q	b16081819	Prep Info:	PB160818	811 SM	1 4500-CN C	08/09/2016 13:35	ARC
Cyanide, Total	< 0.005	U	mg/L	1	0.010	0.005		08/09/2016 16:10	ARC
Ammonia as Nitrogen		Batch ID: Qb16081824		Prep Info:					
Ammonia as N	1.46		mg/L	1	0.100	0.050		08/15/2016 11:30	ARC
Organochlorine Pesticides		Batch ID: P		Prep Info:					
2,4,5,6 Tetrachloro-m-xylene(surr)	178	S	%	1			60-140	08/12/2016 07:25	
Decachlorobiphenyl(surr)	124		%	1			60-140	08/12/2016 07:25	
Organochlorine Pesticides		Batch ID: Q	b16081604	Prep Info:	PB160816	504 SV	V846 3511	08/09/2016 16:34	
4,4-DDD	< 0.003	U	ug/L	1	0.012	0.003		08/12/2016 07:25	
4,4-DDE	< 0.003	U	ug/L	1	0.012	0.003		08/12/2016 07:25	
4,4-DDT	< 0.003	U	ug/L	1	0.012	0.003		08/12/2016 07:25	
a-BHC	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 07:25	
a-Chlordane	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 07:25	
Aldrin	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 07:25	
b-BHC	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 07:25	
Chlordane	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 07:25	
d-BHC	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 07:25	
Dieldrin	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 07:25	
Endosulfan I	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 07:25	
	Chromium, Dissolved Hexavalent Chromium, Hexavalent Cyanide, Total Cyanide, Total Ammonia as Nitrogen Ammonia as N Organochlorine Pesticides 2,4,5,6 Tetrachloro-m-xylene(surr) Decachlorobiphenyl(surr) Organochlorine Pesticides 4,4-DDD 4,4-DDE 4,4-DDT a-BHC a-Chlordane Aldrin b-BHC Chlordane d-BHC Dieldrin	Chromium, Dissolved HexavalentChromium, Hexavalent< 1.50	Chromium, Dissolved HexavalentBatch ID: QChromium, Hexavalent< 1.50	Chromium, Dissolved Hexavalent Batch ID: Qb16081814 Chromium, Hexavalent < 1.50	Chromium, Dissolved Hexavalent Batch ID: Qb16081814 Prep Info: Chromium, Hexavalent < 1.50	Chromium, Dissolved Hexavalent Batch ID: Qb16081814 Prep Info: Chromium, Hexavalent < 1.50	Chromium, Dissolved Hexavalent Batch ID: Qb16081814 Prep Info: U <thu< th=""> U U U</thu<>	Chromium, Dissolved Hexavalent Batch ID: Qb16081814 Prep Info: Chromium, Hexavalent < 1.50	Chromium, Dissolved Hexavalent Batch ID: Qb16081814 Prep Info: U U U U U U I.50 08/09/2016 13:15 Chromium, Hexavalent < 1.50

lient Name: Llo	yd Engineering, Inc.	Attn: Marisa Weber
Project ID: Qu	intana Terminal Dock 1	
Job ID :	1608151	Sample Matrix: Water
Client Sample ID:	QI-16-01-E	Date Collected: 08/04/201
Job Sample ID:	1608151.09	Time Collected: 12:43
Other Information:		

Test Method	Parameter	Result	Q	Units	DF	LRL	SDL	%Rec Ctrl Li	mit Date/Time Analyzed	Analyst
SW846 8081B	Organochlorine Pesticides		Batch ID: Qb	16081604	Prep Info:	PB160816	04 SW8	46 3511	08/09/2016 16:34	
	Endosulfan II	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 07:25	
	Endosulfan sulfate	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 07:25	
	Endrin	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 07:25	
	Endrin aldehyde	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 07:25	
	Endrin ketone	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 07:25	
	g-BHC	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 07:25	
	Heptachlor	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 07:25	
	Heptachlor epoxide	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 07:25	
	Toxaphene	< 0.150	U	ug/L	1	0.300	0.150		08/12/2016 07:25	
	y-Chlordane	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 07:25	
SW846 8082A	Polychlorinated Biphenyls		Batch ID:		Prep Info:					
	2,4,5,6 Tetrachloro-m-xylene(surr)	159	S	%	1			60-140	08/11/2016 06:17	
	Decachlorobiphenyl(surr)	129		%	1			60-140	08/11/2016 06:17	
SW846 8082A	Polychlorinated Biphenyls		Batch ID: Qb	16081602	Prep Info:	PB160816	02 SW8	46 3511	08/08/2016 14:10	
	Total PCBs	< 0.006	U	ug/L	1	0.012	0.006		08/11/2016 06:17	
SW846 8260C	Volatile Organic Compounds		Batch ID:		Prep Info:					
	1,2-Dichloroethane-d4(surr)	98.9		%	1			50-150	08/10/2016 14:49	EM
	4-Bromofluorobenzene(surr)	81.7		%	1			50-150	08/10/2016 14:49	EM
	Dibromofluoromethane(surr)	97.2		%	1			50-150	08/10/2016 14:49	EM
	Toluene-d8(surr)	97.1		%	1			50-150	08/10/2016 14:49	EM

Client Name: Llo	d Engineering, Inc.	Attn: Marisa W	Attn: Marisa Weber		
Project ID: Qui	ntana Terminal Dock 1				
Job ID :	1608151	Sample Matrix:	Water		
Client Sample ID:	QI-16-01-E	Date Collected:	08/04/2016		
Job Sample ID:	1608151.09	Time Collected:	12:43		
Other Information:					

Test Method	Parameter	Result	Q	Units	DF	LRL	SDL	%Rec Ctrl Li	mit Date/Time Analyzed	Analyst
SW846 8260C	Volatile Organic Compounds		Batch ID: Qb	16081705	Prep Info:					
	Ethylbenzene	< 1.00	U	ug/L	1	5.00	1.00		08/10/2016 14:49	JM
	Tetrachloroethylene	< 1.00	U	ug/L	1	5.00	1.00		08/10/2016 14:49	JM
	Trichloroethylene	< 1.00	U	ug/L	1	5.00	1.00		08/10/2016 14:49	JM
	xylenes (total)	< 1.00	U	ug/L	1	5.00	1.00		08/10/2016 14:49	JM
SW846 8270D	Semivolatile Organic Compounds		Batch ID:		Prep Info:					
	2,4,6-Tribromophenol(surr)	235	S	%	1			60-140	08/17/2016 00:41	JLL
	2-Fluorobiphenyl(surr)	86.5		%	1			60-140	08/17/2016 00:41	JLL
	2-Fluorophenol(surr)	152	S	%	1			60-140	08/17/2016 00:41	JLL
	Nitrobenzene-d5(surr)	160	S	%	1			60-140	08/17/2016 00:41	JLL
	Phenol-d5(surr)	121		%	1			60-140	08/17/2016 00:41	JLL
	Terphenyl-d14(surr)	94.9		%	1			60-140	08/17/2016 00:41	JLL
SW846 8270D	Semivolatile Organic Compounds		Batch ID: Qb	16081827	Prep Info:	PB16081	813 SW	/846 3511	08/10/2016 10:02	JLL
	1,2,4-Trichlorobenzene	< 0.281	U	ug/L	1	0.562	0.281		08/17/2016 00:41	JLL
	1,2-Dichlorobenzene	< 0.281	U	ug/L	1	0.562	0.281		08/17/2016 00:41	JLL
	1,2-Diphenylhydrazine as Azobenzene	< 0.281	U	ug/L	1	0.562	0.281		08/17/2016 00:41	JLL
	1,3-Dichlorobenzene	< 0.281	U	ug/L	1	0.562	0.281		08/17/2016 00:41	JLL
	1,4-Dichlorobenzene	< 0.281	U	ug/L	1	0.562	0.281		08/17/2016 00:41	JLL
	2,4,6-Trichlorophenol	< 0.56	U	ug/L	1	1.12	0.56		08/17/2016 00:41	JLL
	2,4-Dichlorophenol	< 0.56	U	ug/L	1	1.12	0.56		08/17/2016 00:41	JLL
	2,4-Dimethylphenol	< 0.56	U	ug/L	1	1.12	0.56		08/17/2016 00:41	JLL

Client Name: Llo	/d Engineering, Inc.	Attn: Marisa Weber	Attn: Marisa Weber		
Project ID: Qu	ntana Terminal Dock 1				
Job ID :	1608151	Sample Matrix: Wa	ater		
Client Sample ID:	QI-16-01-E	Date Collected: 08/	/04/2016		
Job Sample ID:	1608151.09	Time Collected: 12:	:43		
Other Information:					

Test Method	Parameter	Result	Q	Units	DF	LRL	SDL	%Rec Ctrl Limit Date/Time Analyzed	Analyst
SW846 8270D	Semivolatile Organic Compounds		Batch ID: Q	b16081827	Prep Info:	PB160818	13 SW8	46 3511 08/10/2016 10:02	JLL
	2,4-Dinitrophenol	< 9.00	U	ug/L	1	18.0	9.00	08/17/2016 00:41	JLL
	2,4-Dinitrotoluene	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 00:41	JLL
	2,6-Dinitrotoluene	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 00:41	JLL
	2-Chloronaphthalene	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 00:41	JLL
	2-Chlorophenol	< 0.56	U	ug/L	1	1.12	0.56	08/17/2016 00:41	JLL
	2-Methylnaphthalene	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 00:41	JLL
	2-Methylphenol	< 0.56	U	ug/L	1	1.12	0.56	08/17/2016 00:41	JLL
	2-Nitrophenol	< 0.56	U	ug/L	1	1.12	0.56	08/17/2016 00:41	JLL
	3,3-Dichlorobenzidine	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 00:41	JLL
	4,6-Dinitro-2-methylphenol	< 0.56	U	ug/L	1	1.12	0.56	08/17/2016 00:41	JLL
	4-Bromophenyl phenyl ether	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 00:41	JLL
	4-Chloro-3-methylphenol	< 0.56	U	ug/L	1	4.50	0.56	08/17/2016 00:41	JLL
	4-Chlorophenyl phenyl ether	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 00:41	JLL
	4-Methylphenol	< 0.56	U	ug/L	1	1.12	0.56	08/17/2016 00:41	JLL
	4-Nitrophenol	< 0.56	U	ug/L	1	1.12	0.56	08/17/2016 00:41	JLL
	Acenaphthene	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 00:41	JLL
	Acenaphthylene	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 00:41	JLL
	Anthracene	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 00:41	JLL
	Benzidine	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 00:41	JLL
	Benzo(a)anthracene	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 00:41	JLL
	Benzo(a)pyrene	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 00:41	JLL

Client Name: Lloy	yd Engineering, Inc.	Attn: Marisa Weber
Project ID: Qui	intana Terminal Dock 1	
	_	
Job ID :	1608151	Sample Matrix: Water
Client Sample ID:	QI-16-01-E	Date Collected: 08/04/201
Job Sample ID:	1608151.09	Time Collected: 12:43
Other Information:		

Test Method	Parameter	Result	Q	Units	DF	LRL	SDL	%Rec Ctrl Limit Date/Time Analyzed	Analyst
SW846 8270D	Semivolatile Organic Compounds		Batch ID: Q	b16081827	Prep Info: PB16081813 S			46 3511 08/10/2016 10:02	JLL
	Benzo(b)fluoranthene	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 00:41	JLL
	Benzo(g,h,i)perylene	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 00:41	JLL
	Benzo(k)fluoranthene	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 00:41	JLL
	Benzoic acid	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 00:41	JLL
	Benzyl alcohol	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 00:41	JLL
	Bis(2-chloroethoxy) methane	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 00:41	JLL
	Bis(2-chloroethyl) ether	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 00:41	JLL
	Bis(2-chloroisopropyl) ether	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 00:41	JLL
	Bis(2-ethylhexyl)phthalate	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 00:41	JLL
	Butyl benzyl phthalate	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 00:41	JLL
	Chrysene	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 00:41	JLL
	Dibenzo(a,h)anthracene	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 00:41	JLL
	Dibenzofuran	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 00:41	JLL
	Diethyl phthalate	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 00:41	JLL
	Dimethyl phthalate	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 00:41	JLL
	Di-n-butyl phthalate	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 00:41	JLL
	Di-n-octyl Phthalate	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 00:41	JLL
	Fluoranthene	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 00:41	JLL
	Fluorene	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 00:41	JLL
	Hexachlorobenzene	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 00:41	JLL
	Hexachlorobutadiene	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 00:41	JLL

ent Name: Llo	yd Engineering, Inc.	Attn: Marisa Weber
Project ID: Qu	intana Terminal Dock 1	
Job ID :	1608151	Sample Matrix: Wate
Client Sample ID:	QI-16-01-E	Date Collected: 08/04
Job Sample ID:	1608151.09	Time Collected: 12:43
Other Information:		

Teet Methed	Deventeter	Decult	0	Linite	DE	LRL	CDI		mit Data/Time Analyzad	Analust
Test Method	Parameter	Result	Q	Units	DF		SDL		mit Date/Time Analyzed	Analyst
SW846 8270D	Semivolatile Organic Compounds		Batch ID: Qb16081827 Prep		Prep Info:	PB160818	813 SW	846 3511	08/10/2016 10:02	JLL
	Hexachlorocyclopentadiene	< 0.281	U	ug/L	1	0.562	0.281		08/17/2016 00:41	JLL
	Hexachloroethane	< 0.281	U	ug/L	1	0.562	0.281		08/17/2016 00:41	JLL
	Indeno(1,2,3-cd)pyrene	< 0.281	U	ug/L	1	0.562	0.281		08/17/2016 00:41	JLL
	Isophorone	< 0.281	U	ug/L	1	0.562	0.281		08/17/2016 00:41	JLL
	Naphthalene	< 0.281	U	ug/L	1	0.562	0.281		08/17/2016 00:41	JLL
	Nitrobenzene	< 0.281	U	ug/L	1	0.562	0.281		08/17/2016 00:41	JLL
	n-Nitrosodimethylamine	< 0.281	U	ug/L	1	0.562	0.281		08/17/2016 00:41	JLL
	n-nitroso-di-n-propylamine	< 0.281	U	ug/L	1	0.562	0.281		08/17/2016 00:41	JLL
	n-Nitrosodiphenylamine	11.5		ug/L	1	0.562	0.281		08/17/2016 00:41	JLL
	Pentachlorophenol	< 0.56	U	ug/L	1	1.12	0.56		08/17/2016 00:41	JLL
	Phenanthrene	< 0.281	U	ug/L	1	0.562	0.281		08/17/2016 00:41	JLL
	Phenol	< 0.56	U	ug/L	1	1.12	0.56		08/17/2016 00:41	JLL
	Pyrene	< 0.281	U	ug/L	1	0.562	0.281		08/17/2016 00:41	JLL
TCEQ 1005	Total Petroleum Hydrocarbons		Batch ID:		Prep Info:					
	1-Chlorooctadecane(surr)	89.0		%	1			70-130	08/12/2016 06:35	EM
	1-Chlorooctane(surr)	89.8		%	1			70-130	08/12/2016 06:35	EM
TCEQ 1005	Total Petroleum Hydrocarbons		Batch ID: Qb	16081708	Prep Info:	PB160817	705 TCI	EQ 1005	08/11/2016 11:00	EM
	TPH, C6-C35	< 3.22	U	mg/L	1	10.0	3.22		08/12/2016 06:35	EM

Client Name: Lloy	yd Engineering, Inc.	Attn: Marisa Weber
Project ID: Qui	intana Terminal Dock 1	
Job ID :	1608151	Sample Matrix: Water
Client Sample ID:	QI-16-02-E	Date Collected: 08/04/201
Job Sample ID:	1608151.10	Time Collected: 12:13
Other Information:		

Test Method	Parameter	Result	Q	Units	DF	LRL	SDL	%Rec Ctrl Limit Date/Time Analyzed	Analyst
Calculation	Chromium, Dissolved Trivalent		Batch ID: Q	b16082601	Prep Info:				
	Trivalent Chromium	< 1.50	U	ug/L	1	3.00	1.50	08/26/2016 06:23	MM
EPA 200.8	Metals, Dissolved		Batch ID: Q	b16081703	Prep Info:	PB16081	703 EPA 200	.2 08/17/2016 11:50	CL
	Antimony	< 1.00	U	ug/L	5	5.00	1.00	08/20/2016 01:20	CL
	Arsenic	7.58		ug/L	5	2.50	0.500	08/20/2016 01:20	CL
	Beryllium	< 0.100	U	ug/L	10	2.00	0.100	08/24/2016 15:51	CL
	Cadmium	< 0.250	U	ug/L	5	5.00	0.250	08/20/2016 01:20	CL
	Chromium	< 0.375	U	ug/L	5	15.0	0.375	08/20/2016 01:20	CL
	Copper	0.681	J	ug/L	5	5.00	0.250	08/20/2016 01:20	CL
	Lead	< 0.125	U	ug/L	5	2.50	0.125	08/20/2016 01:20	CL
	Nickel	1.59	J	ug/L	10	10.0	0.500	08/24/2016 15:51	CL
	Silver	< 0.125	U	ug/L	5	2.50	0.125	08/20/2016 01:20	CL
	Thallium	< 0.125	U	ug/L	5	2.50	0.125	08/20/2016 01:20	CL
	Zinc	4.39	J	ug/L	10	20.0	1.00	08/24/2016 15:51	CL
EPA 200.8	Metals, Total by ICP-MS		Batch ID: Q	b16081702	Prep Info:	PB16081	702 EPA 200	.2 08/17/2016 11:50	CL
	Selenium	18.9		ug/L	5	10.0	1.66	08/19/2016 15:22	CL
EPA 245.1	Mercury, Total		Batch ID: Q	2b16081901	Prep Info:	PB16081	901 EPA 245	.1 08/10/2016 12:20	MBW
	Mercury	< 0.150	U	ug/L	1	0.200	0.150	08/11/2016 21:56	MBW
EPA 415.1	Total Organic Carbon		Batch ID: Q	b16081821	Prep Info:				
	Total Organic Carbon	0.000312		%	1	0.0001	0.00005	08/16/2016 16:30	ARC
SM 3500-Cr B	Chromium, Dissolved Hexavalent		Batch ID: Q	b16081814	Prep Info:				

Client Name: Lloy	loyd Engineering, Inc. Attn: Marisa Weber				
Project ID: Qui	ntana Terminal Dock 1				
Job ID :	1608151	Sample Matrix:	Water		
Client Sample ID:	QI-16-02-E	Date Collected:	08/04/2016		
Job Sample ID:	1608151.10	Time Collected:	12:13		
Other Information:					

Test Method	Parameter	Result	Q	Units	DF	LRL	SDL	%Rec Ctrl Li	mit Date/Time Analyzed	Analyst
SM 3500-Cr B	Chromium, Dissolved Hexavalent		Batch ID: Q	b16081814	Prep Info:					
	Chromium, Hexavalent	< 1.50	U	ug/L	1	3.00	1.50		08/09/2016 13:15	ARC
SM 4500-CN C, E	Cyanide, Total		Batch ID: Q	b16081819	Prep Info:	PB160818	811 SM	1 4500-CN C	08/09/2016 13:35	ARC
	Cyanide, Total	< 0.005	U	mg/L	1	0.010	0.005		08/09/2016 16:10	ARC
SM 4500-NH3 D	Ammonia as Nitrogen		Batch ID: Qb16081824		Prep Info:					
	Ammonia as N	1.63		mg/L	1	0.100	0.050		08/15/2016 11:30	ARC
SW846 8081B	Organochlorine Pesticides		Batch ID:		Prep Info:					
	2,4,5,6 Tetrachloro-m-xylene(surr)	164	S	%	1			60-140	08/12/2016 07:46	
	Decachlorobiphenyl(surr)	113		%	1			60-140	08/12/2016 07:46	
SW846 8081B	Organochlorine Pesticides		Batch ID: Q	b16081604	Prep Info:	PB160816	504 SV	V846 3511	08/09/2016 16:34	
	4,4-DDD	< 0.003	U	ug/L	1	0.012	0.003		08/12/2016 07:46	
	4,4-DDE	< 0.003	U	ug/L	1	0.012	0.003		08/12/2016 07:46	
	4,4-DDT	< 0.003	U	ug/L	1	0.012	0.003		08/12/2016 07:46	
	a-BHC	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 07:46	
	a-Chlordane	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 07:46	
	Aldrin	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 07:46	
	b-BHC	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 07:46	
	Chlordane	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 07:46	
	d-BHC	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 07:46	
	Dieldrin	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 07:46	
	Endosulfan I	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 07:46	

ent Name: Llo	yd Engineering, Inc.	Attn: Marisa Weber
Project ID: Qui	intana Terminal Dock 1	
Job ID :	1608151	Sample Matrix: Water
Client Sample ID:	QI-16-02-E	Date Collected: 08/04/2
Job Sample ID:	1608151.10	Time Collected: 12:13
Other Information:		

Test Method	Parameter	Result	Q	Units	DF	LRL	SDL	%Rec Ctrl Li	mit Date/Time Analyzed	Analyst
SW846 8081B	Organochlorine Pesticides		Batch ID: Qb	16081604	Prep Info:	PB160816	04 SW84	6 3511	08/09/2016 16:34	
	Endosulfan II	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 07:46	
	Endosulfan sulfate	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 07:46	
	Endrin	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 07:46	
	Endrin aldehyde	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 07:46	
	Endrin ketone	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 07:46	
	g-BHC	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 07:46	
	Heptachlor	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 07:46	
	Heptachlor epoxide	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 07:46	
	Toxaphene	< 0.150	U	ug/L	1	0.300	0.150		08/12/2016 07:46	
	y-Chlordane	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 07:46	
SW846 8082A	Polychlorinated Biphenyls		Batch ID:		Prep Info:					
	2,4,5,6 Tetrachloro-m-xylene(surr)	163	S	%	1			60-140	08/11/2016 06:37	
	Decachlorobiphenyl(surr)	143	S	%	1			60-140	08/11/2016 06:37	
SW846 8082A	Polychlorinated Biphenyls		Batch ID: Qb	16081602	Prep Info: PB1608		02 SW84	6 3511	08/08/2016 14:10	
	Total PCBs	< 0.006	U	ug/L	1	0.012	0.006		08/11/2016 06:37	
SW846 8260C	Volatile Organic Compounds		Batch ID:		Prep Info:					
	1,2-Dichloroethane-d4(surr)	99.3		%	1			50-150	08/10/2016 15:18	EM
	4-Bromofluorobenzene(surr)	78.8		%	1			50-150	08/10/2016 15:18	EM
	Dibromofluoromethane(surr)	99.0		%	1			50-150	08/10/2016 15:18	EM
	Toluene-d8(surr)	97.5		%	1			50-150	08/10/2016 15:18	EM

Client Name: Llo	d Engineering, Inc.	Attn: Marisa Web	Attn: Marisa Weber			
Project ID: Qui	ntana Terminal Dock 1					
Job ID :	1608151	Sample Matrix:	Vater			
Client Sample ID:	QI-16-02-E	Date Collected: 0	8/04/2016			
Job Sample ID:	1608151.10	Time Collected:	2:13			
Other Information:						

Test Method	Parameter	Result	Q	Units	DF	LRL	SDL	%Rec Ctrl Li	mit Date/Time Analyzed	Analyst
SW846 8260C	Volatile Organic Compounds		Batch ID: Qb	16081705	Prep Info:					
	Ethylbenzene	< 1.00	U	ug/L	1	5.00	1.00		08/10/2016 15:18	JM
	Tetrachloroethylene	< 1.00	U	ug/L	1	5.00	1.00		08/10/2016 15:18	JM
	Trichloroethylene	< 1.00	U	ug/L	1	5.00	1.00		08/10/2016 15:18	JM
	xylenes (total)	< 1.00	U	ug/L	1	5.00	1.00		08/10/2016 15:18	JM
SW846 8270D	Semivolatile Organic Compounds		Batch ID:		Prep Info:					
	2,4,6-Tribromophenol(surr)	239	S	%	1			60-140	08/17/2016 01:14	JLL
	2-Fluorobiphenyl(surr)	76.3		%	1			60-140	08/17/2016 01:14	JLL
	2-Fluorophenol(surr)	155	S	%	1			60-140	08/17/2016 01:14	JLL
	Nitrobenzene-d5(surr)	155	S	%	1			60-140	08/17/2016 01:14	JLL
	Phenol-d5(surr)	147	S	%	1			60-140	08/17/2016 01:14	JLL
	Terphenyl-d14(surr)	81.7		%	1			60-140	08/17/2016 01:14	JLL
SW846 8270D	Semivolatile Organic Compounds		Batch ID: Qb	16081827	Prep Info:	PB16081	813 SW	846 3511	08/10/2016 10:02	JLL
	1,2,4-Trichlorobenzene	< 0.281	U	ug/L	1	0.562	0.281		08/17/2016 01:14	JLL
	1,2-Dichlorobenzene	< 0.281	U	ug/L	1	0.562	0.281		08/17/2016 01:14	JLL
	1,2-Diphenylhydrazine as Azobenzene	< 0.281	U	ug/L	1	0.562	0.281		08/17/2016 01:14	JLL
	1,3-Dichlorobenzene	< 0.281	U	ug/L	1	0.562	0.281		08/17/2016 01:14	JLL
	1,4-Dichlorobenzene	< 0.281	U	ug/L	1	0.562	0.281		08/17/2016 01:14	JLL
	2,4,6-Trichlorophenol	< 0.56	U	ug/L	1	1.12	0.56		08/17/2016 01:14	JLL
	2,4-Dichlorophenol	< 0.56	U	ug/L	1	1.12	0.56		08/17/2016 01:14	JLL
	2,4-Dimethylphenol	< 0.56	U	ug/L	1	1.12	0.56		08/17/2016 01:14	JLL

Client Name: Lloy	yd Engineering, Inc.	Attr	Attn: Marisa Weber				
Project ID: Qui	intana Terminal Dock 1						
Job ID :	1608151	Sample	e Matrix: Wat	ter			
Client Sample ID:	QI-16-02-E	Date C	Collected: 08/	04/2016			
Job Sample ID:	1608151.10	Time C	Collected: 12:	13			
Other Information:							

Test Method	Parameter	Result	Q	Units	DF	LRL	SDL	%Rec Ctrl Limit Date/Time Analyzed	Analyst
SW846 8270D	Semivolatile Organic Compounds		Batch ID: (2b16081827	Prep Info:	PB160818	313 SW8	08/10/2016 10:02	JLL
	2,4-Dinitrophenol	< 9.00	U	ug/L	1	18.0	9.00	08/17/2016 01:14	JLL
	2,4-Dinitrotoluene	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 01:14	JLL
	2,6-Dinitrotoluene	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 01:14	JLL
	2-Chloronaphthalene	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 01:14	JLL
	2-Chlorophenol	< 0.56	U	ug/L	1	1.12	0.56	08/17/2016 01:14	JLL
	2-Methylnaphthalene	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 01:14	JLL
	2-Methylphenol	< 0.56	U	ug/L	1	1.12	0.56	08/17/2016 01:14	JLL
	2-Nitrophenol	< 0.56	U	ug/L	1	1.12	0.56	08/17/2016 01:14	JLL
	3,3-Dichlorobenzidine	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 01:14	JLL
	4,6-Dinitro-2-methylphenol	< 0.56	U	ug/L	1	1.12	0.56	08/17/2016 01:14	JLL
	4-Bromophenyl phenyl ether	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 01:14	JLL
	4-Chloro-3-methylphenol	< 0.56	U	ug/L	1	4.50	0.56	08/17/2016 01:14	JLL
	4-Chlorophenyl phenyl ether	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 01:14	JLL
	4-Methylphenol	< 0.56	U	ug/L	1	1.12	0.56	08/17/2016 01:14	JLL
	4-Nitrophenol	< 0.56	U	ug/L	1	1.12	0.56	08/17/2016 01:14	JLL
	Acenaphthene	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 01:14	JLL
	Acenaphthylene	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 01:14	JLL
	Anthracene	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 01:14	JLL
	Benzidine	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 01:14	JLL
	Benzo(a)anthracene	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 01:14	JLL
	Benzo(a)pyrene	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 01:14	JLL

Client Name: Lloy	yd Engineering, Inc.	Attn: Marisa Weber	Attn: Marisa Weber				
Project ID: Qui	intana Terminal Dock 1						
Job ID :	1608151	Sample Matrix: Wat	er				
Client Sample ID:	QI-16-02-E	Date Collected: 08/0	04/2016				
Job Sample ID:	1608151.10	Time Collected: 12:	13				
Other Information:							

Test Method	Parameter	Result	Q	Units	DF	LRL	SDL	%Rec Ctrl Limit Date/Time Analyzed	Analyst
SW846 8270D	Semivolatile Organic Compounds		Batch ID: Q	0b16081827	Prep Info: PB16081813 SW		813 SW8	46 3511 08/10/2016 10:02	JLL
	Benzo(b)fluoranthene	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 01:14	JLL
	Benzo(g,h,i)perylene	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 01:14	JLL
	Benzo(k)fluoranthene	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 01:14	JLL
	Benzoic acid	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 01:14	JLL
	Benzyl alcohol	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 01:14	JLL
	Bis(2-chloroethoxy) methane	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 01:14	JLL
	Bis(2-chloroethyl) ether	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 01:14	JLL
	Bis(2-chloroisopropyl) ether	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 01:14	JLL
	Bis(2-ethylhexyl)phthalate	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 01:14	JLL
	Butyl benzyl phthalate	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 01:14	JLL
	Chrysene	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 01:14	JLL
	Dibenzo(a,h)anthracene	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 01:14	JLL
	Dibenzofuran	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 01:14	JLL
	Diethyl phthalate	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 01:14	JLL
	Dimethyl phthalate	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 01:14	JLL
	Di-n-butyl phthalate	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 01:14	JLL
	Di-n-octyl Phthalate	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 01:14	JLL
	Fluoranthene	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 01:14	JLL
	Fluorene	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 01:14	JLL
	Hexachlorobenzene	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 01:14	JLL
	Hexachlorobutadiene	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 01:14	JLL

ent Name: Llo	yd Engineering, Inc.	Attn: Marisa Weber
Project ID: Qui	intana Terminal Dock 1	
Job ID :	1608151	Sample Matrix: Water
Client Sample ID:	QI-16-02-E	Date Collected: 08/04/2
Job Sample ID:	1608151.10	Time Collected: 12:13
Other Information:		

-									
Parameter	Result	Q	Units			-	%Rec Ctrl Li	mit Date/Time Analyzed	Analyst
Semivolatile Organic Compounds		Batch ID: Qb	16081827	Prep Info:	PB160818	313 SW	846 3511	08/10/2016 10:02	JLL
Hexachlorocyclopentadiene	< 0.281	U	ug/L	1	0.562	0.281		08/17/2016 01:14	JLL
Hexachloroethane	< 0.281	U	ug/L	1	0.562	0.281		08/17/2016 01:14	JLL
Indeno(1,2,3-cd)pyrene	< 0.281	U	ug/L	1	0.562	0.281		08/17/2016 01:14	JLL
Isophorone	< 0.281	U	ug/L	1	0.562	0.281		08/17/2016 01:14	JLL
Naphthalene	< 0.281	U	ug/L	1	0.562	0.281		08/17/2016 01:14	JLL
Nitrobenzene	< 0.281	U	ug/L	1	0.562	0.281		08/17/2016 01:14	JLL
n-Nitrosodimethylamine	< 0.281	U	ug/L	1	0.562	0.281		08/17/2016 01:14	JLL
n-nitroso-di-n-propylamine	< 0.281	U	ug/L	1	0.562	0.281		08/17/2016 01:14	JLL
n-Nitrosodiphenylamine	< 0.281	U	ug/L	1	0.562	0.281		08/17/2016 01:14	JLL
Pentachlorophenol	< 0.56	U	ug/L	1	1.12	0.56		08/17/2016 01:14	JLL
Phenanthrene	< 0.281	U	ug/L	1	0.562	0.281		08/17/2016 01:14	JLL
Phenol	< 0.56	U	ug/L	1	1.12	0.56		08/17/2016 01:14	JLL
Pyrene	< 0.281	U	ug/L	1	0.562	0.281		08/17/2016 01:14	JLL
Total Petroleum Hydrocarbons		Batch ID:		Prep Info:					
1-Chlorooctadecane(surr)	95.3		%	1			70-130	08/12/2016 07:04	EM
1-Chlorooctane(surr)	101		%	1			70-130	08/12/2016 07:04	EM
Total Petroleum Hydrocarbons		Batch ID: Qb	16081708	Prep Info: PB16081705			EQ 1005	08/11/2016 11:00	EM
TPH, C6-C35	< 3.22	U	mg/L	1	10.0	3.22		08/12/2016 07:04	EM
	HexachlorocyclopentadieneHexachloroethaneIndeno(1,2,3-cd)pyreneIsophoroneNaphthaleneNitrobenzenen-Nitrosodimethylaminen-nitroso-di-n-propylaminen-NitrosodiphenylaminePentachlorophenolPhenolPyreneTotal Petroleum Hydrocarbons1-Chlorooctane(surr)Total Petroleum Hydrocarbons	Semivolatile Organic CompoundsHexachlorocyclopentadiene< 0.281	Semivolatile Organic CompoundsBatch ID: QbHexachlorocyclopentadiene< 0.281	Semivolatile Organic CompoundsBatch ID: Qb16081827Hexachlorocyclopentadiene< 0.281	Semivolatile Organic Compounds Batch ID: Qb16081827 Prep Info: Hexachlorocyclopentadiene < 0.281	Semivolatile Organic Compounds Batch ID: Qb16081827 Prep Info: PB16081827 Hexachlorocyclopentadiene < 0.281	Semivolatile Organic Compounds Batch ID: Qb16081827 Prep Info: PB16081813 SW Hexachlorocyclopentadiene < 0.281	Semivolatile Organic Compounds Batch ID: Qb16081827 Prep Info: PB16081813 SW846 3511 Hexachlorocyclopentadiene < 0.281	Semivolatile Organic Compounds Batch ID: Qb16081827 Prep Info: PB16081813 SW846 3511 08/10/2016 10:02 Hexachlorocyclopentadiene < 0.281

Client Name: Lloy	yd Engineering, Inc.	Attn: Ma	Attn: Marisa Weber				
Project ID: Qui	intana Terminal Dock 1						
	_						
Job ID :	1608151	Sample Matrix	Water				
Client Sample ID:	QI-16-03-E	Date Collected	08/04/2016				
Job Sample ID:	1608151.11	Time Collected	: 11:13				
Other Information:							

Test Method	Parameter	Result	0	Units	DF	LRL	SDL	%Rec Ctrl Limit Date/Time Analyzed	Analyst
Calculation	Chromium, Dissolved Trivalent		Batch ID: Q	b16082601	Prep Info:			, , , , , , , , , , , , , , , , , , , ,	, -
	Trivalent Chromium	< 1.50	U	ug/L	1	3.00	1.50	08/26/2016 06:23	MM
EPA 200.8	Metals, Dissolved		Batch ID: Q	b16081703	Prep Info:	PB16081	703 EPA 200	.2 08/17/2016 11:50	CL
	Antimony	< 1.00	U	ug/L	5	5.00	1.00	08/20/2016 01:26	CL
	Arsenic	13.0		ug/L	5	2.50	0.500	08/20/2016 01:26	CL
	Beryllium	< 0.100	U	ug/L	10	2.00	0.100	08/24/2016 19:23	CL
	Cadmium	< 0.250	U	ug/L	5	5.00	0.250	08/20/2016 01:26	CL
	Chromium	< 0.375	U	ug/L	5	15.0	0.375	08/20/2016 01:26	CL
	Copper	0.528	J	ug/L	5	5.00	0.250	08/20/2016 01:26	CL
	Lead	0.154	J	ug/L	5	2.50	0.125	08/20/2016 01:26	CL
	Nickel	1.94	J	ug/L	10	10.0	0.500	08/24/2016 19:23	CL
	Silver	< 0.125	U	ug/L	5	2.50	0.125	08/20/2016 01:26	CL
	Thallium	< 0.125	U	ug/L	5	2.50	0.125	08/20/2016 01:26	CL
	Zinc	5.09	J	ug/L	10	20.0	1.00	08/24/2016 19:23	CL
EPA 200.8	Metals, Total by ICP-MS		Batch ID: Q	b16081702	Prep Info:	PB16081	702 EPA 200	.2 08/17/2016 11:50	CL
	Selenium	16.9		ug/L	5	10.0	1.66	08/19/2016 15:56	CL
EPA 245.1	Mercury, Total		Batch ID: Q	b16081901	Prep Info:	PB16081	901 EPA 245	.1 08/10/2016 12:20	MBW
	Mercury	< 0.150	U	ug/L	1	0.200	0.150	08/11/2016 21:59	MBW
EPA 415.1	Total Organic Carbon		Batch ID: Qb16081821		Prep Info:				
	Total Organic Carbon	0.000384		%	1	0.0001	0.00005	08/16/2016 16:30	ARC
SM 3500-Cr B	Chromium, Dissolved Hexavalent		Batch ID: Q	b16081814	Prep Info:				

Client Name: Llo	/d Engineering, Inc.	Attn: Marisa W	/eber
Project ID: Qu	ntana Terminal Dock 1		
Job ID :	1608151	Sample Matrix:	Water
Client Sample ID:	QI-16-03-E	Date Collected:	08/04/2016
Job Sample ID:	1608151.11	Time Collected:	11:13
Other Information:			

Test Method	Parameter	Result	Q	Units	DF	LRL	SDL	%Rec Ctrl Li	mit Date/Time Analyzed	Analyst
SM 3500-Cr B	Chromium, Dissolved Hexavalent		Batch ID: Q	b16081814	Prep Info:					
	Chromium, Hexavalent	< 1.50	U	ug/L	1	3.00	1.50		08/09/2016 13:15	ARC
SM 4500-CN C, E	Cyanide, Total		Batch ID: Qb16081819		Prep Info:	PB160818	811 SM	1 4500-CN C	08/09/2016 13:35	ARC
	Cyanide, Total	< 0.005	U	mg/L	1	0.010	0.005		08/09/2016 16:10	ARC
SM 4500-NH3 D	Ammonia as Nitrogen		Batch ID: Q	b16081824	Prep Info:					
	Ammonia as N	1.26	6 mg/L		1	0.100	0.050		08/15/2016 11:30	ARC
SW846 8081B	Organochlorine Pesticides		Batch ID:		Prep Info:					
	2,4,5,6 Tetrachloro-m-xylene(surr)	164	S	%	1			60-140	08/12/2016 08:07	
	Decachlorobiphenyl(surr)	112		%	1			60-140	08/12/2016 08:07	
SW846 8081B	Organochlorine Pesticides		Batch ID: Q	b16081604	Prep Info:	PB160816	504 SV	V846 3511	08/09/2016 16:34	
	4,4-DDD	< 0.003	U	ug/L	1	0.012	0.003		08/12/2016 08:07	
	4,4-DDE	< 0.003	U	ug/L	1	0.012	0.003		08/12/2016 08:07	
	4,4-DDT	< 0.003	U	ug/L	1	0.012	0.003		08/12/2016 08:07	
	a-BHC	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 08:07	
	a-Chlordane	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 08:07	
	Aldrin	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 08:07	
	b-BHC	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 08:07	
	Chlordane	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 08:07	
	d-BHC	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 08:07	
	Dieldrin	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 08:07	
	Endosulfan I	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 08:07	

Client Name: Llo	yd Engineering, Inc.	Attn: Marisa Weber
Project ID: Qu	intana Terminal Dock 1	
	_	
Job ID :	1608151	Sample Matrix: Water
Client Sample ID:	QI-16-03-E	Date Collected: 08/04/201
Job Sample ID:	1608151.11	Time Collected: 11:13
Other Information:		

Test Method	Parameter	Result	Q	Units	DF	LRL	SDL	%Rec Ctrl Li	imit Date/Time Analyzed	Analyst
SW846 8081B	Organochlorine Pesticides		Batch ID: Qb	16081604	Prep Info:	PB160816	04 SW8	46 3511	08/09/2016 16:34	
	Endosulfan II	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 08:07	
	Endosulfan sulfate	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 08:07	
	Endrin	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 08:07	
	Endrin aldehyde	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 08:07	
	Endrin ketone	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 08:07	
	g-BHC	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 08:07	
	Heptachlor	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 08:07	
	Heptachlor epoxide	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 08:07	
	Toxaphene	< 0.150	U	ug/L	1	0.300	0.150		08/12/2016 08:07	
	y-Chlordane	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 08:07	
SW846 8082A	Polychlorinated Biphenyls		Batch ID:		Prep Info:					
	2,4,5,6 Tetrachloro-m-xylene(surr)	159	S	%	1			60-140	08/11/2016 06:58	
	Decachlorobiphenyl(surr)	127		%	1			60-140	08/11/2016 06:58	
SW846 8082A	Polychlorinated Biphenyls		Batch ID: Qb	16081602	Prep Info:	PB160816	02 SW8	46 3511	08/08/2016 14:10	
	Total PCBs	< 0.006	U	ug/L	1	0.012	0.006		08/11/2016 06:58	
SW846 8260C	Volatile Organic Compounds		Batch ID:		Prep Info:					
	1,2-Dichloroethane-d4(surr)	98.2		%	1			50-150	08/10/2016 15:48	EM
	4-Bromofluorobenzene(surr)	78.8		%	1			50-150	08/10/2016 15:48	EM
	Dibromofluoromethane(surr)	98.0		%	1			50-150	08/10/2016 15:48	EM
	Toluene-d8(surr)	95.9		%	1			50-150	08/10/2016 15:48	EM

Client Name: Llo	d Engineering, Inc.	Attn:	Marisa Weber
Project ID: Qu	ntana Terminal Dock 1		
Job ID :	1608151	Sample Ma	trix: Water
Client Sample ID:	QI-16-03-E	Date Collect	ted: 08/04/2016
Job Sample ID:	1608151.11	Time Colle	ted: 11:13
Other Information:			

Test Method	Parameter	Result	Q	Units	DF	LRL	SDL	%Rec Ctrl Li	mit Date/Time Analyzed	Analyst
SW846 8260C	Volatile Organic Compounds		Batch ID: Qb	L6081705	Prep Info:					-
	Ethylbenzene	< 1.00	U	ug/L	1	5.00	1.00		08/10/2016 15:48	JM
	Tetrachloroethylene	< 1.00	U	ug/L	1	5.00	1.00		08/10/2016 15:48	JM
	Trichloroethylene	< 1.00	U	ug/L	1	5.00	1.00		08/10/2016 15:48	JM
	xylenes (total)	< 1.00	U	ug/L	1	5.00	1.00		08/10/2016 15:48	JM
SW846 8270D	Semivolatile Organic Compounds		Batch ID:		Prep Info:					
	2,4,6-Tribromophenol(surr)	230	S	%	1			60-140	08/17/2016 01:46	JLL
	2-Fluorobiphenyl(surr)	79.0		%	1			60-140	08/17/2016 01:46	JLL
	2-Fluorophenol(surr)	150	S	%	1			60-140	08/17/2016 01:46	JLL
	Nitrobenzene-d5(surr)	199	S	%	1			60-140	08/17/2016 01:46	JLL
	Phenol-d5(surr)	156	S	%	1			60-140	08/17/2016 01:46	JLL
	Terphenyl-d14(surr)	82.8		%	1			60-140	08/17/2016 01:46	JLL
SW846 8270D	Semivolatile Organic Compounds		Batch ID: Qb	16081827	Prep Info:	PB16081	813 SW	846 3511	08/10/2016 10:02	JLL
	1,2,4-Trichlorobenzene	< 0.281	U	ug/L	1	0.562	0.281		08/17/2016 01:46	JLL
	1,2-Dichlorobenzene	< 0.281	U	ug/L	1	0.562	0.281		08/17/2016 01:46	JLL
	1,2-Diphenylhydrazine as Azobenzene	< 0.281	U	ug/L	1	0.562	0.281		08/17/2016 01:46	JLL
	1,3-Dichlorobenzene	< 0.281	U	ug/L	1	0.562	0.281		08/17/2016 01:46	JLL
	1,4-Dichlorobenzene	< 0.281	U	ug/L	1	0.562	0.281		08/17/2016 01:46	JLL
	2,4,6-Trichlorophenol	< 0.56	U	ug/L	1	1.12	0.56		08/17/2016 01:46	JLL
	2,4-Dichlorophenol	< 0.56	U	ug/L	1	1.12	0.56		08/17/2016 01:46	JLL
	2,4-Dimethylphenol	< 0.56	U	ug/L	1	1.12	0.56		08/17/2016 01:46	JLL

Client Name: Llo	/d Engineering, Inc.	Attn: Marisa Weber	
Project ID: Qu	ntana Terminal Dock 1		
Job ID :	1608151	Sample Matrix: Wa	iter
Client Sample ID:	QI-16-03-E	Date Collected: 08/	/04/2016
Job Sample ID:	1608151.11	Time Collected: 11:	13
Other Information:			

Test Method	Parameter	Result	Q	Units	DF	LRL	SDL	%Rec Ctrl Limit Date/Time Analyzed	Analyst
SW846 8270D	Semivolatile Organic Compounds		Batch ID: (2b16081827	Prep Info:	PB160818	313 SW8	08/10/2016 10:02	JLL
	2,4-Dinitrophenol	< 9.00	U	ug/L	1	18.0	9.00	08/17/2016 01:46	JLL
	2,4-Dinitrotoluene	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 01:46	JLL
	2,6-Dinitrotoluene	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 01:46	JLL
	2-Chloronaphthalene	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 01:46	JLL
	2-Chlorophenol	< 0.56	U	ug/L	1	1.12	0.56	08/17/2016 01:46	JLL
	2-Methylnaphthalene	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 01:46	JLL
	2-Methylphenol	< 0.56	U	ug/L	1	1.12	0.56	08/17/2016 01:46	JLL
	2-Nitrophenol	< 0.56	U	ug/L	1	1.12	0.56	08/17/2016 01:46	JLL
	3,3-Dichlorobenzidine	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 01:46	JLL
	4,6-Dinitro-2-methylphenol	< 0.56	U	ug/L	1	1.12	0.56	08/17/2016 01:46	JLL
	4-Bromophenyl phenyl ether	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 01:46	JLL
	4-Chloro-3-methylphenol	< 0.56	U	ug/L	1	4.50	0.56	08/17/2016 01:46	JLL
	4-Chlorophenyl phenyl ether	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 01:46	JLL
	4-Methylphenol	< 0.56	U	ug/L	1	1.12	0.56	08/17/2016 01:46	JLL
	4-Nitrophenol	< 0.56	U	ug/L	1	1.12	0.56	08/17/2016 01:46	JLL
	Acenaphthene	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 01:46	JLL
	Acenaphthylene	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 01:46	JLL
	Anthracene	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 01:46	JLL
	Benzidine	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 01:46	JLL
	Benzo(a)anthracene	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 01:46	JLL
	Benzo(a)pyrene	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 01:46	JLL

Client Name: Lloy	yd Engineering, Inc.	Attn: Marisa Weber
Project ID: Qui	intana Terminal Dock 1	
Job ID :	1608151	Sample Matrix: Water
Client Sample ID:	QI-16-03-E	Date Collected: 08/04/201
Job Sample ID:	1608151.11	Time Collected: 11:13
Other Information:		

Test Method	Parameter	Result	Q	Units	DF	LRL	SDL	%Rec Ctrl Limit Date/Time Analyzed	Analyst
SW846 8270D	Semivolatile Organic Compounds		Batch ID: Q	b16081827	Prep Info:	PB160818	813 SW8	46 3511 08/10/2016 10:02	JLL
	Benzo(b)fluoranthene	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 01:46	JLL
	Benzo(g,h,i)perylene	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 01:46	JLL
	Benzo(k)fluoranthene	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 01:46	JLL
	Benzoic acid	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 01:46	JLL
	Benzyl alcohol	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 01:46	JLL
	Bis(2-chloroethoxy) methane	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 01:46	JLL
	Bis(2-chloroethyl) ether	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 01:46	JLL
	Bis(2-chloroisopropyl) ether	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 01:46	JLL
	Bis(2-ethylhexyl)phthalate	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 01:46	JLL
	Butyl benzyl phthalate	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 01:46	JLL
	Chrysene	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 01:46	JLL
	Dibenzo(a,h)anthracene	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 01:46	JLL
	Dibenzofuran	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 01:46	JLL
	Diethyl phthalate	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 01:46	JLL
	Dimethyl phthalate	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 01:46	JLL
	Di-n-butyl phthalate	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 01:46	JLL
	Di-n-octyl Phthalate	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 01:46	JLL
	Fluoranthene	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 01:46	JLL
	Fluorene	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 01:46	JLL
	Hexachlorobenzene	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 01:46	JLL
	Hexachlorobutadiene	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 01:46	JLL

Client Name: Lloy	yd Engineering, Inc.	Attn: Marisa W	/eber
Project ID: Qui	intana Terminal Dock 1		
	_		_
Job ID :	1608151	Sample Matrix:	Water
Client Sample ID:	QI-16-03-E	Date Collected:	08/04/2016
Job Sample ID:	1608151.11	Time Collected:	11:13
Other Information:			

Test Method	Parameter	Result	Q	Units	DF	LRL	SDL	%Rec Ctrl Li	mit Date/Time Analyzed	Analyst
SW846 8270D	Semivolatile Organic Compounds		Batch ID: Qb	16081827	Prep Info:	PB160818	813 SW	/846 3511	08/10/2016 10:02	JLL
	Hexachlorocyclopentadiene	< 0.281	U	ug/L	1	0.562	0.281		08/17/2016 01:46	JLL
	Hexachloroethane	< 0.281	U	ug/L	1	0.562	0.281		08/17/2016 01:46	JLL
	Indeno(1,2,3-cd)pyrene	< 0.281	U	ug/L	1	0.562	0.281		08/17/2016 01:46	JLL
	Isophorone	< 0.281	U	ug/L	1	0.562	0.281		08/17/2016 01:46	JLL
	Naphthalene	< 0.281	U	ug/L	1	0.562	0.281		08/17/2016 01:46	JLL
	Nitrobenzene	< 0.281	U	ug/L	1	0.562	0.281		08/17/2016 01:46	JLL
	n-Nitrosodimethylamine	< 0.281	U	ug/L	1	0.562	0.281		08/17/2016 01:46	JLL
	n-nitroso-di-n-propylamine	< 0.281	U	ug/L	1	0.562	0.281		08/17/2016 01:46	JLL
	n-Nitrosodiphenylamine	< 0.281	U	ug/L	1	0.562	0.281		08/17/2016 01:46	JLL
	Pentachlorophenol	< 0.56	U	ug/L	1	1.12	0.56		08/17/2016 01:46	JLL
	Phenanthrene	< 0.281	U	ug/L	1	0.562	0.281		08/17/2016 01:46	JLL
	Phenol	< 0.56	U	ug/L	1	1.12	0.56		08/17/2016 01:46	JLL
	Pyrene	< 0.281	U	ug/L	1	0.562	0.281		08/17/2016 01:46	JLL
TCEQ 1005	Total Petroleum Hydrocarbons		Batch ID:		Prep Info:					
	1-Chlorooctadecane(surr)	97.4		%	1			70-130	08/12/2016 07:32	EM
	1-Chlorooctane(surr)	105		%	1			70-130	08/12/2016 07:32	EM
TCEQ 1005	Total Petroleum Hydrocarbons		Batch ID: Qb	16081708	Prep Info:	PB160817	705 TC	EQ 1005	08/11/2016 11:00	EM
	ТРН, С6-С35	< 3.22	U	mg/L	1	10.0	3.22		08/12/2016 07:32	EM

Client Name: Lloy	yd Engineering, Inc.	Attr	n: Marisa Weber	
Project ID: Qui	intana Terminal Dock 1			
	_			
Job ID :	1608151	Sample	e Matrix: Wate	er
Client Sample ID:	QI-16-04-E	Date C	ollected: 08/0	04/2016
Job Sample ID:	1608151.12	Time C	Collected: 10:5	8
Other Information:				

Test Method	Parameter	Result	Q	Units	DF	LRL	SDL	%Rec Ctrl Limit Date/Time Analyzed	Analyst
Calculation	Chromium, Dissolved Trivalent		Batch ID: Q	b16082601	Prep Info:				
	Trivalent Chromium	< 1.50	U	ug/L	1	3.00	1.50	08/26/2016 06:23	MM
EPA 200.8	Metals, Dissolved		Batch ID: Q	b16081703	Prep Info:	PB16081	703 EPA 200	.2 08/17/2016 11:50	CL
	Antimony	< 1.00	U	ug/L	5	5.00	1.00	08/20/2016 02:13	CL
	Arsenic	13.0		ug/L	5	2.50	0.500	08/20/2016 02:13	CL
	Beryllium	< 0.100	U	ug/L	10	2.00	0.100	08/24/2016 19:41	CL
	Cadmium	< 0.250	U	ug/L	5	5.00	0.250	08/20/2016 02:13	CL
	Chromium	< 0.375	U	ug/L	5	15.0	0.375	08/20/2016 02:13	CL
	Copper	0.481	J	ug/L	5	5.00	0.250	08/20/2016 02:13	CL
	Lead	< 0.125	U	ug/L	5	2.50	0.125	08/20/2016 02:13	CL
	Nickel	1.27	J	ug/L	10	10.0	0.500	08/24/2016 19:41	CL
	Silver	< 0.125	U	ug/L	5	2.50	0.125	08/20/2016 02:13	CL
	Thallium	< 0.125	U	ug/L	5	2.50	0.125	08/20/2016 02:13	CL
	Zinc	3.54	J	ug/L	10	20.0	1.00	08/24/2016 19:41	CL
EPA 200.8	Metals, Total by ICP-MS		Batch ID: Q	b16081702	Prep Info:	PB16081	702 EPA 200	.2 08/17/2016 11:50	CL
	Selenium	12.2		ug/L	5	10.0	1.66	08/19/2016 16:40	CL
EPA 245.1	Mercury, Total		Batch ID: Q	b16081901	Prep Info:	PB16081	901 EPA 245	.1 08/10/2016 12:20	MBW
	Mercury	< 0.150	U	ug/L	1	0.200	0.150	08/11/2016 22:03	MBW
EPA 415.1	Total Organic Carbon		Batch ID: Q	b16081821	Prep Info:	Prep Info:			
	Total Organic Carbon	0.000404		%	1	0.0001	0.00005	08/16/2016 16:30	ARC
SM 3500-Cr B	Chromium, Dissolved Hexavalent		Batch ID: Q	b16081814	Prep Info:				

Client Name: Llo	yd Engineering, Inc.	Attn: Marisa Weber
Project ID: Qu	intana Terminal Dock 1	
Job ID :	1608151	Sample Matrix: Water
Client Sample ID:	QI-16-04-E	Date Collected: 08/04/2016
Job Sample ID:	1608151.12	Time Collected: 10:58
Other Information:		

Test Method	Parameter	Result	Q	Units	DF	LRL	SDL	%Rec Ctrl Li	mit Date/Time Analyzed	Analyst
SM 3500-Cr B	Chromium, Dissolved Hexavalent		Batch ID: Q	b16081814	Prep Info:					
	Chromium, Hexavalent	< 1.50	U	ug/L	1	3.00	1.50		08/09/2016 13:15	ARC
SM 4500-CN C, E	Cyanide, Total		Batch ID: Q	b16081819	Prep Info:	PB160818	811 SM	4500-CN C	08/09/2016 13:35	ARC
	Cyanide, Total	< 0.005	U	mg/L	1	0.010	0.005		08/09/2016 16:10	ARC
SM 4500-NH3 D	Ammonia as Nitrogen	Vitrogen Batch ID: Qb16081824		Prep Info:						
	Ammonia as N	1.89		mg/L	1	0.100	0.050		08/15/2016 11:30	ARC
SW846 8081B	Organochlorine Pesticides		Batch ID:		Prep Info:					
	2,4,5,6 Tetrachloro-m-xylene(surr)	170	S	%	1			60-140	08/12/2016 09:08	
	Decachlorobiphenyl(surr)	109		%	1			60-140	08/12/2016 09:08	
SW846 8081B	Organochlorine Pesticides		Batch ID: Q	b16081604	Prep Info:	PB160816	504 SW	/846 3511	08/09/2016 16:34	
	4,4-DDD	< 0.003	U	ug/L	1	0.012	0.003		08/12/2016 09:08	
	4,4-DDE	< 0.003	U	ug/L	1	0.012	0.003		08/12/2016 09:08	
	4,4-DDT	< 0.003	U	ug/L	1	0.012	0.003		08/12/2016 09:08	
	a-BHC	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 09:08	
	a-Chlordane	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 09:08	
	Aldrin	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 09:08	
	b-BHC	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 09:08	
	Chlordane	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 09:08	
	d-BHC	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 09:08	
	Dieldrin	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 09:08	
	Endosulfan I	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 09:08	

Client Name: Llo	oyd Engineering, Inc.	Attn: Marisa Weber			
Project ID: Qu	uintana Terminal Dock 1				
Job ID :	1608151	Sample Matrix:	Water		
Client Sample ID:	QI-16-04-E	Date Collected:	08/04/2016		
Job Sample ID:	1608151.12	Time Collected:	10:58		
Other Information:	:				

Test Method	Parameter	Result	Q	Units	DF	LRL	SDL	%Rec Ctrl Li	mit Date/Time Analyzed	Analyst
SW846 8081B	Organochlorine Pesticides		Batch ID: Qb	16081604	Prep Info:	PB160816	04 SW84	46 3511	08/09/2016 16:34	
	Endosulfan II	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 09:08	
	Endosulfan sulfate	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 09:08	
	Endrin	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 09:08	
	Endrin aldehyde	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 09:08	
	Endrin ketone	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 09:08	
	g-BHC	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 09:08	
	Heptachlor	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 09:08	
	Heptachlor epoxide	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 09:08	
	Toxaphene	< 0.150	U	ug/L	1	0.300	0.150		08/12/2016 09:08	
	y-Chlordane	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 09:08	
SW846 8082A	Polychlorinated Biphenyls		Batch ID:		Prep Info:					
	2,4,5,6 Tetrachloro-m-xylene(surr)	170	S	%	1			60-140	08/11/2016 07:19	
	Decachlorobiphenyl(surr)	133		%	1			60-140	08/11/2016 07:19	
SW846 8082A	Polychlorinated Biphenyls		Batch ID: Qb	16081602	Prep Info:	PB160816	02 SW84	16 3511	08/08/2016 14:10	
	Total PCBs	< 0.006	U	ug/L	1	0.012	0.006		08/11/2016 07:19	
SW846 8260C	Volatile Organic Compounds		Batch ID:		Prep Info:					
	1,2-Dichloroethane-d4(surr)	98.6		%	1			50-150	08/10/2016 16:18	EM
	4-Bromofluorobenzene(surr)	79.5		%	1			50-150	08/10/2016 16:18	EM
	Dibromofluoromethane(surr)	96.2		%	1			50-150	08/10/2016 16:18	EM
	Toluene-d8(surr)	95.1		%	1			50-150	08/10/2016 16:18	EM

Client Name: Llo	d Engineering, Inc.	Attn: Marisa Wel	Attn: Marisa Weber			
Project ID: Qu	ntana Terminal Dock 1					
Job ID :	1608151	Sample Matrix:	Water			
Client Sample ID:	QI-16-04-E	Date Collected:	08/04/2016			
Job Sample ID:	1608151.12	Time Collected:	10:58			
Other Information:						

Test Method	Parameter	Result	Q	Units	DF	LRL	SDL	%Rec Ctrl Li	mit Date/Time Analyzed	Analyst
SW846 8260C	Volatile Organic Compounds		Batch ID: Qb	16081705	Prep Info:					
	Ethylbenzene	< 1.00	U	ug/L	1	5.00	1.00		08/10/2016 16:18	JM
	Tetrachloroethylene	< 1.00	U	ug/L	1	5.00	1.00		08/10/2016 16:18	JM
	Trichloroethylene	< 1.00	U	ug/L	1	5.00	1.00		08/10/2016 16:18	JM
	xylenes (total)	< 1.00	U	ug/L	1	5.00	1.00		08/10/2016 16:18	JM
SW846 8270D	Semivolatile Organic Compounds		Batch ID:		Prep Info:					
	2,4,6-Tribromophenol(surr)	158	S	%	1			60-140	08/17/2016 19:11	JLL
	2-Fluorobiphenyl(surr)	79.0		%	1			60-140	08/17/2016 19:11	JLL
	2-Fluorophenol(surr)	127		%	1			60-140	08/17/2016 19:11	JLL
	Nitrobenzene-d5(surr)	108		%	1			60-140	08/17/2016 19:11	JLL
	Phenol-d5(surr)	85.9		%	1			60-140	08/17/2016 19:11	JLL
	Terphenyl-d14(surr)	82.2		%	1			60-140	08/17/2016 19:11	JLL
SW846 8270D	Semivolatile Organic Compounds		Batch ID: Qb	L6081827	Prep Info:	PB16081	813 SW	/846 3511	08/10/2016 10:02	JLL
	1,2,4-Trichlorobenzene	< 0.281	U	ug/L	1	0.562	0.281		08/17/2016 19:11	JLL
	1,2-Dichlorobenzene	< 0.281	U	ug/L	1	0.562	0.281		08/17/2016 19:11	JLL
	1,2-Diphenylhydrazine as Azobenzene	< 0.281	U	ug/L	1	0.562	0.281		08/17/2016 19:11	JLL
	1,3-Dichlorobenzene	< 0.281	U	ug/L	1	0.562	0.281		08/17/2016 19:11	JLL
	1,4-Dichlorobenzene	< 0.281	U	ug/L	1	0.562	0.281		08/17/2016 19:11	JLL
	2,4,6-Trichlorophenol	< 0.56	U	ug/L	1	1.12	0.56		08/17/2016 19:11	JLL
	2,4-Dichlorophenol	< 0.56	U	ug/L	1	1.12	0.56		08/17/2016 19:11	JLL
	2,4-Dimethylphenol	< 0.56	U	ug/L	1	1.12	0.56		08/17/2016 19:11	JLL

Client Name: Llo	oyd Engineering, Inc.	Attn: Marisa Weber	Attn: Marisa Weber			
Project ID: Qu	uintana Terminal Dock 1					
Job ID :	1608151	Sample Matrix: Water				
Client Sample ID:	QI-16-04-E	Date Collected: 08/04/	2016			
Job Sample ID:	1608151.12	Time Collected: 10:58				
Other Information	:					

Test Method	Parameter	Result	Q	Units	DF	LRL	SDL	%Rec Ctrl Limit Date/Time Analyzed	Analyst
SW846 8270D	Semivolatile Organic Compounds		Batch ID: (b16081827	Prep Info:	PB160818	813 SW8	46 3511 08/10/2016 10:02	JLL
	2,4-Dinitrophenol	< 9.00	U	ug/L	1	18.0	9.00	08/17/2016 19:11	JLL
	2,4-Dinitrotoluene	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 19:11	JLL
	2,6-Dinitrotoluene	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 19:11	JLL
	2-Chloronaphthalene	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 19:11	JLL
	2-Chlorophenol	< 0.56	U	ug/L	1	1.12	0.56	08/17/2016 19:11	JLL
	2-Methylnaphthalene	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 19:11	JLL
	2-Methylphenol	< 0.56	U	ug/L	1	1.12	0.56	08/17/2016 19:11	JLL
	2-Nitrophenol	< 0.56	U	ug/L	1	1.12	0.56	08/17/2016 19:11	JLL
	3,3-Dichlorobenzidine	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 19:11	JLL
	4,6-Dinitro-2-methylphenol	< 0.56	U	ug/L	1	1.12	0.56	08/17/2016 19:11	JLL
	4-Bromophenyl phenyl ether	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 19:11	JLL
	4-Chloro-3-methylphenol	< 0.56	U	ug/L	1	4.50	0.56	08/17/2016 19:11	JLL
	4-Chlorophenyl phenyl ether	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 19:11	JLL
	4-Methylphenol	< 0.56	U	ug/L	1	1.12	0.56	08/17/2016 19:11	JLL
	4-Nitrophenol	< 0.56	U	ug/L	1	1.12	0.56	08/17/2016 19:11	JLL
	Acenaphthene	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 19:11	JLL
	Acenaphthylene	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 19:11	JLL
	Anthracene	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 19:11	JLL
	Benzidine	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 19:11	JLL
	Benzo(a)anthracene	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 19:11	JLL
	Benzo(a)pyrene	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 19:11	JLL

Client Name: Llo	yd Engineering, Inc.	Attn: Marisa	Attn: Marisa Weber			
Project ID: Qui	intana Terminal Dock 1					
Job ID :	1608151	Sample Matrix:	Water			
Client Sample ID:	QI-16-04-E	Date Collected:	08/04/2016			
Job Sample ID:	1608151.12	Time Collected:	10:58			
Other Information:						

Test Method	Parameter	Result	Q	Units	DF	LRL	SDL	%Rec Ctrl Limit Date/Time Analyzed	Analyst
SW846 8270D	Semivolatile Organic Compounds		Batch ID: Q	2b16081827	Prep Info:	PB160818	813 SW8	46 3511 08/10/2016 10:02	JLL
	Benzo(b)fluoranthene	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 19:11	JLL
	Benzo(g,h,i)perylene	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 19:11	JLL
	Benzo(k)fluoranthene	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 19:11	JLL
	Benzoic acid	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 19:11	JLL
	Benzyl alcohol	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 19:11	JLL
	Bis(2-chloroethoxy) methane	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 19:11	JLL
	Bis(2-chloroethyl) ether	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 19:11	JLL
	Bis(2-chloroisopropyl) ether	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 19:11	JLL
	Bis(2-ethylhexyl)phthalate	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 19:11	JLL
	Butyl benzyl phthalate	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 19:11	JLL
	Chrysene	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 19:11	JLL
	Dibenzo(a,h)anthracene	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 19:11	JLL
	Dibenzofuran	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 19:11	JLL
	Diethyl phthalate	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 19:11	JLL
	Dimethyl phthalate	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 19:11	JLL
	Di-n-butyl phthalate	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 19:11	JLL
	Di-n-octyl Phthalate	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 19:11	JLL
	Fluoranthene	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 19:11	JLL
	Fluorene	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 19:11	JLL
	Hexachlorobenzene	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 19:11	JLL
	Hexachlorobutadiene	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 19:11	JLL

ent Name: Llo	yd Engineering, Inc.	Attn: Marisa Weber
Project ID: Qui	intana Terminal Dock 1	
Job ID :	1608151	Sample Matrix: Water
Client Sample ID:	QI-16-04-E	Date Collected: 08/04/
Job Sample ID:	1608151.12	Time Collected: 10:58
Other Information:		

Test Method	Parameter	Result	Q	Units	DF	LRL	SDL	%Rec Ctrl Li	nit Date/Time Analyzed	Analyst
SW846 8270D	Semivolatile Organic Compounds		Batch ID: Qb	16081827	Prep Info:	PB160818	313 SW	846 3511	08/10/2016 10:02	JLL
	Hexachlorocyclopentadiene	< 0.281	U	ug/L	1	0.562	0.281		08/17/2016 19:11	JLL
	Hexachloroethane	< 0.281	U	ug/L	1	0.562	0.281		08/17/2016 19:11	JLL
	Indeno(1,2,3-cd)pyrene	< 0.281	U	ug/L	1	0.562	0.281		08/17/2016 19:11	JLL
	Isophorone	< 0.281	U	ug/L	1	0.562	0.281		08/17/2016 19:11	JLL
	Naphthalene	< 0.281	U	ug/L	1	0.562	0.281		08/17/2016 19:11	JLL
	Nitrobenzene	< 0.281	U	ug/L	1	0.562	0.281		08/17/2016 19:11	JLL
	n-Nitrosodimethylamine	< 0.281	U	ug/L	1	0.562	0.281		08/17/2016 19:11	JLL
	n-nitroso-di-n-propylamine	< 0.281	U	ug/L	1	0.562	0.281		08/17/2016 19:11	JLL
	n-Nitrosodiphenylamine	< 0.281	U	ug/L	1	0.562	0.281		08/17/2016 19:11	JLL
	Pentachlorophenol	< 0.56	U	ug/L	1	1.12	0.56		08/17/2016 19:11	JLL
	Phenanthrene	< 0.281	U	ug/L	1	0.562	0.281		08/17/2016 19:11	JLL
	Phenol	< 0.56	U	ug/L	1	1.12	0.56		08/17/2016 19:11	JLL
	Pyrene	< 0.281	U	ug/L	1	0.562	0.281		08/17/2016 19:11	JLL
TCEQ 1005	Total Petroleum Hydrocarbons		Batch ID:		Prep Info:					
	1-Chlorooctadecane(surr)	96.4		%	1			70-130	08/12/2016 08:00	EM
	1-Chlorooctane(surr)	110		%	1			70-130	08/12/2016 08:00	EM
TCEQ 1005	Total Petroleum Hydrocarbons		Batch ID: Qb	16081708	Prep Info:	PB160817	705 TCE	EQ 1005	08/11/2016 11:00	EM
	ТРН, С6-С35	< 3.22	U	mg/L	1	10.0	3.22		08/12/2016 08:00	EM

Client Name: Lloy	yd Engineering, Inc.		Attn: Marisa Weber			
Project ID: Qui	intana Terminal Dock 1					
	_					
Job ID :	1608151		Sample Matrix:	Water		
Client Sample ID:	QI-16-05-E		Date Collected:	08/04/2016		
Job Sample ID:	1608151.13		Time Collected:	10:00		
Other Information:						

Test Method	Parameter	Result	Q	Units	DF	LRL	SDL	%Rec Ctrl Limit Date/Time Analyzed	Analyst
Calculation	Chromium, Dissolved Trivalent		Batch ID: Q	b16082601	Prep Info:			, , , , , , , , , , , , , , , , , , , ,	, -
	Trivalent Chromium	< 1.50	U	ug/L	1	3.00	1.50	08/26/2016 06:23	MM
EPA 200.8	Metals, Dissolved		Batch ID: Q	b16081703	Prep Info:	PB16081	703 EPA 200	.2 08/17/2016 11:50	CL
	Antimony	< 1.00	U	ug/L	5	5.00	1.00	08/20/2016 02:19	CL
	Arsenic	12.1		ug/L	5	2.50	0.500	08/20/2016 02:19	CL
	Beryllium	< 0.100	U	ug/L	10	2.00	0.100	08/24/2016 19:47	CL
	Cadmium	< 0.250	U	ug/L	5	5.00	0.250	08/20/2016 02:19	CL
	Chromium	< 0.375	U	ug/L	5	15.0	0.375	08/20/2016 02:19	CL
	Copper	0.902	J	ug/L	5	5.00	0.250	08/20/2016 02:19	CL
	Lead	0.180	J	ug/L	5	2.50	0.125	08/20/2016 02:19	CL
	Nickel	1.98	J	ug/L	10	10.0	0.500	08/24/2016 19:47	CL
	Silver	< 0.125	U	ug/L	5	2.50	0.125	08/20/2016 02:19	CL
	Thallium	< 0.125	U	ug/L	5	2.50	0.125	08/20/2016 02:19	CL
	Zinc	8.95	J	ug/L	10	20.0	1.00	08/24/2016 19:47	CL
EPA 200.8	Metals, Total by ICP-MS		Batch ID: Q	b16081702	Prep Info:	PB16081	702 EPA 200	.2 08/17/2016 11:50	CL
	Selenium	11.9		ug/L	5	10.0	1.66	08/19/2016 16:46	CL
EPA 245.1	Mercury, Total		Batch ID: Q	b16081901	Prep Info:	PB16081	901 EPA 245	.1 08/10/2016 12:20	MBW
	Mercury	< 0.150	U	ug/L	1	0.200	0.150	08/11/2016 22:06	MBW
EPA 415.1	Total Organic Carbon		Batch ID: Q	b16081821	Prep Info:				
	Total Organic Carbon	0.000399		%	1	0.0001	0.00005	08/16/2016 16:30	ARC
SM 3500-Cr B	Chromium, Dissolved Hexavalent		Batch ID: Q	b16081814	Prep Info:				

Client Name: Lloy	yd Engineering, Inc.			Attn: Marisa Weber			
Project ID: Qui	intana Terminal Dock 1						
Job ID :	1608151		9	Sample Matrix:	Water		
Client Sample ID:	QI-16-05-E		ſ	Date Collected:	08/04/201		
Job Sample ID:	1608151.13		1	Time Collected:	10:00		
Other Information:							

Test Method	Parameter	Result	Q	Units	DF	LRL	SDL	%Rec Ctrl Li	mit Date/Time Analyzed	Analyst
SM 3500-Cr B	Chromium, Dissolved Hexavalent		Batch ID: Q	b16081814	Prep Info:					
	Chromium, Hexavalent	< 1.50	U	ug/L	1	3.00	1.50		08/09/2016 13:15	ARC
SM 4500-CN C, E	Cyanide, Total		Batch ID: Q	b16081819	Prep Info:	PB160818	811 SM	4500-CN C	08/09/2016 13:35	ARC
	Cyanide, Total	< 0.005	U	mg/L	1	0.010	0.005		08/09/2016 16:10	ARC
SM 4500-NH3 D	Ammonia as Nitrogen		Batch ID: Q	b16081824	Prep Info:					
	Ammonia as N	1.41		mg/L	1	0.100	0.050		08/15/2016 11:30	ARC
SW846 8081B	Organochlorine Pesticides		Batch ID:		Prep Info:					
	2,4,5,6 Tetrachloro-m-xylene(surr)	163	S	%	1			60-140	08/12/2016 09:29	
	Decachlorobiphenyl(surr)	99.2		%	1			60-140	08/12/2016 09:29	
SW846 8081B	Organochlorine Pesticides		Batch ID: Q	b16081604	Prep Info:	PB160816	604 SW	/846 3511	08/09/2016 16:34	
	4,4-DDD	< 0.003	U	ug/L	1	0.012	0.003		08/12/2016 09:29	
	4,4-DDE	< 0.003	U	ug/L	1	0.012	0.003		08/12/2016 09:29	
	4,4-DDT	< 0.003	U	ug/L	1	0.012	0.003		08/12/2016 09:29	
	a-BHC	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 09:29	
	a-Chlordane	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 09:29	
	Aldrin	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 09:29	
	b-BHC	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 09:29	
	Chlordane	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 09:29	
	d-BHC	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 09:29	
	Dieldrin	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 09:29	
	Endosulfan I	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 09:29	

Client Name: Llo	yd Engineering, Inc.	Attn: Marisa Weber
Project ID: Qu	intana Terminal Dock 1	
Job ID :	1608151	Sample Matrix: Water
Client Sample ID:	QI-16-05-E	Date Collected: 08/04/201
Job Sample ID:	1608151.13	Time Collected: 10:00
Other Information:		

Test Method	Parameter	Result	Q	Units	DF	LRL	SDL	%Rec Ctrl Li	mit Date/Time Analyzed	Analyst
SW846 8081B	Organochlorine Pesticides		Batch ID: Qb	16081604	Prep Info:	PB160816	04 SW8	46 3511	08/09/2016 16:34	
	Endosulfan II	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 09:29	
	Endosulfan sulfate	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 09:29	
	Endrin	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 09:29	
	Endrin aldehyde	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 09:29	
	Endrin ketone	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 09:29	
	g-BHC	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 09:29	
	Heptachlor	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 09:29	
	Heptachlor epoxide	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 09:29	
	Toxaphene	< 0.150	U	ug/L	1	0.300	0.150		08/12/2016 09:29	
	y-Chlordane	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 09:29	
SW846 8082A	Polychlorinated Biphenyls		Batch ID:		Prep Info:					
	2,4,5,6 Tetrachloro-m-xylene(surr)	157	S	%	1			60-140	08/11/2016 08:21	
	Decachlorobiphenyl(surr)	118		%	1			60-140	08/11/2016 08:21	
SW846 8082A	Polychlorinated Biphenyls		Batch ID: Qb	16081602	Prep Info:	PB160816	02 SW8	46 3511	08/08/2016 14:10	
	Total PCBs	< 0.006	U	ug/L	1	0.012	0.006		08/11/2016 08:21	
SW846 8260C	Volatile Organic Compounds		Batch ID:		Prep Info:					
	1,2-Dichloroethane-d4(surr)	100		%	1			50-150	08/10/2016 16:48	EM
	4-Bromofluorobenzene(surr)	78.7		%	1			50-150	08/10/2016 16:48	EM
	Dibromofluoromethane(surr)	97.9		%	1			50-150	08/10/2016 16:48	EM
	Toluene-d8(surr)	99.1		%	1			50-150	08/10/2016 16:48	EM

Client Name: Llo	rd Engineering, Inc.	Attn: Marisa Weber
Project ID: Qu	ntana Terminal Dock 1	
	-	
Job ID :	1608151	Sample Matrix: Water
Client Sample ID:	QI-16-05-E	Date Collected: 08/04/201
Job Sample ID:	1608151.13	Time Collected: 10:00
Other Information:		

Test Method	Parameter	Result	Q	Units	DF	LRL	SDL	%Rec Ctrl Li	mit Date/Time Analyzed	Analyst
SW846 8260C	Volatile Organic Compounds		Batch ID: Qb	16081705	Prep Info:					
	Ethylbenzene	< 1.00	U	ug/L	1	5.00	1.00		08/10/2016 16:48	JM
	Tetrachloroethylene	< 1.00	U	ug/L	1	5.00	1.00		08/10/2016 16:48	JM
	Trichloroethylene	< 1.00	U	ug/L	1	5.00	1.00		08/10/2016 16:48	JM
	xylenes (total)	< 1.00	U	ug/L	1	5.00	1.00		08/10/2016 16:48	JM
SW846 8270D	Semivolatile Organic Compounds		Batch ID:		Prep Info:					
	2,4,6-Tribromophenol(surr)	151	S	%	1			60-140	08/17/2016 19:43	JLL
	2-Fluorobiphenyl(surr)	79.4		%	1			60-140	08/17/2016 19:43	JLL
	2-Fluorophenol(surr)	123		%	1			60-140	08/17/2016 19:43	JLL
	Nitrobenzene-d5(surr)	116		%	1			60-140	08/17/2016 19:43	JLL
	Phenol-d5(surr)	96.7		%	1			60-140	08/17/2016 19:43	JLL
	Terphenyl-d14(surr)	86.4		%	1			60-140	08/17/2016 19:43	JLL
SW846 8270D	Semivolatile Organic Compounds		Batch ID: Qb	16081827	Prep Info:	PB16081	813 SW	846 3511	08/10/2016 10:02	JLL
	1,2,4-Trichlorobenzene	< 0.281	U	ug/L	1	0.562	0.281		08/17/2016 19:43	JLL
	1,2-Dichlorobenzene	< 0.281	U	ug/L	1	0.562	0.281		08/17/2016 19:43	JLL
	1,2-Diphenylhydrazine as Azobenzene	< 0.281	U	ug/L	1	0.562	0.281		08/17/2016 19:43	JLL
	1,3-Dichlorobenzene	< 0.281	U	ug/L	1	0.562	0.281		08/17/2016 19:43	JLL
	1,4-Dichlorobenzene	< 0.281	U	ug/L	1	0.562	0.281		08/17/2016 19:43	JLL
	2,4,6-Trichlorophenol	< 0.56	U	ug/L	1	1.12	0.56		08/17/2016 19:43	JLL
	2,4-Dichlorophenol	< 0.56	U	ug/L	1	1.12	0.56		08/17/2016 19:43	JLL
	2,4-Dimethylphenol	< 0.56	U	ug/L	1	1.12	0.56		08/17/2016 19:43	JLL

Client Name: Llo	loyd Engineering, Inc. Attn: Marisa Weber					
Project ID: Qu	uintana Terminal Dock 1					
Job ID :	1608151	Sample Matrix: W	/ater			
Client Sample ID:	QI-16-05-E	Date Collected: 08	8/04/2016			
Job Sample ID:	1608151.13	Time Collected: 10	00:00			
Other Information:						

Test Method	Parameter	Result	Q	Units	DF	LRL	SDL	%Rec Ctrl Limit Date/Time Analyzed	Analyst
SW846 8270D	Semivolatile Organic Compounds		Batch ID: Q	b16081827	Prep Info	PB160818	813 SW8	46 3511 08/10/2016 10:02	JLL
	2,4-Dinitrophenol	< 9.00	U	ug/L	1	18.0	9.00	08/17/2016 19:43	JLL
	2,4-Dinitrotoluene	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 19:43	JLL
	2,6-Dinitrotoluene	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 19:43	JLL
	2-Chloronaphthalene	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 19:43	JLL
	2-Chlorophenol	< 0.56	U	ug/L	1	1.12	0.56	08/17/2016 19:43	JLL
	2-Methylnaphthalene	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 19:43	JLL
	2-Methylphenol	< 0.56	U	ug/L	1	1.12	0.56	08/17/2016 19:43	JLL
	2-Nitrophenol	< 0.56	U	ug/L	1	1.12	0.56	08/17/2016 19:43	JLL
	3,3-Dichlorobenzidine	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 19:43	JLL
	4,6-Dinitro-2-methylphenol	< 0.56	U	ug/L	1	1.12	0.56	08/17/2016 19:43	JLL
	4-Bromophenyl phenyl ether	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 19:43	JLL
	4-Chloro-3-methylphenol	< 0.56	U	ug/L	1	4.50	0.56	08/17/2016 19:43	JLL
	4-Chlorophenyl phenyl ether	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 19:43	JLL
	4-Methylphenol	< 0.56	U	ug/L	1	1.12	0.56	08/17/2016 19:43	JLL
	4-Nitrophenol	< 0.56	U	ug/L	1	1.12	0.56	08/17/2016 19:43	JLL
	Acenaphthene	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 19:43	JLL
	Acenaphthylene	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 19:43	JLL
	Anthracene	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 19:43	JLL
	Benzidine	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 19:43	JLL
	Benzo(a)anthracene	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 19:43	JLL
	Benzo(a)pyrene	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 19:43	JLL

Client Name: Lloy	loyd Engineering, Inc. Attn: Marisa Weber				Veber
Project ID: Qui	intana Terminal Dock 1				
Job ID :	1608151			Sample Matrix:	Water
Client Sample ID:	QI-16-05-E			Date Collected:	08/04/2016
Job Sample ID:	1608151.13			Time Collected:	10:00
Other Information:					

Test Method	Parameter	Result	Q	Units	DF	LRL	SDL	%Rec Ctrl Limit Date/Time Analyzed	Analyst
SW846 8270D	Semivolatile Organic Compounds		Batch ID: Q)b16081827	Prep Info:	PB160818	813 SW8	46 3511 08/10/2016 10:02	JLL
	Benzo(b)fluoranthene	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 19:43	JLL
	Benzo(g,h,i)perylene	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 19:43	JLL
	Benzo(k)fluoranthene	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 19:43	JLL
	Benzoic acid	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 19:43	JLL
	Benzyl alcohol	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 19:43	JLL
	Bis(2-chloroethoxy) methane	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 19:43	JLL
	Bis(2-chloroethyl) ether	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 19:43	JLL
	Bis(2-chloroisopropyl) ether	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 19:43	JLL
	Bis(2-ethylhexyl)phthalate	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 19:43	JLL
	Butyl benzyl phthalate	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 19:43	JLL
	Chrysene	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 19:43	JLL
	Dibenzo(a,h)anthracene	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 19:43	JLL
	Dibenzofuran	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 19:43	JLL
	Diethyl phthalate	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 19:43	JLL
	Dimethyl phthalate	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 19:43	JLL
	Di-n-butyl phthalate	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 19:43	JLL
	Di-n-octyl Phthalate	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 19:43	JLL
	Fluoranthene	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 19:43	JLL
	Fluorene	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 19:43	JLL
	Hexachlorobenzene	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 19:43	JLL
	Hexachlorobutadiene	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 19:43	JLL

ent Name: Llo	yd Engineering, Inc.	Attn: Marisa Weber			
Project ID: Qu	intana Terminal Dock 1				
Job ID :	1608151	Sample Matrix:	Water		
Client Sample ID:	QI-16-05-E	Date Collected:	08/04/2016		
Job Sample ID:	1608151.13	Time Collected:	10:00		
Other Information:					

Teet Methed	Developmenter	Desult	0	11	DE		CDI		mit Data/Time Anal	Ameliat
Test Method	Parameter	Result	Q	Units	DF	LRL	SDL		mit Date/Time Analyzed	Analyst
SW846 8270D	Semivolatile Organic Compounds		Batch ID: Qb	16081827	Prep Info:	PB160818	313 SW	846 3511	08/10/2016 10:02	JLL
	Hexachlorocyclopentadiene	< 0.281	U	ug/L	1	0.562	0.281		08/17/2016 19:43	JLL
	Hexachloroethane	< 0.281	U	ug/L	1	0.562	0.281		08/17/2016 19:43	JLL
	Indeno(1,2,3-cd)pyrene	< 0.281	U	ug/L	1	0.562	0.281		08/17/2016 19:43	JLL
	Isophorone	< 0.281	U	ug/L	1	0.562	0.281		08/17/2016 19:43	JLL
	Naphthalene	< 0.281	U	ug/L	1	0.562	0.281		08/17/2016 19:43	JLL
	Nitrobenzene	< 0.281	U	ug/L	1	0.562	0.281		08/17/2016 19:43	JLL
	n-Nitrosodimethylamine	< 0.281	U	ug/L	1	0.562	0.281		08/17/2016 19:43	JLL
	n-nitroso-di-n-propylamine	< 0.281	U	ug/L	1	0.562	0.281		08/17/2016 19:43	JLL
	n-Nitrosodiphenylamine	< 0.281	U	ug/L	1	0.562	0.281		08/17/2016 19:43	JLL
	Pentachlorophenol	< 0.56	U	ug/L	1	1.12	0.56		08/17/2016 19:43	JLL
	Phenanthrene	< 0.281	U	ug/L	1	0.562	0.281		08/17/2016 19:43	JLL
	Phenol	< 0.56	U	ug/L	1	1.12	0.56		08/17/2016 19:43	JLL
	Pyrene	< 0.281	U	ug/L	1	0.562	0.281		08/17/2016 19:43	JLL
TCEQ 1005	Total Petroleum Hydrocarbons		Batch ID:		Prep Info:					
	1-Chlorooctadecane(surr)	89.6		%	1			70-130	08/12/2016 08:29	EM
	1-Chlorooctane(surr)	106		%	1			70-130	08/12/2016 08:29	EM
TCEQ 1005	Total Petroleum Hydrocarbons		Batch ID: Qb	16081708	Prep Info:	PB160817	705 TCI	EQ 1005	08/11/2016 11:00	EM
	TPH, C6-C35	< 3.22	U	mg/L	1	10.0	3.22		08/12/2016 08:29	EM

ent Name: Llo	yd Engineering, Inc.		Attn: Marisa V	Attn: Marisa Weber			
Project ID: Qui	intana Terminal Dock 1						
	_			_			
Job ID :	1608151		Sample Matrix:	Water			
Client Sample ID:	QI-16-06-E		Date Collected:	08/04/201			
Job Sample ID:	1608151.14		Time Collected:	09:41			
Other Information:							

Test Method	Parameter	Result	0	Units	DF	LRL	SDL	%Rec Ctrl Limit Date/Time Analyzed	Analyst
Calculation	Chromium, Dissolved Trivalent		Batch ID: Q		Prep Info:				
	Trivalent Chromium	< 1.50	U	ug/L	1	3.00	1.50	08/26/2016 06:23	MM
EPA 200.8	Metals, Dissolved		Batch ID: Q	b16081703	Prep Info:	PB16081	703 EPA 200	.2 08/17/2016 11:50	CL
	Antimony	< 1.00	U	ug/L	5	5.00	1.00	08/20/2016 02:25	CL
	Arsenic	12.4		ug/L	5	2.50	0.500	08/20/2016 02:25	CL
	Beryllium	< 0.100	U	ug/L	10	2.00	0.100	08/24/2016 19:53	CL
	Cadmium	< 0.250	U	ug/L	5	5.00	0.250	08/20/2016 02:25	CL
	Chromium	< 0.375	U	ug/L	5	15.0	0.375	08/20/2016 02:25	CL
	Copper	0.490	J	ug/L	5	5.00	0.250	08/20/2016 02:25	CL
	Lead	< 0.125	U	ug/L	5	2.50	0.125	08/20/2016 02:25	CL
	Nickel	1.36	J	ug/L	10	10.0	0.500	08/24/2016 19:53	CL
	Silver	< 0.125	U	ug/L	5	2.50	0.125	08/20/2016 02:25	CL
	Thallium	< 0.125	U	ug/L	5	2.50	0.125	08/20/2016 02:25	CL
	Zinc	4.61	J	ug/L	10	20.0	1.00	08/24/2016 19:53	CL
EPA 200.8	Metals, Total by ICP-MS		Batch ID: Q	b16081702	Prep Info:	PB16081	702 EPA 200	.2 08/17/2016 11:50	CL
	Selenium	14.5		ug/L	5	10.0	1.66	08/19/2016 16:52	CL
EPA 245.1	Mercury, Total		Batch ID: Q	b16081901	Prep Info:	PB16081	901 EPA 245	08/10/2016 12:20	MBW
	Mercury	< 0.150	U	ug/L	1	0.200	0.150	08/11/2016 22:16	MBW
EPA 415.1	Total Organic Carbon		Batch ID: Q	b16081821	Prep Info:				
	Total Organic Carbon	0.000408		%	1	0.0001	0.00005	08/16/2016 16:30	ARC
SM 3500-Cr B	Chromium, Dissolved Hexavalent		Batch ID: Q	b16081814	Prep Info:				

Client Name: Lloy	/d Engineering, Inc.	Attn: Marisa Weber			
Project ID: Qui	ntana Terminal Dock 1				
Job ID :	1608151	Sample Matrix:	Water		
Client Sample ID:	QI-16-06-E	Date Collected:	08/04/2016		
Job Sample ID:	1608151.14	Time Collected:	09:41		
Other Information:					

Test Method	Parameter	Result	Q	Units	DF	LRL	SDL	%Rec Ctrl Li	mit Date/Time Analyzed	Analyst
SM 3500-Cr B	Chromium, Dissolved Hexavalent		Batch ID: Q	b16081814	Prep Info:					
	Chromium, Hexavalent	< 1.50	U	ug/L	1	3.00	1.50		08/09/2016 13:15	ARC
SM 4500-CN C, E	Cyanide, Total		Batch ID: Q	b16081819	Prep Info:	PB160818	811 SM	4500-CN C	08/09/2016 13:35	ARC
	Cyanide, Total	< 0.005	U	mg/L	1	0.010	0.005		08/09/2016 16:10	ARC
SM 4500-NH3 D	Ammonia as Nitrogen		Batch ID: Q	b16081824	Prep Info:					
	Ammonia as N	2.11		mg/L	1	0.100	0.050		08/15/2016 11:30	ARC
SW846 8081B	Organochlorine Pesticides		Batch ID: Pr		Prep Info:					
	2,4,5,6 Tetrachloro-m-xylene(surr)	163	S	%	1			60-140	08/12/2016 09:49	
	Decachlorobiphenyl(surr)	103		%	1			60-140	08/12/2016 09:49	
SW846 8081B	Organochlorine Pesticides		Batch ID: Q	b16081604	Prep Info:	PB160816	504 SW	846 3511	08/09/2016 16:34	
	4,4-DDD	< 0.003	U	ug/L	1	0.012	0.003		08/12/2016 09:49	
	4,4-DDE	< 0.003	U	ug/L	1	0.012	0.003		08/12/2016 09:49	
	4,4-DDT	< 0.003	U	ug/L	1	0.012	0.003		08/12/2016 09:49	
	a-BHC	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 09:49	
	a-Chlordane	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 09:49	
	Aldrin	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 09:49	
	b-BHC	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 09:49	
	Chlordane	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 09:49	
	d-BHC	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 09:49	
	Dieldrin	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 09:49	
	Endosulfan I	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 09:49	

Client Name: Llo	yd Engineering, Inc.	Attn: Marisa Weber
Project ID: Qu	intana Terminal Dock 1	
Job ID :	1608151	Sample Matrix: Water
Client Sample ID:	QI-16-06-E	Date Collected: 08/04/20
Job Sample ID:	1608151.14	Time Collected: 09:41
Other Information:		

Test Method	Parameter	Result	Q	Units	DF	LRL	SDL	%Rec Ctrl Li	imit Date/Time Analyzed	Analyst
SW846 8081B	Organochlorine Pesticides		Batch ID: Qb	16081604	Prep Info:	PB160816	04 SW84	6 3511	08/09/2016 16:34	
	Endosulfan II	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 09:49	
	Endosulfan sulfate	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 09:49	
	Endrin	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 09:49	
	Endrin aldehyde	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 09:49	
	Endrin ketone	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 09:49	
	g-BHC	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 09:49	
	Heptachlor	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 09:49	
	Heptachlor epoxide	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 09:49	
	Toxaphene	< 0.150	U	ug/L	1	0.300	0.150		08/12/2016 09:49	
	y-Chlordane	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 09:49	
SW846 8082A	Polychlorinated Biphenyls		Batch ID:		Prep Info:					
	2,4,5,6 Tetrachloro-m-xylene(surr)	180	S	%	1			60-140	08/11/2016 08:41	
	Decachlorobiphenyl(surr)	137		%	1			60-140	08/11/2016 08:41	
SW846 8082A	Polychlorinated Biphenyls		Batch ID: Qb	16081602	Prep Info:	PB160816	02 SW84	6 3511	08/08/2016 14:10	
	Total PCBs	< 0.006	U	ug/L	1	0.012	0.006		08/11/2016 08:41	
SW846 8260C	Volatile Organic Compounds		Batch ID:		Prep Info:					
	1,2-Dichloroethane-d4(surr)	100		%	1			50-150	08/10/2016 17:18	EM
	4-Bromofluorobenzene(surr)	82.8		%	1			50-150	08/10/2016 17:18	EM
	Dibromofluoromethane(surr)	98.0		%	1			50-150	08/10/2016 17:18	EM
	Toluene-d8(surr)	98.6		%	1			50-150	08/10/2016 17:18	EM

Client Name: Llo	d Engineering, Inc.	Attn: Marisa Weber	Attn: Marisa Weber			
Project ID: Qu	ntana Terminal Dock 1					
Job ID :	1608151	Sample Matrix: Water				
Client Sample ID:	QI-16-06-E	Date Collected: 08/04	/2016			
Job Sample ID:	1608151.14	Time Collected: 09:41				
Other Information:						

Test Method	Parameter	Result	Q	Units	DF	LRL	SDL	%Rec Ctrl Li	mit Date/Time Analyzed	Analyst
SW846 8260C	Volatile Organic Compounds		Batch ID: Qb2	16081705	Prep Info:					
	Ethylbenzene	< 1.00	U	ug/L	1	5.00	1.00		08/10/2016 17:18	JM
	Tetrachloroethylene	< 1.00	U	ug/L	1	5.00	1.00		08/10/2016 17:18	JM
	Trichloroethylene	< 1.00	U	ug/L	1	5.00	1.00		08/10/2016 17:18	JM
	xylenes (total)	< 1.00	U	ug/L	1	5.00	1.00		08/10/2016 17:18	JM
SW846 8270D	Semivolatile Organic Compounds		Batch ID:		Prep Info:					
	2,4,6-Tribromophenol(surr)	150	S	%	1			60-140	08/17/2016 20:15	JLL
	2-Fluorobiphenyl(surr)	79.5		%	1			60-140	08/17/2016 20:15	JLL
	2-Fluorophenol(surr)	110		%	1			60-140	08/17/2016 20:15	JLL
	Nitrobenzene-d5(surr)	109		%	1			60-140	08/17/2016 20:15	JLL
	Phenol-d5(surr)	105		%	1			60-140	08/17/2016 20:15	JLL
	Terphenyl-d14(surr)	82.0		%	1			60-140	08/17/2016 20:15	JLL
SW846 8270D	Semivolatile Organic Compounds		Batch ID: Qb	16081827	Prep Info:	PB16081	813 SW	846 3511	08/10/2016 10:02	JLL
	1,2,4-Trichlorobenzene	< 0.281	U	ug/L	1	0.562	0.281		08/17/2016 20:15	JLL
	1,2-Dichlorobenzene	< 0.281	U	ug/L	1	0.562	0.281		08/17/2016 20:15	JLL
	1,2-Diphenylhydrazine as Azobenzene	< 0.281	U	ug/L	1	0.562	0.281		08/17/2016 20:15	JLL
	1,3-Dichlorobenzene	< 0.281	U	ug/L	1	0.562	0.281		08/17/2016 20:15	JLL
	1,4-Dichlorobenzene	< 0.281	U	ug/L	1	0.562	0.281		08/17/2016 20:15	JLL
	2,4,6-Trichlorophenol	< 0.56	U	ug/L	1	1.12	0.56		08/17/2016 20:15	JLL
	2,4-Dichlorophenol	< 0.56	U	ug/L	1	1.12	0.56		08/17/2016 20:15	JLL
	2,4-Dimethylphenol	< 0.56	U	ug/L	1	1.12	0.56		08/17/2016 20:15	JLL

Client Name: Llo	oyd Engineering, Inc.	Attn: Maris	Attn: Marisa Weber		
Project ID: Qu	uintana Terminal Dock 1				
Job ID :	1608151	Sample Matrix:	Water		
Client Sample ID:	QI-16-06-E	Date Collected:	08/04/2016		
Job Sample ID:	1608151.14	Time Collected:	09:41		
Other Information	:				

Test Method	Parameter	Result	Q	Units	DF	LRL	SDL	%Rec Ctrl Limit Date/Time Analyzed	Analyst
SW846 8270D	Semivolatile Organic Compounds		Batch ID:	2b16081827	Prep Info:	PB160818	813 SW8	46 3511 08/10/2016 10:02	JLL
	2,4-Dinitrophenol	< 9.00	U	ug/L	1	18.0	9.00	08/17/2016 20:15	JLL
	2,4-Dinitrotoluene	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 20:15	JLL
	2,6-Dinitrotoluene	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 20:15	JLL
	2-Chloronaphthalene	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 20:15	JLL
	2-Chlorophenol	< 0.56	U	ug/L	1	1.12	0.56	08/17/2016 20:15	JLL
	2-Methylnaphthalene	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 20:15	JLL
	2-Methylphenol	< 0.56	U	ug/L	1	1.12	0.56	08/17/2016 20:15	JLL
	2-Nitrophenol	< 0.56	U	ug/L	1	1.12	0.56	08/17/2016 20:15	JLL
	3,3-Dichlorobenzidine	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 20:15	JLL
	4,6-Dinitro-2-methylphenol	< 0.56	U	ug/L	1	1.12	0.56	08/17/2016 20:15	JLL
	4-Bromophenyl phenyl ether	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 20:15	JLL
	4-Chloro-3-methylphenol	< 0.56	U	ug/L	1	4.50	0.56	08/17/2016 20:15	JLL
	4-Chlorophenyl phenyl ether	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 20:15	JLL
	4-Methylphenol	< 0.56	U	ug/L	1	1.12	0.56	08/17/2016 20:15	JLL
	4-Nitrophenol	< 0.56	U	ug/L	1	1.12	0.56	08/17/2016 20:15	JLL
	Acenaphthene	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 20:15	JLL
	Acenaphthylene	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 20:15	JLL
	Anthracene	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 20:15	JLL
	Benzidine	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 20:15	JLL
	Benzo(a)anthracene	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 20:15	JLL
	Benzo(a)pyrene	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 20:15	JLL

Client Name: Lloy	/d Engineering, Inc.		Attn: Marisa Weber			
Project ID: Qui	ntana Terminal Dock 1					
Job ID :	1608151		Sample Matrix:	Water		
Client Sample ID:	QI-16-06-E		Date Collected:	08/04/2016		
Job Sample ID:	1608151.14		Time Collected:	09:41		
Other Information:						

Test Method	Parameter	Result	Q	Units	DF	LRL	SDL	%Rec Ctrl Limit Date/Time Analyzed	Analyst
SW846 8270D	Semivolatile Organic Compounds		Batch ID: Q	b16081827	Prep Info:	PB160818	813 SW8	46 3511 08/10/2016 10:02	JLL
	Benzo(b)fluoranthene	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 20:15	JLL
	Benzo(g,h,i)perylene	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 20:15	JLL
	Benzo(k)fluoranthene	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 20:15	JLL
	Benzoic acid	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 20:15	JLL
	Benzyl alcohol	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 20:15	JLL
	Bis(2-chloroethoxy) methane	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 20:15	JLL
	Bis(2-chloroethyl) ether	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 20:15	JLL
	Bis(2-chloroisopropyl) ether	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 20:15	JLL
	Bis(2-ethylhexyl)phthalate	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 20:15	JLL
	Butyl benzyl phthalate	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 20:15	JLL
	Chrysene	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 20:15	JLL
	Dibenzo(a,h)anthracene	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 20:15	JLL
	Dibenzofuran	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 20:15	JLL
	Diethyl phthalate	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 20:15	JLL
	Dimethyl phthalate	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 20:15	JLL
	Di-n-butyl phthalate	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 20:15	JLL
	Di-n-octyl Phthalate	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 20:15	JLL
	Fluoranthene	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 20:15	JLL
	Fluorene	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 20:15	JLL
	Hexachlorobenzene	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 20:15	JLL
	Hexachlorobutadiene	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 20:15	JLL

Client Name: Llo	yd Engineering, Inc.		Attn: Marisa Weber		
Project ID: Qui	intana Terminal Dock 1				
Job ID :	1608151	Sar	mple Matrix:	Water	
Client Sample ID:	QI-16-06-E	Dat	te Collected:	08/04/2016	
Job Sample ID:	1608151.14	Tim	ne Collected:	09:41	
Other Information:					

Test Method	Parameter	Result	Q	Units	DF	LRL	SDL	%Rec Ctrl Li	mit Date/Time Analyzed	Analyst
SW846 8270D	Semivolatile Organic Compounds		Batch ID: Qt	16081827	Prep Info:	PB160818	813 SW	846 3511	08/10/2016 10:02	JLL
	Hexachlorocyclopentadiene	< 0.281	U	ug/L	1	0.562	0.281		08/17/2016 20:15	JLL
	Hexachloroethane	< 0.281	U	ug/L	1	0.562	0.281		08/17/2016 20:15	JLL
	Indeno(1,2,3-cd)pyrene	< 0.281	U	ug/L	1	0.562	0.281		08/17/2016 20:15	JLL
	Isophorone	< 0.281	U	ug/L	1	0.562	0.281		08/17/2016 20:15	JLL
	Naphthalene	< 0.281	U	ug/L	1	0.562	0.281		08/17/2016 20:15	JLL
	Nitrobenzene	< 0.281	U	ug/L	1	0.562	0.281		08/17/2016 20:15	JLL
	n-Nitrosodimethylamine	< 0.281	U	ug/L	1	0.562	0.281		08/17/2016 20:15	JLL
	n-nitroso-di-n-propylamine	< 0.281	U	ug/L	1	0.562	0.281		08/17/2016 20:15	JLL
	n-Nitrosodiphenylamine	< 0.281	U	ug/L	1	0.562	0.281		08/17/2016 20:15	JLL
	Pentachlorophenol	< 0.56	U	ug/L	1	1.12	0.56		08/17/2016 20:15	JLL
	Phenanthrene	< 0.281	U	ug/L	1	0.562	0.281		08/17/2016 20:15	JLL
	Phenol	< 0.56	U	ug/L	1	1.12	0.56		08/17/2016 20:15	JLL
	Pyrene	< 0.281	U	ug/L	1	0.562	0.281		08/17/2016 20:15	JLL
TCEQ 1005	Total Petroleum Hydrocarbons		Batch ID:		Prep Info:					
	1-Chlorooctadecane(surr)	94.4		%	1			70-130	08/12/2016 08:57	EM
	1-Chlorooctane(surr)	102		%	1			70-130	08/12/2016 08:57	EM
TCEQ 1005	Total Petroleum Hydrocarbons		Batch ID: Qb	16081708	Prep Info:	PB160817	705 TCE	EQ 1005	08/11/2016 11:00	EM
	ТРН, С6-С35	< 3.22	U	mg/L	1	10.0	3.22		08/12/2016 08:57	EM

Client Name: Lloy	yd Engineering, Inc.	Attn: Marisa W	/eber
Project ID: Qui	intana Terminal Dock 1		
	_		_
Job ID :	1608151	Sample Matrix:	Water
Client Sample ID:	QI-16-07-E	Date Collected:	08/04/2016
Job Sample ID:	1608151.15	Time Collected:	10:40
Other Information:			

Test Method	Parameter	Result	0	Units	DF	LRL	SDL	%Rec Ctrl Limit Date/Time Analyzed	Analyst
Calculation	Chromium, Dissolved Trivalent	Result	Batch ID: 0		Prep Info:		502		7 and you
Calculation	Trivalent Chromium	< 1.50	U	ug/L	1	3.00	1.50	08/26/2016 06:23	MM
EPA 200.8	Metals, Dissolved		Batch ID: Q		Prep Info:	PB16081	703 EPA 200	.2 08/17/2016 11:50	CL
	Antimony	< 1.00	U	ug/L	5	5.00	1.00	08/20/2016 02:31	CL
	Arsenic	7.08		ug/L	5	2.50	0.500	08/20/2016 02:31	CL
	Beryllium	< 0.100	U	ug/L	10	2.00	0.100	08/24/2016 19:59	CL
	Cadmium	< 0.250	U	ug/L	5	5.00	0.250	08/20/2016 02:31	CL
	Chromium	0.491	J	ug/L	5	15.0	0.375	08/20/2016 02:31	CL
	Copper	0.809	J	ug/L	5	5.00	0.250	08/20/2016 02:31	CL
	Lead	0.155	J	ug/L	5	2.50	0.125	08/20/2016 02:31	CL
	Nickel	1.94	J	ug/L	10	10.0	0.500	08/24/2016 19:59	CL
	Silver	< 0.125	U	ug/L	5	2.50	0.125	08/20/2016 02:31	CL
	Thallium	< 0.125	U	ug/L	5	2.50	0.125	08/20/2016 02:31	CL
	Zinc	4.70	J	ug/L	10	20.0	1.00	08/24/2016 19:59	CL
EPA 200.8	Metals, Total by ICP-MS		Batch ID: Q	b16081702	Prep Info:	PB16081	702 EPA 200	.2 08/17/2016 11:50	CL
	Selenium	13.3		ug/L	5	10.0	1.66	08/19/2016 16:58	CL
EPA 245.1	Mercury, Total		Batch ID: Q	b16081901	Prep Info:	PB16081	901 EPA 245	08/10/2016 12:20	MBW
	Mercury	< 0.150	U	ug/L	1	0.200	0.150	08/11/2016 22:26	MBW
EPA 415.1	Total Organic Carbon		Batch ID: Q	b16081821	Prep Info:				
	Total Organic Carbon	0.000331		%	1	0.0001	0.00005	08/16/2016 16:30	ARC
SM 3500-Cr B	Chromium, Dissolved Hexavalent		Batch ID: Q	b16081814	Prep Info:				

Client Name: Llo	yd Engineering, Inc.	Attn: Marisa Weber
Project ID: Qu	intana Terminal Dock 1	
Job ID :	1608151	Sample Matrix: Water
Client Sample ID:	QI-16-07-E	Date Collected: 08/04/20
Job Sample ID:	1608151.15	Time Collected: 10:40
Other Information:		

Test Method	Parameter	Result	Q	Units	DF	LRL	SDL	%Rec Ctrl Li	mit Date/Time Analyzed	Analyst
SM 3500-Cr B	Chromium, Dissolved Hexavalent		Batch ID: Q	b16081814	Prep Info:					
	Chromium, Hexavalent	< 1.50	U	ug/L	1	3.00	1.50		08/09/2016 13:15	ARC
SM 4500-CN C, E	Cyanide, Total		Batch ID: Q	b16081819	Prep Info:	PB160818	811 SM	1 4500-CN C	08/09/2016 13:35	ARC
	Cyanide, Total	< 0.005	U	mg/L	1	0.010	0.005		08/09/2016 16:10	ARC
SM 4500-NH3 D	Ammonia as Nitrogen		Batch ID: Qb16081824 P		Prep Info:					
	Ammonia as N	1.92		mg/L	1	0.100	0.050		08/15/2016 11:30	ARC
SW846 8081B	Organochlorine Pesticides		Batch ID:		Prep Info:					
	2,4,5,6 Tetrachloro-m-xylene(surr)	169	S	%	1			60-140	08/12/2016 10:10	
	Decachlorobiphenyl(surr)	123		%	1			60-140	08/12/2016 10:10	
SW846 8081B	Organochlorine Pesticides		Batch ID: Q	b16081604	Prep Info:	PB160816	504 SV	V846 3511	08/09/2016 16:34	
	4,4-DDD	< 0.003	U	ug/L	1	0.012	0.003		08/12/2016 10:10	
	4,4-DDE	< 0.003	U	ug/L	1	0.012	0.003		08/12/2016 10:10	
	4,4-DDT	< 0.003	U	ug/L	1	0.012	0.003		08/12/2016 10:10	
	a-BHC	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 10:10	
	a-Chlordane	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 10:10	
	Aldrin	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 10:10	
	b-BHC	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 10:10	
	Chlordane	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 10:10	
	d-BHC	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 10:10	
	Dieldrin	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 10:10	
	Endosulfan I	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 10:10	

Client Name: Llo	yd Engineering, Inc.	Attn: Marisa Weber
Project ID: Qu	ntana Terminal Dock 1	
Job ID :	1608151	Sample Matrix: Wate
Client Sample ID:	QI-16-07-E	Date Collected: 08/04
Job Sample ID:	1608151.15	Time Collected: 10:40
Other Information:		

Test Method	Parameter	Result	Q	Units	DF	LRL	SDL	%Rec Ctrl Li	mit Date/Time Analyzed	Analyst
SW846 8081B	Organochlorine Pesticides		Batch ID: Qb	16081604	Prep Info:	PB160816	04 SW84	l 6 3511	08/09/2016 16:34	
	Endosulfan II	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 10:10	
	Endosulfan sulfate	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 10:10	
	Endrin	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 10:10	
	Endrin aldehyde	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 10:10	
	Endrin ketone	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 10:10	
	g-BHC	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 10:10	
	Heptachlor	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 10:10	
	Heptachlor epoxide	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 10:10	
	Toxaphene	< 0.150	U	ug/L	1	0.300	0.150		08/12/2016 10:10	
	y-Chlordane	< 0.003	U	ug/L	1	0.006	0.003		08/12/2016 10:10	
SW846 8082A	Polychlorinated Biphenyls		Batch ID:		Prep Info:					
	2,4,5,6 Tetrachloro-m-xylene(surr)	166	S	%	1			60-140	08/11/2016 09:02	
	Decachlorobiphenyl(surr)	144	S	%	1			60-140	08/11/2016 09:02	
SW846 8082A	Polychlorinated Biphenyls		Batch ID: Qb	16081602	Prep Info:	PB160816	02 SW84	16 3511	08/08/2016 14:10	
	Total PCBs	< 0.006	U	ug/L	1	0.012	0.006		08/11/2016 09:02	
SW846 8260C	Volatile Organic Compounds		Batch ID:		Prep Info:					
	1,2-Dichloroethane-d4(surr)	100		%	1			50-150	08/10/2016 17:48	EM
	4-Bromofluorobenzene(surr)	78.6		%	1			50-150	08/10/2016 17:48	EM
	Dibromofluoromethane(surr)	96.3		%	1			50-150	08/10/2016 17:48	EM
	Toluene-d8(surr)	97.1		%	1			50-150	08/10/2016 17:48	EM

Client Name: Llo	d Engineering, Inc.	Attn: Marisa Weber
Project ID: Qu	ntana Terminal Dock 1	
Job ID :	1608151	Sample Matrix: Water
Client Sample ID:	QI-16-07-E	Date Collected: 08/04/201
Job Sample ID:	1608151.15	Time Collected: 10:40
Other Information:		

Test Method	Parameter	Result	Q	Units	DF	LRL	SDL	%Rec Ctrl Li	mit Date/Time Analyzed	Analyst
SW846 8260C	Volatile Organic Compounds		Batch ID: Qb2	6081705	Prep Info:					
	Ethylbenzene	< 1.00	U	ug/L	1	5.00	1.00		08/10/2016 17:48	JM
	Tetrachloroethylene	< 1.00	U	ug/L	1	5.00	1.00		08/10/2016 17:48	JM
	Trichloroethylene	< 1.00	U	ug/L	1	5.00	1.00		08/10/2016 17:48	JM
	xylenes (total)	< 1.00	U	ug/L	1	5.00	1.00		08/10/2016 17:48	JM
SW846 8270D	Semivolatile Organic Compounds		Batch ID:		Prep Info:					
	2,4,6-Tribromophenol(surr)	163	S	%	1			60-140	08/17/2016 20:47	JLL
	2-Fluorobiphenyl(surr)	81.8		%	1			60-140	08/17/2016 20:47	JLL
	2-Fluorophenol(surr)	109		%	1			60-140	08/17/2016 20:47	JLL
	Nitrobenzene-d5(surr)	114		%	1			60-140	08/17/2016 20:47	JLL
	Phenol-d5(surr)	107		%	1			60-140	08/17/2016 20:47	JLL
	Terphenyl-d14(surr)	87.8		%	1			60-140	08/17/2016 20:47	JLL
SW846 8270D	Semivolatile Organic Compounds		Batch ID: Qb:	6081827	Prep Info:	PB16081	813 SW	846 3511	08/10/2016 10:02	JLL
	1,2,4-Trichlorobenzene	< 0.281	U	ug/L	1	0.562	0.281		08/17/2016 20:47	JLL
	1,2-Dichlorobenzene	< 0.281	U	ug/L	1	0.562	0.281		08/17/2016 20:47	JLL
	1,2-Diphenylhydrazine as Azobenzene	< 0.281	U	ug/L	1	0.562	0.281		08/17/2016 20:47	JLL
	1,3-Dichlorobenzene	< 0.281	U	ug/L	1	0.562	0.281		08/17/2016 20:47	JLL
	1,4-Dichlorobenzene	< 0.281	U	ug/L	1	0.562	0.281		08/17/2016 20:47	JLL
	2,4,6-Trichlorophenol	< 0.56	U	ug/L	1	1.12	0.56		08/17/2016 20:47	JLL
	2,4-Dichlorophenol	< 0.56	U	ug/L	1	1.12	0.56		08/17/2016 20:47	JLL
	2,4-Dimethylphenol	< 0.56	U	ug/L	1	1.12	0.56		08/17/2016 20:47	JLL

Client Name: Llo	oyd Engineering, Inc.	Attn:	Marisa Weber
Project ID: Qu	uintana Terminal Dock 1		
Job ID :	1608151	Sample Ma	atrix: Water
Client Sample ID:	QI-16-07-E	Date Colle	cted: 08/04/2016
Job Sample ID:	1608151.15	Time Colle	ected: 10:40
Other Information	:		

Test Method	Parameter	Result	Q	Units	DF	LRL	SDL	%Rec Ctrl Limit Date/Time Analyzed	Analyst
SW846 8270D	Semivolatile Organic Compounds		Batch ID: (b16081827	Prep Info:	PB160818	813 SW8	46 3511 08/10/2016 10:02	JLL
	2,4-Dinitrophenol	< 9.00	U	ug/L	1	18.0	9.00	08/17/2016 20:47	JLL
	2,4-Dinitrotoluene	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 20:47	JLL
	2,6-Dinitrotoluene	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 20:47	JLL
	2-Chloronaphthalene	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 20:47	JLL
	2-Chlorophenol	< 0.56	U	ug/L	1	1.12	0.56	08/17/2016 20:47	JLL
	2-Methylnaphthalene	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 20:47	JLL
	2-Methylphenol	< 0.56	U	ug/L	1	1.12	0.56	08/17/2016 20:47	JLL
	2-Nitrophenol	< 0.56	U	ug/L	1	1.12	0.56	08/17/2016 20:47	JLL
	3,3-Dichlorobenzidine	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 20:47	JLL
	4,6-Dinitro-2-methylphenol	< 0.56	U	ug/L	1	1.12	0.56	08/17/2016 20:47	JLL
	4-Bromophenyl phenyl ether	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 20:47	JLL
	4-Chloro-3-methylphenol	< 0.56	U	ug/L	1	4.50	0.56	08/17/2016 20:47	JLL
	4-Chlorophenyl phenyl ether	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 20:47	JLL
	4-Methylphenol	< 0.56	U	ug/L	1	1.12	0.56	08/17/2016 20:47	JLL
	4-Nitrophenol	< 0.56	U	ug/L	1	1.12	0.56	08/17/2016 20:47	JLL
	Acenaphthene	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 20:47	JLL
	Acenaphthylene	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 20:47	JLL
	Anthracene	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 20:47	JLL
	Benzidine	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 20:47	JLL
	Benzo(a)anthracene	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 20:47	JLL
	Benzo(a)pyrene	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 20:47	JLL

Client Name: Lloy	yd Engineering, Inc.		Attn: Marisa Weber			
Project ID: Qui	intana Terminal Dock 1					
				_		
Job ID :	1608151		Sample Matrix:	Water		
Client Sample ID:	QI-16-07-E		Date Collected:	08/04/2016		
Job Sample ID:	1608151.15		Time Collected:	10:40		
Other Information:						

Test Method	Parameter	Result	Q	Units	DF	LRL	SDL	%Rec Ctrl Limit Date/Time Analyzed	Analyst
SW846 8270D	Semivolatile Organic Compounds		Batch ID: Q)b16081827	Prep Info:	PB160818	813 SW8	46 3511 08/10/2016 10:02	JLL
	Benzo(b)fluoranthene	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 20:47	JLL
	Benzo(g,h,i)perylene	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 20:47	JLL
	Benzo(k)fluoranthene	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 20:47	JLL
	Benzoic acid	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 20:47	JLL
	Benzyl alcohol	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 20:47	JLL
	Bis(2-chloroethoxy) methane	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 20:47	JLL
	Bis(2-chloroethyl) ether	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 20:47	JLL
	Bis(2-chloroisopropyl) ether	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 20:47	JLL
	Bis(2-ethylhexyl)phthalate	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 20:47	JLL
	Butyl benzyl phthalate	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 20:47	JLL
	Chrysene	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 20:47	JLL
	Dibenzo(a,h)anthracene	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 20:47	JLL
	Dibenzofuran	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 20:47	JLL
	Diethyl phthalate	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 20:47	JLL
	Dimethyl phthalate	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 20:47	JLL
	Di-n-butyl phthalate	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 20:47	JLL
	Di-n-octyl Phthalate	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 20:47	JLL
	Fluoranthene	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 20:47	JLL
	Fluorene	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 20:47	JLL
	Hexachlorobenzene	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 20:47	JLL
	Hexachlorobutadiene	< 0.281	U	ug/L	1	0.562	0.281	08/17/2016 20:47	JLL

Client Name: Llo	yd Engineering, Inc.	Attn: Marisa Webe	Attn: Marisa Weber			
Project ID: Qu	intana Terminal Dock 1					
Job ID :	1608151	Sample Matrix: W	/ater			
Client Sample ID:	QI-16-07-E	Date Collected: 08	3/04/2016			
Job Sample ID:	1608151.15	Time Collected: 10	0:40			
Other Information:						

Test Method	Parameter	Result	Q	Units	DF	LRL	SDL	%Rec Ctrl Li	mit Date/Time Analyzed	Analyst
SW846 8270D	Semivolatile Organic Compounds		Batch ID: Qt	16081827	Prep Info:	PB160818	813 SW	846 3511	08/10/2016 10:02	JLL
	Hexachlorocyclopentadiene	< 0.281	U	ug/L	1	0.562	0.281		08/17/2016 20:47	JLL
	Hexachloroethane	< 0.281	U	ug/L	1	0.562	0.281		08/17/2016 20:47	JLL
	Indeno(1,2,3-cd)pyrene	< 0.281	U	ug/L	1	0.562	0.281		08/17/2016 20:47	JLL
	Isophorone	< 0.281	U	ug/L	1	0.562	0.281		08/17/2016 20:47	JLL
	Naphthalene	< 0.281	U	ug/L	1	0.562	0.281		08/17/2016 20:47	JLL
	Nitrobenzene	< 0.281	U	ug/L	1	0.562	0.281		08/17/2016 20:47	JLL
	n-Nitrosodimethylamine	< 0.281	U	ug/L	1	0.562	0.281		08/17/2016 20:47	JLL
	n-nitroso-di-n-propylamine	< 0.281	U	ug/L	1	0.562	0.281		08/17/2016 20:47	JLL
	n-Nitrosodiphenylamine	< 0.281	U	ug/L	1	0.562	0.281		08/17/2016 20:47	JLL
	Pentachlorophenol	< 0.56	U	ug/L	1	1.12	0.56		08/17/2016 20:47	JLL
	Phenanthrene	< 0.281	U	ug/L	1	0.562	0.281		08/17/2016 20:47	JLL
	Phenol	< 0.56	U	ug/L	1	1.12	0.56		08/17/2016 20:47	JLL
	Pyrene	< 0.281	U	ug/L	1	0.562	0.281		08/17/2016 20:47	JLL
TCEQ 1005	Total Petroleum Hydrocarbons		Batch ID:		Prep Info:					
	1-Chlorooctadecane(surr)	78.8		%	1			70-130	08/12/2016 09:25	EM
	1-Chlorooctane(surr)	82.9		%	1			70-130	08/12/2016 09:25	EM
TCEQ 1005	Total Petroleum Hydrocarbons		Batch ID: Qt	16081708	Prep Info:	PB16081	705 TCE	EQ 1005	08/11/2016 11:00	EM
	ТРН, С6-С35	< 3.22	U	mg/L	1	10.0	3.22		08/12/2016 09:25	EM

Client Name: Lloy	yd Engineering, Inc.	Attn: Marisa V	Attn: Marisa Weber				
Project ID: Qui	intana Terminal Dock 1						
	_						
Job ID :	1608151	Sample Matrix:	Sediment				
Client Sample ID:	QI-16-01-S	Date Collected:	08/04/2016				
Job Sample ID:	1608151.16	Time Collected:	12:43				
Other Information:							

Test Method	Parameter	Result	Q	Units	DF	LRL	SDL	%Rec Ctrl Limit Date/Time Analyzed	Analyst
		Result					JDL	Vince our Linne Date/ Time Analyzeu	Analyst
Calculation	Chromium, Trivalent		Batch ID:	Qb16090103	Prep Info:	2 50	4.95	22/24/22/26 44 42	
	Trivalent Chromium	14.5		mg/kg dw	1	2.50	1.25	09/01/2016 11:10	MM
EPA 160.4	Volatile Solids, Total		Batch ID:	Qb16081829	Prep Info:				
	Volatile Solids	7.97		%	1	1.00	0.010	08/10/2016 18:22	ARC
EPA 200.8	Metals, Total	otal Batch ID: Qb16083002		Prep Info:	PB160830	002 EPA 20	0.2 08/30/2016 09:48	CL	
	Antimony	< 0.250	U	mg/kg	1	0.250	0.020	08/30/2016 22:28	CL
	Arsenic	6.42		mg/kg	1	0.125	0.0062	08/30/2016 22:28	CL
	Beryllium	0.877		mg/kg	1	0.050	0.010	08/30/2016 22:28	CL
	Cadmium	< 0.250	J	mg/kg	1	0.250	0.012	08/30/2016 22:28	CL
	Chromium	14.5		mg/kg	1	0.749	0.037	08/30/2016 22:28	CL
	Copper	13.3		mg/kg	1	0.250	0.042	08/30/2016 22:28	CL
	Lead	12.6		mg/kg	1	0.125	0.0062	08/30/2016 22:28	CL
	Nickel	17.0		mg/kg	1	0.250	0.012	08/30/2016 22:28	CL
	Selenium	2.70	В	mg/kg	1	0.500	0.100	08/30/2016 22:28	CL
	Silver	< 0.125	J	mg/kg	1	0.125	0.0062	08/30/2016 22:28	CL
	Thallium	< 0.125	J	mg/kg	1	0.125	0.005	08/30/2016 22:28	CL
	Zinc	46.0		mg/kg	1	0.500	0.020	08/30/2016 22:28	CL
EPA 350.2	Ammonia		Batch ID:	Qb16081833	Prep Info:				
	Ammonia as N	140	J	mg/kg dw	1	250	50.0	08/17/2016 16:00	ARC
SM 2540 G	Solids, Total		Batch ID:	Qb16081828	Prep Info:				
	% Solids	40.0		%	1	1.00	0.010	08/10/2016 18:22	ARC

nt Name: Lloy	yd Engineering, Inc.		Attn: Marisa Weber					
Project ID: Qui	ntana Terminal Dock 1							
Job ID :	1608151			Sample Matrix:	Sediment			
Client Sample ID:	QI-16-01-S			Date Collected:	08/04/201			
Job Sample ID:	1608151.16			Time Collected:	12:43			
Other Information:								

Test Method	Parameter	Result	Q	Units	DF	LRL	SDL	%Rec Ctrl Li	mit Date/Time Analyzed	Analyst
SW846 7196A	Chromium, Hexavalent		Batch ID: Q	b16081835	Prep Info:					
	Chromium, Hexavalent	< 1.25	U	mg/kg	1	2.50	1.25		08/17/2016 16:20	ARC
SW846 7471B	Mercury, Total		Batch ID: Q	b16081903	Prep Info:	PB160819	903 SW	/846 7471B	08/18/2016 15:06	MBW
	Mercury	< 0.025	U	mg/kg dw	1	0.050	0.025		08/19/2016 08:28	MBW
SW846 8081B	Organochlorine Pesticides		Batch ID:		Prep Info:					
	2,4,5,6 Tetrachloro-m-xylene(surr)	65.3		%	1			60-140	08/17/2016 22:27	
	Decachlorobiphenyl(surr)	98.8		%	1			60-140	08/17/2016 22:27	
SW846 8081B	Organochlorine Pesticides		Batch ID: Q	b16081806	Prep Info:	PB160818	303 SW	/846 3570	08/12/2016 08:54	
	4,4-DDD	< 0.375	U	ug/kg dw	1	0.749	0.375		08/17/2016 22:27	
	4,4-DDE	< 0.375	U	ug/kg dw	1	0.749	0.375		08/17/2016 22:27	
	4,4-DDT	< 0.375	U	ug/kg dw	1	0.749	0.375		08/17/2016 22:27	
	a-BHC	< 0.375	U	ug/kg dw	1	0.749	0.375		08/17/2016 22:27	
	a-Chlordane	< 0.375	U	ug/kg dw	1	0.749	0.375		08/17/2016 22:27	
	Aldrin	< 0.375	U	ug/kg dw	1	0.749	0.375		08/17/2016 22:27	
	b-BHC	< 0.375	U	ug/kg dw	1	0.749	0.375		08/17/2016 22:27	
	Chlordane	< 0.375	U	ug/kg dw	1	0.749	0.375		08/17/2016 22:27	
	d-BHC	< 0.375	U	ug/kg dw	1	0.749	0.375		08/17/2016 22:27	
	Dieldrin	< 0.375	U	ug/kg dw	1	0.749	0.375		08/17/2016 22:27	
	Endosulfan I	< 0.375	U	ug/kg dw	1	0.749	0.375		08/17/2016 22:27	
	Endosulfan II	< 0.375	U	ug/kg dw	1	0.749	0.375		08/17/2016 22:27	
	Endosulfan sulfate	< 0.375	U	ug/kg dw	1	0.749	0.375		08/17/2016 22:27	

Client Name: Llo	d Engineering, Inc.	Attn: Marisa Weber
Project ID: Qu	ntana Terminal Dock 1	
Job ID :	1608151	Sample Matrix: Sediment
Client Sample ID:	QI-16-01-S	Date Collected: 08/04/20
Job Sample ID:	1608151.16	Time Collected: 12:43
Other Information:		

Test Method	Parameter	Result	Q	Units	DF	LRL	SDL	%Rec Ctrl Li	mit Date/Time Analyzed	Analyst
SW846 8081B	Organochlorine Pesticides		Batch ID: Q	016081806	Prep Info:	PB160818	03 SW8	346 3570	08/12/2016 08:54	
	Endrin	< 0.375	U	ug/kg dw	1	0.749	0.375		08/17/2016 22:27	
	Endrin aldehyde	< 0.375	U	ug/kg dw	1	0.749	0.375		08/17/2016 22:27	
	Endrin ketone	< 0.375	U	ug/kg dw	1	0.749	0.375		08/17/2016 22:27	
	g-BHC	< 0.375	U	ug/kg dw	1	0.749	0.375		08/17/2016 22:27	
	Heptachlor	< 0.375	U	ug/kg dw	1	0.749	0.375		08/17/2016 22:27	
	Heptachlor epoxide	< 0.375	U	ug/kg dw	1	0.749	0.375		08/17/2016 22:27	
	Toxaphene	< 0.375	U	ug/kg dw	1	0.749	0.375		08/17/2016 22:27	
	y-Chlordane	< 0.375	U	ug/kg dw	1	0.749	0.375		08/17/2016 22:27	
SW846 8082A	Polychlorinated Biphenyls		Batch ID:		Prep Info:					
	2,4,5,6 Tetrachloro-m-xylene(surr)	148	S	%	1			60-140	08/16/2016 18:28	
	Decachlorobiphenyl(surr)	200	S	%	1			60-140	08/11/2016 11:08	
SW846 8082A	Polychlorinated Biphenyls		Batch ID: Q	016081601	Prep Info:	PB160816	01 SW8	346 3570	08/08/2016 11:14	
	Total PCBs	< 2.50	U	ug/kg dw	1	5.00	2.50		08/11/2016 11:08	
SW846 8260C	Volatile Organic Compounds		Batch ID:		Prep Info:					
	1,2-Dichloroethane-d4(surr)	95.8		%	1			50-150	08/09/2016 14:54	EM
	4-Bromofluorobenzene(surr)	80.2		%	1			50-150	08/09/2016 14:54	EM
	Dibromofluoromethane(surr)	95.2		%	1			50-150	08/09/2016 14:54	EM
	Toluene-d8(surr)	95.6		%	1			50-150	08/09/2016 14:54	EM
SW846 8260C	Volatile Organic Compounds		Batch ID: Q	016081706	Prep Info:					
	Ethylbenzene	< 2.50	U	ug/kg dw	1	5.00	2.50		08/09/2016 14:54	JM

Client Name: Llo	oyd Engineering, Inc. Attn: Marisa Weber						
Project ID: Qu	intana Terminal Dock 1						
Job ID :	1608151	Sample Matrix: Sediment					
Client Sample ID:	QI-16-01-S	Date Collected: 08/04/201					
Job Sample ID:	1608151.16	Time Collected: 12:43					
Other Information:							

Test Method	Parameter	Result	Q	Units	DF	LRL	SDL	%Rec Ctrl Li	mit Date/Time Analyzed	Analyst
SW846 8260C	Volatile Organic Compounds		Batch ID: Q	016081706	Prep Info:					
	Tetrachloroethylene	< 2.50	U	ug/kg dw	1	5.00	2.50		08/09/2016 14:54	JM
	Trichloroethylene	< 2.50	U	ug/kg dw	1	5.00	2.50		08/09/2016 14:54	JM
	xylenes (total)	< 2.50	U	ug/kg dw	1	5.00	2.50		08/09/2016 14:54	JM
SW846 8270D	Semivolatile Organic Compounds		Batch ID:		Prep Info:					
	2,4,6-Tribromophenol(surr)	93.1		%	1			60-140	08/16/2016 01:43	JLL
	2-Fluorobiphenyl(surr)	70.9		%	1			60-140	08/16/2016 01:43	JLL
	2-Fluorophenol(surr)	128		%	1			60-140	08/16/2016 01:43	JLL
	Nitrobenzene-d5(surr)	63.2		%	1			60-140	08/16/2016 01:43	JLL
	Phenol-d5(surr)	119		%	1			60-140	08/16/2016 01:43	JLL
	Terphenyl-d14(surr)	18.3	S	%	1			60-140	08/16/2016 01:43	JLL
SW846 8270D	Semivolatile Organic Compounds		Batch ID: Q	016081603	Prep Info: F	PB16081	603 SV	V846 3570	08/09/2016 10:03	
	1,2,4-Trichlorobenzene	< 3.12	U	ug/kg dw	1	6.24	3.12		08/16/2016 01:43	JLL
	1,2-Dichlorobenzene	< 3.12	U	ug/kg dw	1	6.24	3.12		08/16/2016 01:43	JLL
	1,2-Diphenylhydrazine as Azobenzene	< 3.12	U	ug/kg dw	1	6.24	3.12		08/16/2016 01:43	JLL
	1,3-Dichlorobenzene	< 3.12	U	ug/kg dw	1	6.24	3.12		08/16/2016 01:43	JLL
	1,4-Dichlorobenzene	< 3.12	U	ug/kg dw	1	6.24	3.12		08/16/2016 01:43	JLL
	2,4,6-Trichlorophenol	< 6.24	U	ug/kg dw	1	12.5	6.24		08/16/2016 01:43	JLL
	2,4-Dichlorophenol	< 6.24	U	ug/kg dw	1	12.5	6.24		08/16/2016 01:43	JLL
	2,4-Dimethylphenol	< 6.24	U	ug/kg dw	1	12.5	6.24		08/16/2016 01:43	JLL
	2,4-Dinitrophenol	< 100	U	ug/kg dw	1	200	100		08/16/2016 01:43	JLL

Client Name: Llo	yd Engineering, Inc.		Attn: Marisa Weber		
Project ID: Qu	intana Terminal Dock 1				
Job ID :	1608151	S	Sample Matrix:	Sediment	
Client Sample ID:	QI-16-01-S	C	Date Collected:	08/04/2016	
Job Sample ID:	1608151.16	Т	Fime Collected:	12:43	
Other Information:					

Test Method	Parameter	Result	Q	Units	DF	LRL	SDL	%Rec Ctrl Limit Date/Time Analyzed	Analyst
SW846 8270D	Semivolatile Organic Compounds		Batch ID:	Qb16081603	Prep Info:	Prep Info: PB16081603		846 3570 08/09/2016 10:03	
	2,4-Dinitrotoluene	< 3.12	U	ug/kg dw	1	6.24	3.12	08/16/2016 01:43	JLL
	2,6-Dinitrotoluene	< 3.12	U	ug/kg dw	1	6.24	3.12	08/16/2016 01:43	JLL
	2-Chloronaphthalene	< 3.12	U	ug/kg dw	1	6.24	3.12	08/16/2016 01:43	JLL
	2-Chlorophenol	< 6.24	U	ug/kg dw	1	12.5	6.24	08/16/2016 01:43	JLL
	2-Methylnaphthalene	< 3.12	U	ug/kg dw	1	6.24	3.12	08/16/2016 01:43	JLL
	2-Methylphenol	< 6.24	U	ug/kg dw	1	12.5	6.24	08/16/2016 01:43	JLL
	2-Nitrophenol	< 6.24	U	ug/kg dw	1	12.5	6.24	08/16/2016 01:43	JLL
	3,3-Dichlorobenzidine	< 3.12	U	ug/kg dw	1	6.24	3.12	08/16/2016 01:43	JLL
	4,6-Dinitro-2-methylphenol	< 25.0	U	ug/kg dw	1	50.0	25.0	08/16/2016 01:43	JLL
	4-Bromophenyl phenyl ether	< 3.12	U	ug/kg dw	1	6.24	3.12	08/16/2016 01:43	JLL
	4-Chloro-3-methylphenol	< 6.24	U	ug/kg dw	1	12.5	6.24	08/16/2016 01:43	JLL
	4-Chlorophenyl phenyl ether	< 3.12	U	ug/kg dw	1	6.24	3.12	08/16/2016 01:43	JLL
	4-Methylphenol	< 6.24	U	ug/kg dw	1	12.5	6.24	08/16/2016 01:43	JLL
	4-Nitrophenol	< 6.24	U	ug/kg dw	1	12.5	6.24	08/16/2016 01:43	JLL
	Acenaphthene	< 3.12	U	ug/kg dw	1	6.24	3.12	08/16/2016 01:43	JLL
	Acenaphthylene	< 3.12	U	ug/kg dw	1	6.24	3.12	08/16/2016 01:43	JLL
	Anthracene	< 3.12	U	ug/kg dw	1	6.24	3.12	08/16/2016 01:43	JLL
	Benzidine	< 3.12	U	ug/kg dw	1	6.24	3.12	08/16/2016 01:43	JLL
	Benzo(a)anthracene	< 3.12	U	ug/kg dw	1	6.24	3.12	08/16/2016 01:43	JLL
	Benzo(a)pyrene	< 3.12	U	ug/kg dw	1	6.24	3.12	08/16/2016 01:43	JLL
	Benzo(b)fluoranthene	< 3.12	U	ug/kg dw	1	6.24	3.12	08/16/2016 01:43	JLL

Client Name: Llo	oyd Engineering, Inc.	Attn: Marisa W	Attn: Marisa Weber			
Project ID: Qu	uintana Terminal Dock 1					
Job ID :	1608151	Sample Matrix:	Sediment			
Client Sample ID:	QI-16-01-S	Date Collected:	08/04/2016			
Job Sample ID:	1608151.16	Time Collected:	12:43			
Other Information:	:					

Test Method	Parameter	Result	Q	Units	DF	LRL	SDL	%Rec Ctrl Limit Date/Time Analyzed	Analyst
SW846 8270D	Semivolatile Organic Compounds		Batch ID:	Qb16081603	Prep Info:	PB160816	503 SW8	846 3570 08/09/2016 10:03	
	Benzo(g,h,i)perylene	< 3.12	U	ug/kg dw	1	6.24	3.12	08/16/2016 01:43	JLL
	Benzo(k)fluoranthene	< 3.12	U	ug/kg dw	1	6.24	3.12	08/16/2016 01:43	JLL
	Benzoic acid	< 3.12	U	ug/kg dw	1	6.24	3.12	08/16/2016 01:43	JLL
	Benzyl alcohol	< 3.12	U	ug/kg dw	1	6.24	3.12	08/16/2016 01:43	JLL
	Bis(2-chloroethoxy) methane	< 3.12	U	ug/kg dw	1	6.24	3.12	08/16/2016 01:43	JLL
	Bis(2-chloroethyl) ether	< 3.12	U	ug/kg dw	1	6.24	3.12	08/16/2016 01:43	JLL
	Bis(2-chloroisopropyl) ether	< 3.12	U	ug/kg dw	1	6.24	3.12	08/16/2016 01:43	JLL
	Bis(2-ethylhexyl)phthalate	< 3.12	U	ug/kg dw	1	6.24	3.12	08/16/2016 01:43	JLL
	Butyl benzyl phthalate	< 3.12	U	ug/kg dw	1	6.24	3.12	08/16/2016 01:43	JLL
	Chrysene	< 3.12	U	ug/kg dw	1	6.24	3.12	08/16/2016 01:43	JLL
	Dibenzo(a,h)anthracene	< 3.12	U	ug/kg dw	1	6.24	3.12	08/16/2016 01:43	JLL
	Dibenzofuran	< 3.12	U	ug/kg dw	1	6.24	3.12	08/16/2016 01:43	JLL
	Diethyl phthalate	< 3.12	U	ug/kg dw	1	6.24	3.12	08/16/2016 01:43	JLL
	Dimethyl phthalate	< 3.12	U	ug/kg dw	1	6.24	3.12	08/16/2016 01:43	JLL
	Di-n-butyl phthalate	< 3.12	U	ug/kg dw	1	6.24	3.12	08/16/2016 01:43	JLL
	Di-n-octyl Phthalate	< 3.12	U	ug/kg dw	1	6.24	3.12	08/16/2016 01:43	JLL
	Fluoranthene	< 3.12	U	ug/kg dw	1	6.24	3.12	08/16/2016 01:43	JLL
	Fluorene	< 3.12	U	ug/kg dw	1	6.24	3.12	08/16/2016 01:43	JLL
	Hexachlorobenzene	< 3.12	U	ug/kg dw	1	6.24	3.12	08/16/2016 01:43	JLL
	Hexachlorobutadiene	< 3.12	U	ug/kg dw	1	6.24	3.12	08/16/2016 01:43	JLL
	Hexachlorocyclopentadiene	< 3.12	U	ug/kg dw	1	6.24	3.12	08/16/2016 01:43	JLL

Client Name: Llo	yd Engineering, Inc.	Attn: Marisa W	Attn: Marisa Weber			
Project ID: Qu	intana Terminal Dock 1					
Job ID :	1608151	Sample Matrix:	Sediment			
Client Sample ID:	QI-16-01-S	Date Collected:	08/04/2016			
Job Sample ID:	1608151.16	Time Collected:	12:43			
Other Information:						

Test Method	Parameter	Result	Q	Units	DF	LRL	SDL	%Rec Ctrl Li	mit Date/Time Analyzed	Analyst
SW846 8270D	Semivolatile Organic Compounds		Batch ID:	Qb16081603	Prep Info:	PB160816	03 SW	846 3570	08/09/2016 10:03	
	Hexachloroethane	< 3.12	U	ug/kg dw	1	6.24	3.12		08/16/2016 01:43	JLL
	Indeno(1,2,3-cd)pyrene	< 3.12	U	ug/kg dw	1	6.24	3.12		08/16/2016 01:43	JLL
	Isophorone	< 3.12	U	ug/kg dw	1	6.24	3.12		08/16/2016 01:43	JLL
	Naphthalene	< 3.12	U	ug/kg dw	1	6.24	3.12		08/16/2016 01:43	JLL
	Nitrobenzene	< 3.12	U	ug/kg dw	1	6.24	3.12		08/16/2016 01:43	JLL
	n-Nitrosodimethylamine	< 3.12	U	ug/kg dw	1	6.24	3.12		08/16/2016 01:43	JLL
	n-nitroso-di-n-propylamine	< 3.12	U	ug/kg dw	1	6.24	3.12		08/16/2016 01:43	JLL
	n-Nitrosodiphenylamine	< 3.12	U	ug/kg dw	1	6.24	3.12		08/16/2016 01:43	JLL
	Pentachlorophenol	< 6.24	U	ug/kg dw	1	12.5	6.24		08/16/2016 01:43	JLL
	Phenanthrene	< 3.12	U	ug/kg dw	1	6.24	3.12		08/16/2016 01:43	JLL
	Phenol	< 6.24	U	ug/kg dw	1	12.5	6.24		08/16/2016 01:43	JLL
	Pyrene	< 3.12	U	ug/kg dw	1	6.24	3.12		08/16/2016 01:43	JLL
SW846 9014	Cyanide, Total		Batch ID:	Qb16081837	Prep Info:	PB160818	15 SW	846 9010C	08/12/2016 11:20	ARC
	Cyanide, Total	< 0.62	U	mg/kg dw	1	1.25	0.62		08/12/2016 13:29	ARC
SW846 9060A	Total Organic Carbon		Batch ID:	Qb16081831	Prep Info:					
	Total Organic Carbon	2.00		%	1	0.120	0.062		08/16/2016 14:09	ARC
TCEQ 1005	Total Petroleum Hydrocarbons		Batch ID:		Prep Info:					
	1-Chlorooctadecane(surr)	93.2		%	1			70-130	08/18/2016 06:36	EM
	1-Chlorooctane(surr)	97.8		%	1			70-130	08/18/2016 06:36	EM
TCEQ 1005	Total Petroleum Hydrocarbons		Batch ID:	Qb16081709	Prep Info:	PB160817	'06 TCE	Q 1005	08/17/2016 13:00	EM

Client Name: Lloy	d Engineering, Inc.	Attn: Marisa Weber							
Project ID: Quir	ntana Terminal Dock 1								
Job ID :	1608151	Sample Matrix: Sediment							
Client Sample ID:	QI-16-01-S	Date Collected: 08/04/2016							
Job Sample ID:	1608151.16	Time Collected: 12:43							
Other Information:									

Test Method	Parameter	Result	Q	Units	DF	LRL	SDL	%Rec Ctrl Limit Date/Time Analyzed	Analyst
TCEQ 1005	Total Petroleum Hydrocarbons		Batch ID: Q	b16081709	Prep Info:	PB160817	706 TCE	Q 1005 08/17/2016 13:00	EM
	TPH, C6-C35	< 25.0	U	mg/kg dw	1	125	25.0	08/18/2016 06:36	EM

Client Name: Lloy	yd Engineering, Inc.	Attn: Marisa	Attn: Marisa Weber			
Project ID: Qui	intana Terminal Dock 1					
Job ID :	1608151	Sample Matrix:	Sediment			
Client Sample ID:	QI-16-02-S	Date Collected:	08/04/2016			
Job Sample ID:	1608151.17	Time Collected:	12:13			
Other Information:						

Test Method	Parameter	Result	Q	Units	DF	LRL	SDL	%Rec Ctrl Limit Date/Time Analyzed	Analyst
Calculation	Chromium, Trivalent		Batch ID:	Qb16090103	Prep Info:			· · ·	,
	Trivalent Chromium	14.4		mg/kg dw	1	2.44	1.22	09/01/2016 11:10	MM
EPA 160.4	Volatile Solids, Total		Batch ID:	Qb16081829	Prep Info:				
	Volatile Solids	9.25		%	1	1.00	0.010	08/10/2016 18:22	ARC
EPA 200.8	Metals, Total		Batch ID:	Qb16083002	Prep Info:	PB160830	002 EPA 200	0.2 08/30/2016 09:48	CL
	Antimony	< 0.244	U	mg/kg	1	0.244	0.020	08/30/2016 23:10	CL
	Arsenic	6.39		mg/kg	1	0.122	0.0061	08/30/2016 23:10	CL
	Beryllium	0.873		mg/kg	1	0.049	0.010	08/30/2016 23:10	CL
	Cadmium	< 0.244	J	mg/kg	1	0.244	0.012	08/30/2016 23:10	CL
	Chromium	14.4		mg/kg	1	0.731	0.037	08/30/2016 23:10	CL
	Copper	13.1		mg/kg	1	0.244	0.041	08/30/2016 23:10	CL
	Lead	12.6		mg/kg	1	0.122	0.0061	08/30/2016 23:10	CL
	Nickel	16.9		mg/kg	1	0.244	0.012	08/30/2016 23:10	CL
	Selenium	2.61	В	mg/kg	1	0.487	0.100	08/30/2016 23:10	CL
	Silver	< 0.122	J	mg/kg	1	0.122	0.0061	08/30/2016 23:10	CL
	Thallium	< 0.122	J	mg/kg	1	0.122	0.005	08/30/2016 23:10	CL
	Zinc	44.8		mg/kg	1	0.487	0.020	08/30/2016 23:10	CL
EPA 350.2	Ammonia		Batch ID:	Qb16081833	Prep Info:				
	Ammonia as N	173	J	mg/kg dw	1	244	48.7	08/17/2016 16:00	ARC
SM 2540 G	Solids, Total		Batch ID:	Qb16081828	Prep Info:				
	% Solids	41.0		%	1	1.00	0.010	08/10/2016 18:22	ARC

Client Name: Lloy	yd Engineering, Inc.		Attn: Marisa V	Attn: Marisa Weber		
Project ID: Qui	intana Terminal Dock 1					
Job ID :	1608151		Sample Matrix:	Sediment		
Client Sample ID:	QI-16-02-S		Date Collected:	08/04/201		
Job Sample ID:	1608151.17		Time Collected:	12:13		
Other Information:						

Test Method	Parameter	Result	Q	Units	DF	LRL	SDL	%Rec Ctrl Li	mit Date/Time Analyzed	Analyst
SW846 7196A	Chromium, Hexavalent		Batch ID: Q	b16081835	Prep Info:					
	Chromium, Hexavalent	< 1.22	U	mg/kg	1	2.44	1.22		08/17/2016 16:20	ARC
SW846 7471B	Mercury, Total		Batch ID: Q	b16081903	Prep Info:	PB160819	03 SW	/846 7471B	08/18/2016 15:06	MBW
	Mercury	< 0.024	U	mg/kg dw	1	0.049	0.024		08/19/2016 08:28	MBW
SW846 8081B	Organochlorine Pesticides		Batch ID:		Prep Info:					
	2,4,5,6 Tetrachloro-m-xylene(surr)	71.3		%	1			60-140	08/17/2016 22:06	
	Decachlorobiphenyl(surr)	98.0		%	1			60-140	08/17/2016 22:06	
SW846 8081B	Organochlorine Pesticides		Batch ID: Q	b16081806	Prep Info:	PB160818	03 SW	/846 3570	08/12/2016 08:54	
	4,4-DDD	< 0.366	U	ug/kg dw	1	0.731	0.366		08/17/2016 22:06	
	4,4-DDE	< 0.366	U	ug/kg dw	1	0.731	0.366		08/17/2016 22:06	
	4,4-DDT	< 0.366	U	ug/kg dw	1	0.731	0.366		08/17/2016 22:06	
	a-BHC	< 0.366	U	ug/kg dw	1	0.731	0.366		08/17/2016 22:06	
	a-Chlordane	< 0.366	U	ug/kg dw	1	0.731	0.366		08/17/2016 22:06	
	Aldrin	< 0.366	U	ug/kg dw	1	0.731	0.366		08/17/2016 22:06	
	b-BHC	< 0.366	U	ug/kg dw	1	0.731	0.366		08/17/2016 22:06	
	Chlordane	< 0.366	U	ug/kg dw	1	0.731	0.366		08/17/2016 22:06	
	d-BHC	< 0.366	U	ug/kg dw	1	0.731	0.366		08/17/2016 22:06	
	Dieldrin	< 0.366	U	ug/kg dw	1	0.731	0.366		08/17/2016 22:06	
	Endosulfan I	< 0.366	U	ug/kg dw	1	0.731	0.366		08/17/2016 22:06	
	Endosulfan II	< 0.366	U	ug/kg dw	1	0.731	0.366		08/17/2016 22:06	
	Endosulfan sulfate	< 0.366	U	ug/kg dw	1	0.731	0.366		08/17/2016 22:06	

Client Name: Llo	byd Engineering, Inc.	Attn: Marisa Weber
Project ID: Qu	uintana Terminal Dock 1	
Job ID :	1608151	Sample Matrix: Sediment
Client Sample ID:	QI-16-02-S	Date Collected: 08/04/201
Job Sample ID:	1608151.17	Time Collected: 12:13
Other Information:		

Test Method	Parameter	Result	0	Units	DF	LRL	SDL	%Rec Ctrl Li	mit Date/Time Analyzed	Analyst
SW846 8081B	Organochlorine Pesticides		Batch ID: Q	b16081806	Prep Info:	PB160818	03 SW8	46 3570	08/12/2016 08:54	,
	Endrin	< 0.366	U	ug/kg dw	1	0.731	0.366		08/17/2016 22:06	
	Endrin aldehyde	< 0.366	U	ug/kg dw	1	0.731	0.366		08/17/2016 22:06	
	Endrin ketone	< 0.366	U	ug/kg dw	1	0.731	0.366		08/17/2016 22:06	
	g-BHC	< 0.366	U	ug/kg dw	1	0.731	0.366		08/17/2016 22:06	
	Heptachlor	< 0.366	U	ug/kg dw	1	0.731	0.366		08/17/2016 22:06	
	Heptachlor epoxide	< 0.366	U	ug/kg dw	1	0.731	0.366		08/17/2016 22:06	
	Toxaphene	< 0.366	U	ug/kg dw	1	0.731	0.366		08/17/2016 22:06	
	y-Chlordane	< 0.366	U	ug/kg dw	1	0.731	0.366		08/17/2016 22:06	
SW846 8082A	Polychlorinated Biphenyls		Batch ID:		Prep Info:					
	2,4,5,6 Tetrachloro-m-xylene(surr)	160	S	%	1			60-140	08/11/2016 12:10	
	Decachlorobiphenyl(surr)	200	S	%	1			60-140	08/11/2016 12:10	
SW846 8082A	Polychlorinated Biphenyls		Batch ID: Q	b16081601	Prep Info:	PB160816	01 SW8	46 3570	08/08/2016 11:14	
	Total PCBs	< 2.44	U	ug/kg dw	1	4.87	2.44		08/11/2016 12:10	
SW846 8260C	Volatile Organic Compounds		Batch ID:		Prep Info:					
	1,2-Dichloroethane-d4(surr)	96.2		%	1			50-150	08/09/2016 15:24	EM
	4-Bromofluorobenzene(surr)	77.5		%	1			50-150	08/09/2016 15:24	EM
	Dibromofluoromethane(surr)	95.0		%	1			50-150	08/09/2016 15:24	EM
	Toluene-d8(surr)	93.6		%	1			50-150	08/09/2016 15:24	EM
SW846 8260C	Volatile Organic Compounds		Batch ID: Q	b16081706	Prep Info:					
	Ethylbenzene	< 2.50	U	ug/kg dw	1	5.00	2.50		08/09/2016 15:24	JM

Client Name: Llo	rd Engineering, Inc.	ļ	Attn: Marisa W	/eber
Project ID: Qu	ntana Terminal Dock 1			
Job ID :	1608151	San	nple Matrix:	Sediment
Client Sample ID:	QI-16-02-S	Dat	e Collected:	08/04/2016
Job Sample ID:	1608151.17	Tim	e Collected:	12:13
Other Information:				

Test Method	Parameter	Result	Q	Units	DF	LRL	SDL	%Rec Ctrl Li	imit Date/Time Analyzed	Analyst
SW846 8260C	Volatile Organic Compounds		Batch ID: Q	016081706	Prep Info:					
	Tetrachloroethylene	< 2.50	U	ug/kg dw	1	5.00	2.50		08/09/2016 15:24	JM
	Trichloroethylene	< 2.50	U	ug/kg dw	1	5.00	2.50		08/09/2016 15:24	JM
	xylenes (total)	< 2.50	U	ug/kg dw	1	5.00	2.50		08/09/2016 15:24	JM
SW846 8270D	Semivolatile Organic Compounds		Batch ID:		Prep Info:					
	2,4,6-Tribromophenol(surr)	100		%	1			60-140	08/16/2016 02:18	JLL
	2-Fluorobiphenyl(surr)	83.0		%	1			60-140	08/16/2016 02:18	JLL
	2-Fluorophenol(surr)	134		%	1			60-140	08/16/2016 02:18	JLL
	Nitrobenzene-d5(surr)	74.5		%	1			60-140	08/16/2016 02:18	JLL
	Phenol-d5(surr)	131		%	1			60-140	08/16/2016 02:18	JLL
	Terphenyl-d14(surr)	21.7	S	%	1			60-140	08/16/2016 02:18	JLL
SW846 8270D	Semivolatile Organic Compounds		Batch ID: Q	016081603	Prep Info:	PB16081	503 SW	V846 3570	08/09/2016 10:03	
	1,2,4-Trichlorobenzene	< 3.05	U	ug/kg dw	1	6.09	3.05		08/16/2016 02:18	JLL
	1,2-Dichlorobenzene	< 3.05	U	ug/kg dw	1	6.09	3.05		08/16/2016 02:18	JLL
	1,2-Diphenylhydrazine as Azobenzene	< 3.05	U	ug/kg dw	1	6.09	3.05		08/16/2016 02:18	JLL
	1,3-Dichlorobenzene	< 3.05	U	ug/kg dw	1	6.09	3.05		08/16/2016 02:18	JLL
	1,4-Dichlorobenzene	< 3.05	U	ug/kg dw	1	6.09	3.05		08/16/2016 02:18	JLL
	2,4,6-Trichlorophenol	< 6.09	U	ug/kg dw	1	12.2	6.09		08/16/2016 02:18	JLL
	2,4-Dichlorophenol	< 6.09	U	ug/kg dw	1	12.2	6.09		08/16/2016 02:18	JLL
	2,4-Dimethylphenol	< 6.09	U	ug/kg dw	1	12.2	6.09		08/16/2016 02:18	JLL
	2,4-Dinitrophenol	< 97.5	U	ug/kg dw	1	195	97.5		08/16/2016 02:18	JLL

Client Name: Llo	byd Engineering, Inc.	Attn: Marisa Weber
Project ID: Qu	uintana Terminal Dock 1	
Job ID :	1608151	Sample Matrix: Sediment
Client Sample ID:	QI-16-02-S	Date Collected: 08/04/201
Job Sample ID:	1608151.17	Time Collected: 12:13
Other Information:		

Test Method	Parameter	Result	Q	Units	DF	LRL	SDL	%Rec Ctrl Limit Date/Time Analyzed	Analyst
SW846 8270D	Semivolatile Organic Compounds		Batch ID:	Qb16081603	Prep Info: PB16081603		503 SW	846 3570 08/09/2016 10:03	
	2,4-Dinitrotoluene	< 3.05	U	ug/kg dw	1	6.09	3.05	08/16/2016 02:18	JLL
	2,6-Dinitrotoluene	< 3.05	U	ug/kg dw	1	6.09	3.05	08/16/2016 02:18	JLL
	2-Chloronaphthalene	< 3.05	U	ug/kg dw	1	6.09	3.05	08/16/2016 02:18	JLL
	2-Chlorophenol	< 6.09	U	ug/kg dw	1	12.2	6.09	08/16/2016 02:18	JLL
	2-Methylnaphthalene	< 3.05	U	ug/kg dw	1	6.09	3.05	08/16/2016 02:18	JLL
	2-Methylphenol	< 6.09	U	ug/kg dw	1	12.2	6.09	08/16/2016 02:18	JLL
	2-Nitrophenol	< 6.09	U	ug/kg dw	1	12.2	6.09	08/16/2016 02:18	JLL
	3,3-Dichlorobenzidine	< 3.05	U	ug/kg dw	1	6.09	3.05	08/16/2016 02:18	JLL
	4,6-Dinitro-2-methylphenol	< 24.4	U	ug/kg dw	1	48.7	24.4	08/16/2016 02:18	JLL
	4-Bromophenyl phenyl ether	< 3.05	U	ug/kg dw	1	6.09	3.05	08/16/2016 02:18	JLL
	4-Chloro-3-methylphenol	< 6.09	U	ug/kg dw	1	12.2	6.09	08/16/2016 02:18	JLL
	4-Chlorophenyl phenyl ether	< 3.05	U	ug/kg dw	1	6.09	3.05	08/16/2016 02:18	JLL
	4-Methylphenol	< 6.09	U	ug/kg dw	1	12.2	6.09	08/16/2016 02:18	JLL
	4-Nitrophenol	< 6.09	U	ug/kg dw	1	12.2	6.09	08/16/2016 02:18	JLL
	Acenaphthene	< 3.05	U	ug/kg dw	1	6.09	3.05	08/16/2016 02:18	JLL
	Acenaphthylene	< 3.05	U	ug/kg dw	1	6.09	3.05	08/16/2016 02:18	JLL
	Anthracene	< 3.05	U	ug/kg dw	1	6.09	3.05	08/16/2016 02:18	JLL
	Benzidine	< 3.05	U	ug/kg dw	1	6.09	3.05	08/16/2016 02:18	JLL
	Benzo(a)anthracene	< 3.05	U	ug/kg dw	1	6.09	3.05	08/16/2016 02:18	JLL
	Benzo(a)pyrene	< 3.05	U	ug/kg dw	1	6.09	3.05	08/16/2016 02:18	JLL
	Benzo(b)fluoranthene	< 3.05	U	ug/kg dw	1	6.09	3.05	08/16/2016 02:18	JLL

Client Name: Llo	byd Engineering, Inc.	Attn: Marisa Weber	
Project ID: Qu	intana Terminal Dock 1		
Job ID :	1608151	Sample Matrix: Sedi	nent
Client Sample ID:	QI-16-02-S	Date Collected: 08/0	4/2016
Job Sample ID:	1608151.17	Time Collected: 12:1	3
Other Information:			

Test Method	Parameter	Result	Q	Units	DF	LRL	SDL	%Rec Ctrl Limit Date/Time Analyzed	Analyst
SW846 8270D	Semivolatile Organic Compounds		Batch ID:	Qb16081603	Prep Info:	o: PB16081603		846 3570 08/09/2016 10:03	
	Benzo(g,h,i)perylene	< 3.05	U	ug/kg dw	1	6.09	3.05	08/16/2016 02:18	JLL
	Benzo(k)fluoranthene	< 3.05	U	ug/kg dw	1	6.09	3.05	08/16/2016 02:18	JLL
	Benzoic acid	< 3.05	U	ug/kg dw	1	6.09	3.05	08/16/2016 02:18	JLL
	Benzyl alcohol	< 3.05	U	ug/kg dw	1	6.09	3.05	08/16/2016 02:18	JLL
	Bis(2-chloroethoxy) methane	< 3.05	U	ug/kg dw	1	6.09	3.05	08/16/2016 02:18	JLL
	Bis(2-chloroethyl) ether	< 3.05	U	ug/kg dw	1	6.09	3.05	08/16/2016 02:18	JLL
	Bis(2-chloroisopropyl) ether	< 3.05	U	ug/kg dw	1	6.09	3.05	08/16/2016 02:18	JLL
	Bis(2-ethylhexyl)phthalate	< 3.05	U	ug/kg dw	1	6.09	3.05	08/16/2016 02:18	JLL
	Butyl benzyl phthalate	< 3.05	U	ug/kg dw	1	6.09	3.05	08/16/2016 02:18	JLL
	Chrysene	< 3.05	U	ug/kg dw	1	6.09	3.05	08/16/2016 02:18	JLL
	Dibenzo(a,h)anthracene	< 3.05	U	ug/kg dw	1	6.09	3.05	08/16/2016 02:18	JLL
	Dibenzofuran	< 3.05	U	ug/kg dw	1	6.09	3.05	08/16/2016 02:18	JLL
	Diethyl phthalate	< 3.05	U	ug/kg dw	1	6.09	3.05	08/16/2016 02:18	JLL
	Dimethyl phthalate	< 3.05	U	ug/kg dw	1	6.09	3.05	08/16/2016 02:18	JLL
	Di-n-butyl phthalate	< 3.05	U	ug/kg dw	1	6.09	3.05	08/16/2016 02:18	JLL
	Di-n-octyl Phthalate	< 3.05	U	ug/kg dw	1	6.09	3.05	08/16/2016 02:18	JLL
	Fluoranthene	< 3.05	U	ug/kg dw	1	6.09	3.05	08/16/2016 02:18	JLL
	Fluorene	< 3.05	U	ug/kg dw	1	6.09	3.05	08/16/2016 02:18	JLL
	Hexachlorobenzene	< 3.05	U	ug/kg dw	1	6.09	3.05	08/16/2016 02:18	JLL
	Hexachlorobutadiene	< 3.05	U	ug/kg dw	1	6.09	3.05	08/16/2016 02:18	JLL
	Hexachlorocyclopentadiene	< 3.05	U	ug/kg dw	1	6.09	3.05	08/16/2016 02:18	JLL

Client Name: Llo	d Engineering, Inc.	Attn: Marisa Weber	Attn: Marisa Weber			
Project ID: Qu	ntana Terminal Dock 1					
Job ID :	1608151	Sample Matrix: Sed	liment			
Client Sample ID:	QI-16-02-S	Date Collected: 08/0	04/2016			
Job Sample ID:	1608151.17	Time Collected: 12:	13			
Other Information:						

Test Method	Parameter	Result	Q	Units	DF	LRL	SDL	%Rec Ctrl Li	mit Date/Time Analyzed	Analyst
SW846 8270D	Semivolatile Organic Compounds		Batch ID:	Qb16081603	Prep Info:	PB160816	603 SW	V846 3570	08/09/2016 10:03	
	Hexachloroethane	< 3.05	U	ug/kg dw	1	6.09	3.05		08/16/2016 02:18	JLL
	Indeno(1,2,3-cd)pyrene	< 3.05	U	ug/kg dw	1	6.09	3.05		08/16/2016 02:18	JLL
	Isophorone	< 3.05	U	ug/kg dw	1	6.09	3.05		08/16/2016 02:18	JLL
	Naphthalene	< 3.05	U	ug/kg dw	1	6.09	3.05		08/16/2016 02:18	JLL
	Nitrobenzene	< 3.05	U	ug/kg dw	1	6.09	3.05		08/16/2016 02:18	JLL
	n-Nitrosodimethylamine	< 3.05	U	ug/kg dw	1	6.09	3.05		08/16/2016 02:18	JLL
	n-nitroso-di-n-propylamine	< 3.05	U	ug/kg dw	1	6.09	3.05		08/16/2016 02:18	JLL
	n-Nitrosodiphenylamine	< 3.05	U	ug/kg dw	1	6.09	3.05		08/16/2016 02:18	JLL
	Pentachlorophenol	< 6.09	U	ug/kg dw	1	12.2	6.09		08/16/2016 02:18	JLL
	Phenanthrene	< 3.05	U	ug/kg dw	1	6.09	3.05		08/16/2016 02:18	JLL
	Phenol	< 6.09	U	ug/kg dw	1	12.2	6.09		08/16/2016 02:18	JLL
	Pyrene	< 3.05	U	ug/kg dw	1	6.09	3.05		08/16/2016 02:18	JLL
SW846 9014	Cyanide, Total		Batch ID:	Qb16081837	Prep Info:	PB160818	815 SW	V846 9010C	08/12/2016 11:20	ARC
	Cyanide, Total	< 0.61	U	mg/kg dw	1	1.22	0.61		08/12/2016 13:29	ARC
SW846 9060A	Total Organic Carbon		Batch ID:	Qb16081831	Prep Info:					
	Total Organic Carbon	2.11		%	1	0.120	0.061		08/16/2016 14:09	ARC
TCEQ 1005	Total Petroleum Hydrocarbons		Batch ID:		Prep Info:					
	1-Chlorooctadecane(surr)	80.6		%	1			70-130	08/11/2016 03:12	EM
	1-Chlorooctane(surr)	80.6		%	1			70-130	08/11/2016 03:12	EM
TCEQ 1005	Total Petroleum Hydrocarbons		Batch ID:	Qb16081707	Prep Info:	PB160817	'04 TC	EQ 1005	08/16/2016 19:00	EM

Client Name: Lloy	rd Engineering, Inc.	Attn: Marisa Weber
Project ID: Quir	ntana Terminal Dock 1	
Job ID :	1608151	Sample Matrix: Sediment
Client Sample ID:	QI-16-02-S	Date Collected: 08/04/2016
Job Sample ID:	1608151.17	Time Collected: 12:13
Other Information:		

Test Method	Parameter	Result	Q	Units	DF	LRL	SDL	%Rec Ctrl Limit Date/Time Analyzed	Analyst
TCEQ 1005	Total Petroleum Hydrocarbons		Batch ID:	Qb16081707	Prep Info:	PB16081	704 TCE	Q 1005 08/16/2016 19:00	EM
	TPH, C6-C35	< 24.4	U	mg/kg dw	1	122	24.4	08/11/2016 03:12	EM

Client Name: Llo	yd Engineering, Inc.	Attn: Marisa V	Attn: Marisa Weber			
Project ID: Qui	intana Terminal Dock 1					
Job ID :	1608151	Sample Matrix:	Sediment			
Client Sample ID:	QI-16-03-S	Date Collected:	08/04/2016			
Job Sample ID:	1608151.18	Time Collected:	11:13			
Other Information:						

Test Method	Parameter	Result	Q	Units	DF	LRL	SDL	%Rec Ctrl Limit Date/Time Analyzed	Analyst
Calculation	Chromium, Trivalent			Ob16090103	Prep Info:				
	Trivalent Chromium	15.0		mg/kg dw	1	2.56	1.28	09/01/2016 11:10	MM
EPA 160.4	Volatile Solids, Total		Batch ID:	Qb16081829	Prep Info:				
	Volatile Solids	9.29		%	1	1.00	0.010	08/10/2016 18:22	ARC
EPA 200.8	Metals, Total		Batch ID:	Qb16083002	Prep Info:	PB160830	002 EPA 200	.2 08/30/2016 09:48	CL
	Antimony	< 0.256	U	mg/kg	1	0.256	0.030	08/30/2016 23:16	CL
	Arsenic	6.73		mg/kg	1	0.128	0.0064	08/30/2016 23:16	CL
	Beryllium	0.909		mg/kg	1	0.051	0.010	08/30/2016 23:16	CL
	Cadmium	< 0.256	J	mg/kg	1	0.256	0.013	08/30/2016 23:16	CL
	Chromium	15.0		mg/kg	1	0.768	0.038	08/30/2016 23:16	CL
	Copper	15.1		mg/kg	1	0.256	0.044	08/30/2016 23:16	CL
	Lead	13.5		mg/kg	1	0.128	0.0064	08/30/2016 23:16	CL
	Nickel	17.5		mg/kg	1	0.256	0.013	08/30/2016 23:16	CL
	Selenium	2.56	В	mg/kg	1	0.512	0.100	08/30/2016 23:16	CL
	Silver	< 0.128	J	mg/kg	1	0.128	0.0064	08/30/2016 23:16	CL
	Thallium	< 0.128	J	mg/kg	1	0.128	0.005	08/30/2016 23:16	CL
	Zinc	55.1		mg/kg	1	0.512	0.030	08/30/2016 23:16	CL
EPA 350.2	Ammonia		Batch ID:	Qb16081833	Prep Info:				
	Ammonia as N	154	J	mg/kg dw	1	256	51.2	08/17/2016 16:00	ARC
SM 2540 G	Solids, Total		Batch ID:	Qb16081828	Prep Info:				
	% Solids	39.0		%	1	1.00	0.010	08/10/2016 18:22	ARC

Client Name: Lloy	yd Engineering, Inc.		Attn: Marisa	Attn: Marisa Weber		
Project ID: Qui	intana Terminal Dock 1					
Job ID :	1608151		Sample Matrix:	Sediment		
Client Sample ID:	QI-16-03-S		Date Collected:	08/04/20		
Job Sample ID:	1608151.18		Time Collected:	11:13		
Other Information:						

Test Method	Parameter	Result	Q	Units	DF	LRL	SDL	%Rec Ctrl Li	mit Date/Time Analyzed	Analyst
SW846 7196A	Chromium, Hexavalent		Batch ID: Q	b16081835	Prep Info:					
	Chromium, Hexavalent	< 1.28	U	mg/kg	1	2.56	1.28		08/17/2016 16:20	ARC
SW846 7471B	Mercury, Total		Batch ID: Q	b16081903	Prep Info:	PB160819	903 SW	/846 7471B	08/18/2016 15:06	MBW
	Mercury	< 0.026	U	mg/kg dw	1	0.051	0.026		08/19/2016 08:28	MBW
SW846 8081B	Organochlorine Pesticides		Batch ID:		Prep Info:					
	2,4,5,6 Tetrachloro-m-xylene(surr)	58.7	S	%	1			60-140	08/17/2016 23:31	
	Decachlorobiphenyl(surr)	94.5		%	1			60-140	08/17/2016 23:31	
SW846 8081B	Organochlorine Pesticides		Batch ID: Q	b16081806	Prep Info:	PB160818	303 SW	/846 3570	08/12/2016 08:54	
	4,4-DDD	< 0.384	U	ug/kg dw	1	0.768	0.384		08/17/2016 23:31	
	4,4-DDE	< 0.384	U	ug/kg dw	1	0.768	0.384		08/17/2016 23:31	
	4,4-DDT	< 0.384	U	ug/kg dw	1	0.768	0.384		08/17/2016 23:31	
	a-BHC	< 0.384	U	ug/kg dw	1	0.768	0.384		08/17/2016 23:31	
	a-Chlordane	< 0.384	U	ug/kg dw	1	0.768	0.384		08/17/2016 23:31	
	Aldrin	< 0.384	U	ug/kg dw	1	0.768	0.384		08/17/2016 23:31	
	b-BHC	< 0.384	U	ug/kg dw	1	0.768	0.384		08/17/2016 23:31	
	Chlordane	< 0.384	U	ug/kg dw	1	0.768	0.384		08/17/2016 23:31	
	d-BHC	< 0.384	U	ug/kg dw	1	0.768	0.384		08/17/2016 23:31	
	Dieldrin	< 0.384	U	ug/kg dw	1	0.768	0.384		08/17/2016 23:31	
	Endosulfan I	< 0.384	U	ug/kg dw	1	0.768	0.384		08/17/2016 23:31	
	Endosulfan II	< 0.384	U	ug/kg dw	1	0.768	0.384		08/17/2016 23:31	
	Endosulfan sulfate	< 0.384	U	ug/kg dw	1	0.768	0.384		08/17/2016 23:31	

Client Name: Llo	yd Engineering, Inc.		Attn: Marisa W	eber
Project ID: Qu	intana Terminal Dock 1			
Job ID :	1608151	Sa	ample Matrix:	Sediment
Client Sample ID:	QI-16-03-S	Da	ate Collected:	08/04/2016
Job Sample ID:	1608151.18	Ti	ime Collected:	11:13
Other Information:				

Test Method	Parameter	Result	Q	Units	DF	LRL	SDL	%Rec Ctrl Li	mit Date/Time Analyzed	Analyst
SW846 8081B	Organochlorine Pesticides		Batch ID: Q	b16081806	Prep Info:	PB160818	03 SW8	846 3570	08/12/2016 08:54	,
	Endrin	< 0.384	U	ug/kg dw	1	0.768	0.384		08/17/2016 23:31	
	Endrin aldehyde	< 0.384	U	ug/kg dw	1	0.768	0.384		08/17/2016 23:31	
	Endrin ketone	< 0.384	U	ug/kg dw	1	0.768	0.384		08/17/2016 23:31	
	g-BHC	< 0.384	U	ug/kg dw	1	0.768	0.384		08/17/2016 23:31	
	Heptachlor	< 0.384	U	ug/kg dw	1	0.768	0.384		08/17/2016 23:31	
	Heptachlor epoxide	< 0.384	U	ug/kg dw	1	0.768	0.384		08/17/2016 23:31	
	Toxaphene	< 0.384	U	ug/kg dw	1	0.768	0.384		08/17/2016 23:31	
	y-Chlordane	< 0.384	U	ug/kg dw	1	0.768	0.384		08/17/2016 23:31	
SW846 8082A	Polychlorinated Biphenyls		Batch ID:		Prep Info:					
	2,4,5,6 Tetrachloro-m-xylene(surr)	155	S	%	1			60-140	08/11/2016 12:31	
	Decachlorobiphenyl(surr)	200	S	%	1			60-140	08/11/2016 12:31	
SW846 8082A	Polychlorinated Biphenyls		Batch ID: Q	b16081601	Prep Info:	PB160816	01 SW8	846 3570	08/08/2016 11:14	
	Total PCBs	< 2.56	U	ug/kg dw	1	5.12	2.56		08/11/2016 12:31	
SW846 8260C	Volatile Organic Compounds		Batch ID:		Prep Info:					
	1,2-Dichloroethane-d4(surr)	95.8		%	1			50-150	08/09/2016 15:53	EM
	4-Bromofluorobenzene(surr)	79.4		%	1			50-150	08/09/2016 15:53	EM
	Dibromofluoromethane(surr)	95.3		%	1			50-150	08/09/2016 15:53	EM
	Toluene-d8(surr)	95.7		%	1			50-150	08/09/2016 15:53	EM
SW846 8260C	Volatile Organic Compounds		Batch ID: Q	b16081706	Prep Info:					
	Ethylbenzene	< 2.50	U	ug/kg dw	1	5.00	2.50		08/09/2016 15:53	JM

Client Name: Llo	yd Engineering, Inc.	Attn: Marisa	Attn: Marisa Weber		
Project ID: Qu	intana Terminal Dock 1				
Job ID :	1608151	Sample Matrix:	Sediment		
Client Sample ID:	QI-16-03-S	Date Collected:	08/04/2016		
Job Sample ID:	1608151.18	Time Collected:	11:13		
Other Information:					

Test Method	Parameter	Result	Q	Units	DF	LRL	SDL	%Rec Ctrl Li	mit Date/Time Analyzed	Analyst
SW846 8260C	Volatile Organic Compounds		Batch ID: Q	b16081706	Prep Info:					
	Tetrachloroethylene	< 2.50	U	ug/kg dw	1	5.00	2.50		08/09/2016 15:53	JM
	Trichloroethylene	< 2.50	U	ug/kg dw	1	5.00	2.50		08/09/2016 15:53	JM
	xylenes (total)	< 2.50	U	ug/kg dw	1	5.00	2.50		08/09/2016 15:53	JM
SW846 8270D	Semivolatile Organic Compounds		Batch ID:		Prep Info:					
	2,4,6-Tribromophenol(surr)	125		%	1			60-140	08/16/2016 01:09	JLL
	2-Fluorobiphenyl(surr)	80.8		%	1			60-140	08/16/2016 01:09	JLL
	2-Fluorophenol(surr)	148	S	%	1			60-140	08/16/2016 01:09	JLL
	Nitrobenzene-d5(surr)	72.0		%	1			60-140	08/16/2016 01:09	JLL
	Phenol-d5(surr)	147	S	%	1			60-140	08/16/2016 01:09	JLL
	Terphenyl-d14(surr)	24.7	S	%	1			60-140	08/16/2016 01:09	JLL
SW846 8270D	Semivolatile Organic Compounds		Batch ID: Q	b16081603	Prep Info:	PB16081	603 SW	V846 3570	08/09/2016 10:03	
	1,2,4-Trichlorobenzene	< 3.20	U	ug/kg dw	1	6.40	3.20		08/16/2016 01:09	JLL
	1,2-Dichlorobenzene	< 3.20	U	ug/kg dw	1	6.40	3.20		08/16/2016 01:09	JLL
	1,2-Diphenylhydrazine as Azobenzene	< 3.20	U	ug/kg dw	1	6.40	3.20		08/16/2016 01:09	JLL
	1,3-Dichlorobenzene	< 3.20	U	ug/kg dw	1	6.40	3.20		08/16/2016 01:09	JLL
	1,4-Dichlorobenzene	< 3.20	U	ug/kg dw	1	6.40	3.20		08/16/2016 01:09	JLL
	2,4,6-Trichlorophenol	< 6.40	U	ug/kg dw	1	12.8	6.40		08/16/2016 01:09	JLL
	2,4-Dichlorophenol	< 6.40	U	ug/kg dw	1	12.8	6.40		08/16/2016 01:09	JLL
	2,4-Dimethylphenol	< 6.40	U	ug/kg dw	1	12.8	6.40		08/16/2016 01:09	JLL
	2,4-Dinitrophenol	< 102	U	ug/kg dw	1	205	102		08/16/2016 01:09	JLL

Client Name: Llo	oyd Engineering, Inc.	Attn: 1	Attn: Marisa Weber		
Project ID: Qu	uintana Terminal Dock 1				
Job ID :	1608151	Sample Mat	rix: Sediment		
Client Sample ID:	QI-16-03-S	Date Collect	ted: 08/04/2016		
Job Sample ID:	1608151.18	Time Collect	ted: 11:13		
Other Information:	:				

Test Method	Parameter	Result	Q	Units	DF	LRL	SDL	%Rec Ctrl Limit Date/Time Analyzed	Analyst
SW846 8270D	Semivolatile Organic Compounds		Batch ID:	Qb16081603	Prep Info:	PB160816	503 SW	846 3570 08/09/2016 10:03	
	2,4-Dinitrotoluene	< 3.20	U	ug/kg dw	1	6.40	3.20	08/16/2016 01:09	JLL
	2,6-Dinitrotoluene	< 3.20	U	ug/kg dw	1	6.40	3.20	08/16/2016 01:09	JLL
	2-Chloronaphthalene	< 3.20	U	ug/kg dw	1	6.40	3.20	08/16/2016 01:09	JLL
	2-Chlorophenol	< 6.40	U	ug/kg dw	1	12.8	6.40	08/16/2016 01:09	JLL
	2-Methylnaphthalene	< 3.20	U	ug/kg dw	1	6.40	3.20	08/16/2016 01:09	JLL
	2-Methylphenol	< 6.40	U	ug/kg dw	1	12.8	6.40	08/16/2016 01:09	JLL
	2-Nitrophenol	< 6.40	U	ug/kg dw	1	12.8	6.40	08/16/2016 01:09	JLL
	3,3-Dichlorobenzidine	< 3.20	U	ug/kg dw	1	6.40	3.20	08/16/2016 01:09	JLL
	4,6-Dinitro-2-methylphenol	< 25.6	U	ug/kg dw	1	51.2	25.6	08/16/2016 01:09	JLL
	4-Bromophenyl phenyl ether	< 3.20	U	ug/kg dw	1	6.40	3.20	08/16/2016 01:09	JLL
	4-Chloro-3-methylphenol	< 6.40	U	ug/kg dw	1	12.8	6.40	08/16/2016 01:09	JLL
	4-Chlorophenyl phenyl ether	< 3.20	U	ug/kg dw	1	6.40	3.20	08/16/2016 01:09	JLL
	4-Methylphenol	< 6.40	U	ug/kg dw	1	12.8	6.40	08/16/2016 01:09	JLL
	4-Nitrophenol	< 6.40	U	ug/kg dw	1	12.8	6.40	08/16/2016 01:09	JLL
	Acenaphthene	< 3.20	U	ug/kg dw	1	6.40	3.20	08/16/2016 01:09	JLL
	Acenaphthylene	< 3.20	U	ug/kg dw	1	6.40	3.20	08/16/2016 01:09	JLL
	Anthracene	< 3.20	U	ug/kg dw	1	6.40	3.20	08/16/2016 01:09	JLL
	Benzidine	< 3.20	U	ug/kg dw	1	6.40	3.20	08/16/2016 01:09	JLL
	Benzo(a)anthracene	< 3.20	U	ug/kg dw	1	6.40	3.20	08/16/2016 01:09	JLL
	Benzo(a)pyrene	< 3.20	U	ug/kg dw	1	6.40	3.20	08/16/2016 01:09	JLL
	Benzo(b)fluoranthene	< 3.20	U	ug/kg dw	1	6.40	3.20	08/16/2016 01:09	JLL

Client Name: Llo	byd Engineering, Inc.	Attn: Marisa Weber
Project ID: Qu	intana Terminal Dock 1	
Job ID :	1608151	Sample Matrix: Sediment
Client Sample ID:	QI-16-03-S	Date Collected: 08/04/2016
Job Sample ID:	1608151.18	Time Collected: 11:13
Other Information:		

Test Method	Parameter	Result	Q	Units	DF	LRL	SDL	%Rec Ctrl Limit Date/Time Analyzed	Analyst
SW846 8270D	Semivolatile Organic Compounds		Batch ID:	Qb16081603	Prep Info:	PB160816	503 SW	846 3570 08/09/2016 10:03	
	Benzo(g,h,i)perylene	< 3.20	U	ug/kg dw	1	6.40	3.20	08/16/2016 01:09	JLL
	Benzo(k)fluoranthene	< 3.20	U	ug/kg dw	1	6.40	3.20	08/16/2016 01:09	JLL
	Benzoic acid	< 3.20	U	ug/kg dw	1	6.40	3.20	08/16/2016 01:09	JLL
	Benzyl alcohol	< 3.20	U	ug/kg dw	1	6.40	3.20	08/16/2016 01:09	JLL
	Bis(2-chloroethoxy) methane	< 3.20	U	ug/kg dw	1	6.40	3.20	08/16/2016 01:09	JLL
	Bis(2-chloroethyl) ether	< 3.20	U	ug/kg dw	1	6.40	3.20	08/16/2016 01:09	JLL
	Bis(2-chloroisopropyl) ether	< 3.20	U	ug/kg dw	1	6.40	3.20	08/16/2016 01:09	JLL
	Bis(2-ethylhexyl)phthalate	< 3.20	U	ug/kg dw	1	6.40	3.20	08/16/2016 01:09	JLL
	Butyl benzyl phthalate	< 3.20	U	ug/kg dw	1	6.40	3.20	08/16/2016 01:09	JLL
	Chrysene	< 3.20	U	ug/kg dw	1	6.40	3.20	08/16/2016 01:09	JLL
	Dibenzo(a,h)anthracene	< 3.20	U	ug/kg dw	1	6.40	3.20	08/16/2016 01:09	JLL
	Dibenzofuran	< 3.20	U	ug/kg dw	1	6.40	3.20	08/16/2016 01:09	JLL
	Diethyl phthalate	< 3.20	U	ug/kg dw	1	6.40	3.20	08/16/2016 01:09	JLL
	Dimethyl phthalate	< 3.20	U	ug/kg dw	1	6.40	3.20	08/16/2016 01:09	JLL
	Di-n-butyl phthalate	< 3.20	U	ug/kg dw	1	6.40	3.20	08/16/2016 01:09	JLL
	Di-n-octyl Phthalate	< 3.20	U	ug/kg dw	1	6.40	3.20	08/16/2016 01:09	JLL
	Fluoranthene	< 3.20	U	ug/kg dw	1	6.40	3.20	08/16/2016 01:09	JLL
	Fluorene	< 3.20	U	ug/kg dw	1	6.40	3.20	08/16/2016 01:09	JLL
	Hexachlorobenzene	< 3.20	U	ug/kg dw	1	6.40	3.20	08/16/2016 01:09	JLL
	Hexachlorobutadiene	< 3.20	U	ug/kg dw	1	6.40	3.20	08/16/2016 01:09	JLL
	Hexachlorocyclopentadiene	< 3.20	U	ug/kg dw	1	6.40	3.20	08/16/2016 01:09	JLL

ient Name: Lloy	yd Engineering, Inc.	Attn: Marisa Weber
Project ID: Qui	intana Terminal Dock 1	
Job ID :	1608151	Sample Matrix: Sediment
Client Sample ID:	QI-16-03-S	Date Collected: 08/04/201
Job Sample ID:	1608151.18	Time Collected: 11:13
Other Information:		

Test Method	Parameter	Result	Q	Units	DF	LRL	SDL	%Rec Ctrl Li	mit Date/Time Analyzed	Analyst
SW846 8270D	Semivolatile Organic Compounds		Batch ID:	Qb16081603	Prep Info:	PB16081	503 SW	/846 3570	08/09/2016 10:03	
	Hexachloroethane	< 3.20	U	ug/kg dw	1	6.40	3.20		08/16/2016 01:09	JLL
	Indeno(1,2,3-cd)pyrene	< 3.20	U	ug/kg dw	1	6.40	3.20		08/16/2016 01:09	JLL
	Isophorone	< 3.20	U	ug/kg dw	1	6.40	3.20		08/16/2016 01:09	JLL
	Naphthalene	< 3.20	U	ug/kg dw	1	6.40	3.20		08/16/2016 01:09	JLL
	Nitrobenzene	< 3.20	U	ug/kg dw	1	6.40	3.20		08/16/2016 01:09	JLL
	n-Nitrosodimethylamine	< 3.20	U	ug/kg dw	1	6.40	3.20		08/16/2016 01:09	JLL
	n-nitroso-di-n-propylamine	< 3.20	U	ug/kg dw	1	6.40	3.20		08/16/2016 01:09	JLL
	n-Nitrosodiphenylamine	< 3.20	U	ug/kg dw	1	6.40	3.20		08/16/2016 01:09	JLL
	Pentachlorophenol	< 6.40	U	ug/kg dw	1	12.8	6.40		08/16/2016 01:09	JLL
	Phenanthrene	< 3.20	U	ug/kg dw	1	6.40	3.20		08/16/2016 01:09	JLL
	Phenol	< 6.40	U	ug/kg dw	1	12.8	6.40		08/16/2016 01:09	JLL
	Pyrene	< 3.20	U	ug/kg dw	1	6.40	3.20		08/16/2016 01:09	JLL
SW846 9014	Cyanide, Total		Batch ID:	Qb16081837	Prep Info: PB16081815 SW8		/846 9010C	08/12/2016 11:20	ARC	
	Cyanide, Total	< 0.64	U	mg/kg dw	1	1.28	0.64		08/12/2016 13:29	ARC
SW846 9060A	Total Organic Carbon		Batch ID:	Qb16081831	Prep Info:					
	Total Organic Carbon	2.27		%	1	0.130	0.064		08/16/2016 14:09	ARC
TCEQ 1005	Total Petroleum Hydrocarbons		Batch ID:		Prep Info:					
	1-Chlorooctadecane(surr)	80.6		%	1			70-130	08/11/2016 03:41	EM
	1-Chlorooctane(surr)	80.6		%	1			70-130	08/11/2016 03:41	EM
TCEQ 1005	Total Petroleum Hydrocarbons		Batch ID:	Qb16081707	Prep Info:	PB16081	704 TC	EQ 1005	08/16/2016 19:00	EM

Client Name: Lloy	d Engineering, Inc.	Attn: Marisa Weber
Project ID: Quir	ntana Terminal Dock 1	
Job ID :	1608151	Sample Matrix: Sediment
Client Sample ID:	QI-16-03-S	Date Collected: 08/04/2016
Job Sample ID:	1608151.18	Time Collected: 11:13
Other Information:		

Test Method	Parameter	Result	Q	Units	DF	LRL	SDL	%Rec Ctrl Limit Date/Time Analyze	d Analyst
TCEQ 1005	Total Petroleum Hydrocarbons		Batch ID: (2b16081707	Prep Info:	PB16081	704 TCE	EQ 1005 08/16/2016 19:00	EM
	TPH, C6-C35	< 25.6	U	mg/kg dw	1	128	25.6	08/11/2016 03:41	. EM

Client Name: Lloy	yd Engineering, Inc.	Attn: Marisa \	Attn: Marisa Weber				
Project ID: Qui	intana Terminal Dock 1						
Job ID :	1608151	Sample Matrix:	Sediment				
Client Sample ID:	QI-16-04-S	Date Collected:	08/04/2016				
Job Sample ID:	1608151.19	Time Collected:	10:58				
Other Information:							

Test Method	Parameter	Result	Q	Units	DF	LRL	SDL	%Rec Ctrl Limit Date/Time Analyzed	Analyst
Calculation	Chromium, Trivalent			Qb16090103	Prep Info:			· · ·	
	Trivalent Chromium	15.5		mg/kg dw	1	2.63	1.32	09/01/2016 11:10	MM
EPA 160.4	Volatile Solids, Total		Batch ID:	Qb16081829	Prep Info:				
	Volatile Solids	8.55		%	1	1.00	0.010	08/10/2016 18:22	ARC
EPA 200.8	Metals, Total		Batch ID:	Qb16083002	Prep Info:	PB160830	002 EPA 200	0.2 08/30/2016 09:48	CL
	Antimony	< 0.263	U	mg/kg	1	0.263	0.030	08/30/2016 23:22	CL
	Arsenic	6.64		mg/kg	1	0.132	0.0066	08/30/2016 23:22	CL
	Beryllium	0.919		mg/kg	1	0.053	0.011	08/30/2016 23:22	CL
	Cadmium	< 0.263	J	mg/kg	1	0.263	0.013	08/30/2016 23:22	CL
	Chromium	15.5		mg/kg	1	0.79	0.040	08/30/2016 23:22	CL
	Copper	15.0		mg/kg	1	0.263	0.045	08/30/2016 23:22	CL
	Lead	13.5		mg/kg	1	0.132	0.0066	08/30/2016 23:22	CL
	Nickel	17.4		mg/kg	1	0.263	0.013	08/30/2016 23:22	CL
	Selenium	2.49	В	mg/kg	1	0.527	0.110	08/30/2016 23:22	CL
	Silver	< 0.132	J	mg/kg	1	0.132	0.0066	08/30/2016 23:22	CL
	Thallium	< 0.132	J	mg/kg	1	0.132	0.005	08/30/2016 23:22	CL
	Zinc	55.6		mg/kg	1	0.527	0.030	08/30/2016 23:22	CL
EPA 350.2	Ammonia		Batch ID:	Qb16081833	Prep Info:				
	Ammonia as N	121	J	mg/kg dw	1	263	52.7	08/17/2016 16:00	ARC
SM 2540 G	Solids, Total		Batch ID:	Qb16081828	Prep Info:				
	% Solids	38.0		%	1	1.00	0.010	08/10/2016 18:22	ARC

Client Name: Llo	yd Engineering, Inc.	Attn: Marisa Weber
Project ID: Qui	intana Terminal Dock 1	
Job ID :	1608151	Sample Matrix: Sedi
Client Sample ID:	QI-16-04-S	Date Collected: 08/0
Job Sample ID:	1608151.19	Time Collected: 10:5
Other Information:		

Test Method	Parameter	Result	0	Units	DF	LRL	SDL	%Rec Ctrl Li	mit Date/Time Analyzed	Analyst
SW846 7196A	Chromium, Hexavalent		Batch ID: Q	b16081835	Prep Info:				. ,	,
	Chromium, Hexavalent	< 1.32	U	mg/kg	1	2.63	1.32		08/17/2016 16:20	ARC
SW846 7471B	Mercury, Total		Batch ID: Q	b16081903	Prep Info:	PB160819	03 SW	/846 7471B	08/18/2016 15:06	MBW
	Mercury	< 0.026	U	mg/kg dw	1	0.053	0.026		08/19/2016 08:28	MBW
SW846 8081B	Organochlorine Pesticides		Batch ID:		Prep Info:					
	2,4,5,6 Tetrachloro-m-xylene(surr)	53.2	S	%	1			60-140	08/17/2016 23:52	
	Decachlorobiphenyl(surr)	89.8		%	1			60-140	08/17/2016 23:52	
SW846 8081B	Organochlorine Pesticides		Batch ID: Q	b16081806	Prep Info:	PB160818	03 SW	/846 3570	08/12/2016 08:54	
	4,4-DDD	< 0.395	U	ug/kg dw	1	0.79	0.395		08/17/2016 23:52	
	4,4-DDE	< 0.395	U	ug/kg dw	1	0.79	0.395		08/17/2016 23:52	
	4,4-DDT	< 0.395	U	ug/kg dw	1	0.79	0.395		08/17/2016 23:52	
	a-BHC	< 0.395	U	ug/kg dw	1	0.79	0.395		08/17/2016 23:52	
	a-Chlordane	< 0.395	U	ug/kg dw	1	0.79	0.395		08/17/2016 23:52	
	Aldrin	< 0.395	U	ug/kg dw	1	0.79	0.395		08/17/2016 23:52	
	b-BHC	< 0.395	U	ug/kg dw	1	0.79	0.395		08/17/2016 23:52	
	Chlordane	< 0.395	U	ug/kg dw	1	0.79	0.395		08/17/2016 23:52	
	d-BHC	< 0.395	U	ug/kg dw	1	0.79	0.395		08/17/2016 23:52	
	Dieldrin	< 0.395	U	ug/kg dw	1	0.79	0.395		08/17/2016 23:52	
	Endosulfan I	< 0.395	U	ug/kg dw	1	0.79	0.395		08/17/2016 23:52	
	Endosulfan II	< 0.395	U	ug/kg dw	1	0.79	0.395		08/17/2016 23:52	
	Endosulfan sulfate	< 0.395	U	ug/kg dw	1	0.79	0.395		08/17/2016 23:52	

Client Name: Llo	rd Engineering, Inc.	At	Attn: Marisa Weber				
Project ID: Qu	ntana Terminal Dock 1						
Job ID :	1608151	Sam	ple Matrix:	Sediment			
Client Sample ID:	QI-16-04-S	Date	Collected:	08/04/2016			
Job Sample ID:	1608151.19	Time	Collected:	10:58			
Other Information:							

est Method	Parameter	Result	Q	Units	DF	LRL	SDL	%Rec Ctrl Li	mit Date/Time Analyzed	Analyst
N846 8081B	Organochlorine Pesticides		Batch ID: Qb	16081806	Prep Info:	PB160818	803 SW8	346 3570	08/12/2016 08:54	
	Endrin	< 0.395	U	ug/kg dw	1	0.79	0.395		08/17/2016 23:52	
	Endrin aldehyde	< 0.395	U	ug/kg dw	1	0.79	0.395		08/17/2016 23:52	
	Endrin ketone	< 0.395	U	ug/kg dw	1	0.79	0.395		08/17/2016 23:52	
	g-BHC	< 0.395	U	ug/kg dw	1	0.79	0.395		08/17/2016 23:52	
	Heptachlor	< 0.395	U	ug/kg dw	1	0.79	0.395		08/17/2016 23:52	
	Heptachlor epoxide	< 0.395	U	ug/kg dw	1	0.79	0.395		08/17/2016 23:52	
	Toxaphene	< 0.395	U	ug/kg dw	1	0.79	0.395		08/17/2016 23:52	
	y-Chlordane	< 0.395	U	ug/kg dw	1	0.79	0.395		08/17/2016 23:52	
W846 8082A	Polychlorinated Biphenyls		Batch ID:		Prep Info:					
	2,4,5,6 Tetrachloro-m-xylene(surr)	161	S	%	1			60-140	08/11/2016 12:52	
	Decachlorobiphenyl(surr)	197	S	%	1			60-140	08/11/2016 12:52	
W846 8082A	Polychlorinated Biphenyls		Batch ID: Qb16081601		Prep Info:	B16081601 SW84		346 3570	08/08/2016 11:14	
	Total PCBs	< 2.63	U	ug/kg dw	1	5.27	2.63		08/11/2016 12:52	
N846 8260C	Volatile Organic Compounds		Batch ID:		Prep Info:					
	1,2-Dichloroethane-d4(surr)	97.0		%	1			50-150	08/09/2016 16:23	EM
	4-Bromofluorobenzene(surr)	79.1		%	1			50-150	08/09/2016 16:23	EM
	Dibromofluoromethane(surr)	97.2		%	1			50-150	08/09/2016 16:23	EM
	Toluene-d8(surr)	95.8		%	1			50-150	08/09/2016 16:23	EM
W846 8260C	Volatile Organic Compounds		Batch ID: Qb16081706		Prep Info:					
	Ethylbenzene	< 2.50	U	ug/kg dw	1	5.00	2.50		08/09/2016 16:23	JM
V846 8260C	Volatile Organic Compounds		_	16081706	-	5.00	2.50	50-150		

Client Name: Llo	byd Engineering, Inc.	Attn: Marisa Weber
Project ID: Qu	uintana Terminal Dock 1	
Job ID :	1608151	Sample Matrix: Sediment
Client Sample ID:	QI-16-04-S	Date Collected: 08/04/2010
Job Sample ID:	1608151.19	Time Collected: 10:58
Other Information:		

Test Method	Parameter	Result	Q	Units	DF	LRL	SDL	%Rec Ctrl L	imit Date/Time Analyzed	Analyst
SW846 8260C	Volatile Organic Compounds		Batch ID: Q	016081706	Prep Info:					
	Tetrachloroethylene	< 2.50	U	ug/kg dw	1	5.00	2.50		08/09/2016 16:23	JM
	Trichloroethylene	< 2.50	U	ug/kg dw	1	5.00	2.50		08/09/2016 16:23	JM
	xylenes (total)	< 2.50	U	ug/kg dw	1	5.00	2.50		08/09/2016 16:23	JM
SW846 8270D	Semivolatile Organic Compounds		Batch ID:		Prep Info:					
	2,4,6-Tribromophenol(surr)	109		%	1			60-140	08/16/2016 02:53	JLL
	2-Fluorobiphenyl(surr)	104		%	1			60-140	08/16/2016 02:53	JLL
	2-Fluorophenol(surr)	169	S	%	1			60-140	08/16/2016 02:53	JLL
	Nitrobenzene-d5(surr)	92.0		%	1			60-140	08/16/2016 02:53	JLL
	Phenol-d5(surr)	144	S	%	1			60-140	08/16/2016 02:53	JLL
	Terphenyl-d14(surr)	21.4	S	%	1			60-140	08/16/2016 02:53	JLL
SW846 8270D	Semivolatile Organic Compounds		Batch ID: Q	016081603	Prep Info:	PB16081	503 SV	V846 3570	08/09/2016 10:03	
	1,2,4-Trichlorobenzene	< 3.29	U	ug/kg dw	1	6.59	3.29		08/16/2016 02:53	JLL
	1,2-Dichlorobenzene	< 3.29	U	ug/kg dw	1	6.59	3.29		08/16/2016 02:53	JLL
	1,2-Diphenylhydrazine as Azobenzene	< 3.29	U	ug/kg dw	1	6.59	3.29		08/16/2016 02:53	JLL
	1,3-Dichlorobenzene	< 3.29	U	ug/kg dw	1	6.59	3.29		08/16/2016 02:53	JLL
	1,4-Dichlorobenzene	< 3.29	U	ug/kg dw	1	6.59	3.29		08/16/2016 02:53	JLL
	2,4,6-Trichlorophenol	< 6.59	U	ug/kg dw	1	13.2	6.59		08/16/2016 02:53	JLL
	2,4-Dichlorophenol	< 6.59	U	ug/kg dw	1	13.2	6.59		08/16/2016 02:53	JLL
	2,4-Dimethylphenol	< 6.59	U	ug/kg dw	1	13.2	6.59		08/16/2016 02:53	JLL
	2,4-Dinitrophenol	< 105	U	ug/kg dw	1	211	105		08/16/2016 02:53	JLL

Client Name: Llo	/d Engineering, Inc.	Attn: Marisa	Attn: Marisa Weber			
Project ID: Qu	ntana Terminal Dock 1					
Job ID :	1608151	Sample Matrix:	Sediment			
Client Sample ID:	QI-16-04-S	Date Collected:	08/04/2016			
Job Sample ID:	1608151.19	Time Collected:	10:58			
Other Information:						

Test Method	Parameter	Result	Q	Units	DF	LRL	SDL	%Rec Ctrl Limit Date/Time Analyzed	Analyst
SW846 8270D	Semivolatile Organic Compounds		Batch ID:	Qb16081603	Prep Info:	PB160816	503 SW	846 3570 08/09/2016 10:03	
	2,4-Dinitrotoluene	< 3.29	U	ug/kg dw	1	6.59	3.29	08/16/2016 02:53	JLL
	2,6-Dinitrotoluene	< 3.29	U	ug/kg dw	1	6.59	3.29	08/16/2016 02:53	JLL
	2-Chloronaphthalene	< 3.29	U	ug/kg dw	1	6.59	3.29	08/16/2016 02:53	JLL
	2-Chlorophenol	< 6.59	U	ug/kg dw	1	13.2	6.59	08/16/2016 02:53	JLL
	2-Methylnaphthalene	< 3.29	U	ug/kg dw	1	6.59	3.29	08/16/2016 02:53	JLL
	2-Methylphenol	< 6.59	U	ug/kg dw	1	13.2	6.59	08/16/2016 02:53	JLL
	2-Nitrophenol	< 6.59	U	ug/kg dw	1	13.2	6.59	08/16/2016 02:53	JLL
	3,3-Dichlorobenzidine	< 3.29	U	ug/kg dw	1	6.59	3.29	08/16/2016 02:53	JLL
	4,6-Dinitro-2-methylphenol	< 26.3	U	ug/kg dw	1	52.7	26.3	08/16/2016 02:53	JLL
	4-Bromophenyl phenyl ether	< 3.29	U	ug/kg dw	1	6.59	3.29	08/16/2016 02:53	JLL
	4-Chloro-3-methylphenol	< 6.59	U	ug/kg dw	1	13.2	6.59	08/16/2016 02:53	JLL
	4-Chlorophenyl phenyl ether	< 3.29	U	ug/kg dw	1	6.59	3.29	08/16/2016 02:53	JLL
	4-Methylphenol	< 6.59	U	ug/kg dw	1	13.2	6.59	08/16/2016 02:53	JLL
	4-Nitrophenol	< 6.59	U	ug/kg dw	1	13.2	6.59	08/16/2016 02:53	JLL
	Acenaphthene	< 3.29	U	ug/kg dw	1	6.59	3.29	08/16/2016 02:53	JLL
	Acenaphthylene	< 3.29	U	ug/kg dw	1	6.59	3.29	08/16/2016 02:53	JLL
	Anthracene	< 3.29	U	ug/kg dw	1	6.59	3.29	08/16/2016 02:53	JLL
	Benzidine	< 3.29	U	ug/kg dw	1	6.59	3.29	08/16/2016 02:53	JLL
	Benzo(a)anthracene	< 3.29	U	ug/kg dw	1	6.59	3.29	08/16/2016 02:53	JLL
	Benzo(a)pyrene	< 3.29	U	ug/kg dw	1	6.59	3.29	08/16/2016 02:53	JLL
	Benzo(b)fluoranthene	< 3.29	U	ug/kg dw	1	6.59	3.29	08/16/2016 02:53	JLL

Client Name: Llo	oyd Engineering, Inc.		Attn: Marisa V	Veber
Project ID: Qu	uintana Terminal Dock 1			
Job ID :	1608151		Sample Matrix:	Sediment
Client Sample ID:	QI-16-04-S		Date Collected:	08/04/2016
Job Sample ID:	1608151.19		Time Collected:	10:58
Other Information:	:			

Test Method	Parameter	Result	Q	Units	DF	LRL	SDL	%Rec Ctrl Limit Date/Time Analyzed	Analyst
SW846 8270D	Semivolatile Organic Compounds		Batch ID:	Qb16081603	Prep Info:	PB16081	503 SW8	846 3570 08/09/2016 10:03	
	Benzo(g,h,i)perylene	< 3.29	U	ug/kg dw	1	6.59	3.29	08/16/2016 02:53	JLL
	Benzo(k)fluoranthene	< 3.29	U	ug/kg dw	1	6.59	3.29	08/16/2016 02:53	JLL
	Benzoic acid	< 3.29	U	ug/kg dw	1	6.59	3.29	08/16/2016 02:53	JLL
	Benzyl alcohol	< 3.29	U	ug/kg dw	1	6.59	3.29	08/16/2016 02:53	JLL
	Bis(2-chloroethoxy) methane	< 3.29	U	ug/kg dw	1	6.59	3.29	08/16/2016 02:53	JLL
	Bis(2-chloroethyl) ether	< 3.29	U	ug/kg dw	1	6.59	3.29	08/16/2016 02:53	JLL
	Bis(2-chloroisopropyl) ether	< 3.29	U	ug/kg dw	1	6.59	3.29	08/16/2016 02:53	JLL
	Bis(2-ethylhexyl)phthalate	< 3.29	U	ug/kg dw	1	6.59	3.29	08/16/2016 02:53	JLL
	Butyl benzyl phthalate	< 3.29	U	ug/kg dw	1	6.59	3.29	08/16/2016 02:53	JLL
	Chrysene	< 3.29	U	ug/kg dw	1	6.59	3.29	08/16/2016 02:53	JLL
	Dibenzo(a,h)anthracene	< 3.29	U	ug/kg dw	1	6.59	3.29	08/16/2016 02:53	JLL
	Dibenzofuran	< 3.29	U	ug/kg dw	1	6.59	3.29	08/16/2016 02:53	JLL
	Diethyl phthalate	< 3.29	U	ug/kg dw	1	6.59	3.29	08/16/2016 02:53	JLL
	Dimethyl phthalate	< 3.29	U	ug/kg dw	1	6.59	3.29	08/16/2016 02:53	JLL
	Di-n-butyl phthalate	< 3.29	U	ug/kg dw	1	6.59	3.29	08/16/2016 02:53	JLL
	Di-n-octyl Phthalate	< 3.29	U	ug/kg dw	1	6.59	3.29	08/16/2016 02:53	JLL
	Fluoranthene	< 3.29	U	ug/kg dw	1	6.59	3.29	08/16/2016 02:53	JLL
	Fluorene	< 3.29	U	ug/kg dw	1	6.59	3.29	08/16/2016 02:53	JLL
	Hexachlorobenzene	< 3.29	U	ug/kg dw	1	6.59	3.29	08/16/2016 02:53	JLL
	Hexachlorobutadiene	< 3.29	U	ug/kg dw	1	6.59	3.29	08/16/2016 02:53	JLL
	Hexachlorocyclopentadiene	< 3.29	U	ug/kg dw	1	6.59	3.29	08/16/2016 02:53	JLL

Client Name: Llo	yd Engineering, Inc.	Attn: Marisa Weber
Project ID: Qu	intana Terminal Dock 1	
Job ID :	1608151	Sample Matrix: Sediment
Client Sample ID:	QI-16-04-S	Date Collected: 08/04/201
Job Sample ID:	1608151.19	Time Collected: 10:58
Other Information:		

Test Method	Parameter	Result	Q	Units	DF	LRL	SDL	%Rec Ctrl Li	mit Date/Time Analyzed	Analyst
SW846 8270D	Semivolatile Organic Compounds		Batch ID:	2b16081603	Prep Info:	PB160816	03 SW	/846 3570	08/09/2016 10:03	
	Hexachloroethane	< 3.29	U	ug/kg dw	1	6.59	3.29		08/16/2016 02:53	JLL
	Indeno(1,2,3-cd)pyrene	< 3.29	U	ug/kg dw	1	6.59	3.29		08/16/2016 02:53	JLL
	Isophorone	< 3.29	U	ug/kg dw	1	6.59	3.29		08/16/2016 02:53	JLL
	Naphthalene	< 3.29	U	ug/kg dw	1	6.59	3.29		08/16/2016 02:53	JLL
	Nitrobenzene	< 3.29	U	ug/kg dw	1	6.59	3.29		08/16/2016 02:53	JLL
	n-Nitrosodimethylamine	< 3.29	U	ug/kg dw	1	6.59	3.29		08/16/2016 02:53	JLL
	n-nitroso-di-n-propylamine	< 3.29	U	ug/kg dw	1	6.59	3.29		08/16/2016 02:53	JLL
	n-Nitrosodiphenylamine	< 3.29	U	ug/kg dw	1	6.59	3.29		08/16/2016 02:53	JLL
	Pentachlorophenol	< 6.59	U	ug/kg dw	1	13.2	6.59		08/16/2016 02:53	JLL
	Phenanthrene	< 3.29	U	ug/kg dw	1	6.59	3.29		08/16/2016 02:53	JLL
	Phenol	< 6.59	U	ug/kg dw	1	13.2	6.59		08/16/2016 02:53	JLL
	Pyrene	< 3.29	U	ug/kg dw	1	6.59	3.29		08/16/2016 02:53	JLL
SW846 9014	Cyanide, Total		Batch ID:	b16081837	Prep Info:	PB160818	15 SW	/846 9010C	08/12/2016 11:20	ARC
	Cyanide, Total	< 0.66	U	mg/kg dw	1	1.32	0.66		08/12/2016 13:29	ARC
SW846 9060A	Total Organic Carbon		Batch ID:	2b16081831	Prep Info:					
	Total Organic Carbon	1.83		%	1	0.130	0.066		08/16/2016 14:09	ARC
TCEQ 1005	Total Petroleum Hydrocarbons		Batch ID:		Prep Info:					
	1-Chlorooctadecane(surr)	79.6		%	1			70-130	08/18/2016 07:07	EM
	1-Chlorooctane(surr)	91.0		%	1			70-130	08/18/2016 07:07	EM
TCEQ 1005	Total Petroleum Hydrocarbons		Batch ID: (2b16081709	Prep Info:	PB160817	'06 TC	EQ 1005	08/17/2016 13:00	EM

Client Name: Lloy	d Engineering, Inc.	Attn: Marisa Weber
Project ID: Quir	ntana Terminal Dock 1	
Job ID :	1608151	Sample Matrix: Sediment
Client Sample ID:	QI-16-04-S	Date Collected: 08/04/2016
Job Sample ID:	1608151.19	Time Collected: 10:58
Other Information:		

Test Method	Parameter	Result	Q	Units	DF	LRL	SDL	%Rec Ctrl Limit Date/Time Analyzed	Analyst
TCEQ 1005	Total Petroleum Hydrocarbons		Batch ID: (Qb16081709	Prep Info:	PB16081	706 TCE	Q 1005 08/17/2016 13:00	EM
	ТРН, С6-С35	< 26.3	U	mg/kg dw	1	132	26.3	08/18/2016 07:07	EM

Client Name: Lloy	yd Engineering, Inc.		Attn: Marisa V	Attn: Marisa Weber			
Project ID: Qui	intana Terminal Dock 1						
Job ID :	1608151		Sample Matrix:	Sediment			
Client Sample ID:	QI-16-05-S		Date Collected:	08/04/2016			
Job Sample ID:	1608151.20		Time Collected:	12:43			
Other Information:							

Test Method	Parameter	Result	Q	Units	DF	LRL	SDL	%Rec Ctrl Limit Date/Time Analyzed	Analyst
Calculation	Chromium, Trivalent			Qb16090103	Prep Info:			· · ·	,
	Trivalent Chromium	15.6		mg/kg dw	1	2.89	1.45	09/01/2016 11:10	MM
EPA 160.4	Volatile Solids, Total		Batch ID:	Qb16081829	Prep Info:				
	Volatile Solids	10.0		%	1	1.00	0.010	08/10/2016 18:22	ARC
EPA 200.8	Metals, Total		Batch ID:	Qb16083002	Prep Info:	PB160830	002 EPA 200	.2 08/30/2016 09:48	CL
	Antimony	< 0.289	U	mg/kg	1	0.289	0.030	08/30/2016 23:28	CL
	Arsenic	6.50		mg/kg	1	0.145	0.0072	08/30/2016 23:28	CL
	Beryllium	0.914		mg/kg	1	0.058	0.012	08/30/2016 23:28	CL
	Cadmium	< 0.289	J	mg/kg	1	0.289	0.014	08/30/2016 23:28	CL
	Chromium	15.6		mg/kg	1	0.867	0.043	08/30/2016 23:28	CL
	Copper	14.2		mg/kg	1	0.289	0.049	08/30/2016 23:28	CL
	Lead	13.5		mg/kg	1	0.145	0.0072	08/30/2016 23:28	CL
	Nickel	18.1		mg/kg	1	0.289	0.014	08/30/2016 23:28	CL
	Selenium	2.78	В	mg/kg	1	0.578	0.120	08/30/2016 23:28	CL
	Silver	< 0.145	J	mg/kg	1	0.145	0.0072	08/30/2016 23:28	CL
	Thallium	< 0.145	J	mg/kg	1	0.145	0.006	08/30/2016 23:28	CL
	Zinc	50.6		mg/kg	1	0.578	0.030	08/30/2016 23:28	CL
EPA 350.2	Ammonia		Batch ID:	Qb16081833	Prep Info:				
	Ammonia as N	171	J	mg/kg dw	1	289	57.8	08/17/2016 16:00	ARC
SM 2540 G	Solids, Total		Batch ID:	Qb16081828	Prep Info:				
	% Solids	34.6		%	1	1.00	0.010	08/10/2016 18:22	ARC

nt Name: Lloy	yd Engineering, Inc.			Attn: Marisa Weber			
roject ID: Qui	intana Terminal Dock 1						
Job ID :	1608151			Sample Matrix:	Sediment		
Client Sample ID:	QI-16-05-S			Date Collected:	08/04/201		
Job Sample ID:	1608151.20			Time Collected:	12:43		
Other Information:							

Test Method	Parameter	Result	Q	Units	DF	LRL	SDL	%Rec Ctrl Li	mit Date/Time Analyzed	Analyst
SW846 7196A	Chromium, Hexavalent		Batch ID: Q	b16081835	Prep Info:					
	Chromium, Hexavalent	< 1.45	U	mg/kg	1	2.89	1.45		08/17/2016 16:20	ARC
SW846 7471B	Mercury, Total		Batch ID: Q	b16081903	Prep Info:	PB160819	903 SW	/846 7471B	08/18/2016 15:06	MBW
	Mercury	< 0.029	U	mg/kg dw	1	0.058	0.029		08/19/2016 08:28	MBW
SW846 8081B	Organochlorine Pesticides		Batch ID:		Prep Info:					
	2,4,5,6 Tetrachloro-m-xylene(surr)	67.8		%	1			60-140	08/18/2016 00:14	
	Decachlorobiphenyl(surr)	102		%	1			60-140	08/18/2016 00:14	
SW846 8081B	Organochlorine Pesticides		Batch ID: Q	b16081806	Prep Info:	PB160818	303 SW	/846 3570	08/12/2016 08:54	
	4,4-DDD	< 0.434	U	ug/kg dw	1	0.867	0.434		08/18/2016 00:14	
	4,4-DDE	< 0.434	U	ug/kg dw	1	0.867	0.434		08/18/2016 00:14	
	4,4-DDT	< 0.434	U	ug/kg dw	1	0.867	0.434		08/18/2016 00:14	
	a-BHC	< 0.434	U	ug/kg dw	1	0.867	0.434		08/18/2016 00:14	
	a-Chlordane	< 0.434	U	ug/kg dw	1	0.867	0.434		08/18/2016 00:14	
	Aldrin	< 0.434	U	ug/kg dw	1	0.867	0.434		08/18/2016 00:14	
	b-BHC	< 0.434	U	ug/kg dw	1	0.867	0.434		08/18/2016 00:14	
	Chlordane	< 0.434	U	ug/kg dw	1	0.867	0.434		08/18/2016 00:14	
	d-BHC	< 0.434	U	ug/kg dw	1	0.867	0.434		08/18/2016 00:14	
	Dieldrin	< 0.434	U	ug/kg dw	1	0.867	0.434		08/18/2016 00:14	
	Endosulfan I	< 0.434	U	ug/kg dw	1	0.867	0.434		08/18/2016 00:14	
	Endosulfan II	< 0.434	U	ug/kg dw	1	0.867	0.434		08/18/2016 00:14	
	Endosulfan sulfate	< 0.434	U	ug/kg dw	1	0.867	0.434		08/18/2016 00:14	

Client Name: Llo	byd Engineering, Inc.	Attn: Marisa Weber
Project ID: Qu	iintana Terminal Dock 1	
Job ID :	1608151	Sample Matrix: Sediment
Client Sample ID:	QI-16-05-S	Date Collected: 08/04/2016
Job Sample ID:	1608151.20	Time Collected: 12:43
Other Information:		

Test Method	Parameter	Result	Q	Units	DF	LRL	SDL	%Rec Ctrl Li	mit Date/Time Analyzed	Analyst
SW846 8081B	Organochlorine Pesticides		Batch ID: Q	b16081806	Prep Info:	PB160818	03 SW	846 3570	08/12/2016 08:54	
	Endrin	< 0.434	U	ug/kg dw	1	0.867	0.434		08/18/2016 00:14	
	Endrin aldehyde	< 0.434	U	ug/kg dw	1	0.867	0.434		08/18/2016 00:14	
	Endrin ketone	< 0.434	U	ug/kg dw	1	0.867	0.434		08/18/2016 00:14	
	g-BHC	< 0.434	U	ug/kg dw	1	0.867	0.434		08/18/2016 00:14	
	Heptachlor	< 0.434	U	ug/kg dw	1	0.867	0.434		08/18/2016 00:14	
	Heptachlor epoxide	< 0.434	U	ug/kg dw	1	0.867	0.434		08/18/2016 00:14	
	Toxaphene	< 0.434	U	ug/kg dw	1	0.867	0.434		08/18/2016 00:14	
	y-Chlordane	< 0.434	U	ug/kg dw	1	0.867	0.434		08/18/2016 00:14	
SW846 8082A	Polychlorinated Biphenyls		Batch ID:		Prep Info:					
	2,4,5,6 Tetrachloro-m-xylene(surr)	182	S	%	1			60-140	08/11/2016 13:13	
	Decachlorobiphenyl(surr)	212	S	%	1			60-140	08/11/2016 13:13	
SW846 8082A	Polychlorinated Biphenyls		Batch ID: Q	b16081601	Prep Info:	PB160816	01 SW	846 3570	08/08/2016 11:14	
	Total PCBs	< 2.89	U	ug/kg dw	1	5.78	2.89		08/11/2016 13:13	
SW846 8260C	Volatile Organic Compounds		Batch ID:		Prep Info:					
	1,2-Dichloroethane-d4(surr)	95.0		%	1			50-150	08/09/2016 16:53	EM
	4-Bromofluorobenzene(surr)	77.6		%	1			50-150	08/09/2016 16:53	EM
	Dibromofluoromethane(surr)	93.9		%	1			50-150	08/09/2016 16:53	EM
	Toluene-d8(surr)	99.2		%	1			50-150	08/09/2016 16:53	EM
SW846 8260C	Volatile Organic Compounds		Batch ID: Q	b16081706	Prep Info:					
	Ethylbenzene	< 2.50	U	ug/kg dw	1	5.00	2.50		08/09/2016 16:53	JM

Client Name: Llo	/d Engineering, Inc.	Attn:	Attn: Marisa Weber			
Project ID: Qu	ntana Terminal Dock 1					
Job ID :	1608151	Sample M	Aatrix: Sediment			
Client Sample ID:	QI-16-05-S	Date Coll	ected: 08/04/2016			
Job Sample ID:	1608151.20	Time Coll	lected: 12:43			
Other Information:						

Test Method	Parameter	Result	Q	Units	DF	LRL	SDL	%Rec Ctrl Li	mit Date/Time Analyzed	Analyst
SW846 8260C	Volatile Organic Compounds		Batch ID: Q	016081706	Prep Info:					
	Tetrachloroethylene	< 2.50	U	ug/kg dw	1	5.00	2.50		08/09/2016 16:53	JM
	Trichloroethylene	< 2.50	U	ug/kg dw	1	5.00	2.50		08/09/2016 16:53	JM
	xylenes (total)	< 2.50	U	ug/kg dw	1	5.00	2.50		08/09/2016 16:53	JM
SW846 8270D	Semivolatile Organic Compounds		Batch ID:		Prep Info:					
	2,4,6-Tribromophenol(surr)	126		%	1			60-140	08/16/2016 03:27	JLL
	2-Fluorobiphenyl(surr)	105		%	1			60-140	08/16/2016 03:27	JLL
	2-Fluorophenol(surr)	191	S	%	1			60-140	08/16/2016 03:27	JLL
	Nitrobenzene-d5(surr)	85.9		%	1			60-140	08/16/2016 03:27	JLL
	Phenol-d5(surr)	174	S	%	1			60-140	08/16/2016 03:27	JLL
	Terphenyl-d14(surr)	28.7	S	%	1			60-140	08/16/2016 03:27	JLL
SW846 8270D	Semivolatile Organic Compounds		Batch ID: Q	016081603	Prep Info:	PB16081	603 SV	V846 3570	08/09/2016 10:03	
	1,2,4-Trichlorobenzene	< 3.61	U	ug/kg dw	1	7.23	3.61		08/16/2016 03:27	JLL
	1,2-Dichlorobenzene	< 3.61	U	ug/kg dw	1	7.23	3.61		08/16/2016 03:27	JLL
	1,2-Diphenylhydrazine as Azobenzene	< 3.61	U	ug/kg dw	1	7.23	3.61		08/16/2016 03:27	JLL
	1,3-Dichlorobenzene	< 3.61	U	ug/kg dw	1	7.23	3.61		08/16/2016 03:27	JLL
	1,4-Dichlorobenzene	< 3.61	U	ug/kg dw	1	7.23	3.61		08/16/2016 03:27	JLL
	2,4,6-Trichlorophenol	< 7.23	U	ug/kg dw	1	14.5	7.23		08/16/2016 03:27	JLL
	2,4-Dichlorophenol	< 7.23	U	ug/kg dw	1	14.5	7.23		08/16/2016 03:27	JLL
	2,4-Dimethylphenol	< 7.23	U	ug/kg dw	1	14.5	7.23		08/16/2016 03:27	JLL
	2,4-Dinitrophenol	< 116	U	ug/kg dw	1	231	116		08/16/2016 03:27	JLL

Client Name: Llo	/d Engineering, Inc.	Attn: Marisa Weber			
Project ID: Qu	ntana Terminal Dock 1				
Job ID :	1608151	Sample Matrix:	Sediment		
Client Sample ID:	QI-16-05-S	Date Collected:	08/04/2016		
Job Sample ID:	1608151.20	Time Collected:	12:43		
Other Information:					

Test Method	Parameter	Result	Q	Units	DF	LRL	SDL	%Rec Ctrl Limit Date/Time Analyzed	Analyst
SW846 8270D	Semivolatile Organic Compounds		Batch ID:	Qb16081603	Prep Info: PB16081603 9		503 SW	846 3570 08/09/2016 10:03	
	2,4-Dinitrotoluene	< 3.61	U	ug/kg dw	1	7.23	3.61	08/16/2016 03:27	JLL
	2,6-Dinitrotoluene	< 3.61	U	ug/kg dw	1	7.23	3.61	08/16/2016 03:27	JLL
	2-Chloronaphthalene	< 3.61	U	ug/kg dw	1	7.23	3.61	08/16/2016 03:27	JLL
	2-Chlorophenol	< 7.23	U	ug/kg dw	1	14.5	7.23	08/16/2016 03:27	JLL
	2-Methylnaphthalene	< 3.61	U	ug/kg dw	1	7.23	3.61	08/16/2016 03:27	JLL
	2-Methylphenol	< 7.23	U	ug/kg dw	1	14.5	7.23	08/16/2016 03:27	JLL
	2-Nitrophenol	< 7.23	U	ug/kg dw	1	14.5	7.23	08/16/2016 03:27	JLL
	3,3-Dichlorobenzidine	< 3.61	U	ug/kg dw	1	7.23	3.61	08/16/2016 03:27	JLL
	4,6-Dinitro-2-methylphenol	< 28.9	U	ug/kg dw	1	57.8	28.9	08/16/2016 03:27	JLL
	4-Bromophenyl phenyl ether	< 3.61	U	ug/kg dw	1	7.23	3.61	08/16/2016 03:27	JLL
	4-Chloro-3-methylphenol	< 7.23	U	ug/kg dw	1	14.5	7.23	08/16/2016 03:27	JLL
	4-Chlorophenyl phenyl ether	< 3.61	U	ug/kg dw	1	7.23	3.61	08/16/2016 03:27	JLL
	4-Methylphenol	< 7.23	U	ug/kg dw	1	14.5	7.23	08/16/2016 03:27	JLL
	4-Nitrophenol	< 7.23	U	ug/kg dw	1	14.5	7.23	08/16/2016 03:27	JLL
	Acenaphthene	< 3.61	U	ug/kg dw	1	7.23	3.61	08/16/2016 03:27	JLL
	Acenaphthylene	< 3.61	U	ug/kg dw	1	7.23	3.61	08/16/2016 03:27	JLL
	Anthracene	< 3.61	U	ug/kg dw	1	7.23	3.61	08/16/2016 03:27	JLL
	Benzidine	< 3.61	U	ug/kg dw	1	7.23	3.61	08/16/2016 03:27	JLL
	Benzo(a)anthracene	< 3.61	U	ug/kg dw	1	7.23	3.61	08/16/2016 03:27	JLL
	Benzo(a)pyrene	< 3.61	U	ug/kg dw	1	7.23	3.61	08/16/2016 03:27	JLL
	Benzo(b)fluoranthene	< 3.61	U	ug/kg dw	1	7.23	3.61	08/16/2016 03:27	JLL

Client Name: Llo	oyd Engineering, Inc.	Attn	Attn: Marisa Weber			
Project ID: Qu	uintana Terminal Dock 1					
Job ID :	1608151	Sample	Matrix: Sediment			
Client Sample ID:	QI-16-05-S	Date Co	ollected: 08/04/2016			
Job Sample ID:	1608151.20	Time Co	ollected: 12:43			
Other Information	:					

Test Method	Parameter	Result	Q	Units	DF	LRL	SDL	%Rec Ctrl Limit Date/Time Analyzed	Analyst
SW846 8270D	Semivolatile Organic Compounds		Batch ID:	Qb16081603	Prep Info:	PB160816	503 SW	846 3570 08/09/2016 10:03	
	Benzo(g,h,i)perylene	< 3.61	U	ug/kg dw	1	7.23	3.61	08/16/2016 03:27	JLL
	Benzo(k)fluoranthene	< 3.61	U	ug/kg dw	1	7.23	3.61	08/16/2016 03:27	JLL
	Benzoic acid	< 3.61	U	ug/kg dw	1	7.23	3.61	08/16/2016 03:27	JLL
	Benzyl alcohol	< 3.61	U	ug/kg dw	1	7.23	3.61	08/16/2016 03:27	JLL
	Bis(2-chloroethoxy) methane	< 3.61	U	ug/kg dw	1	7.23	3.61	08/16/2016 03:27	JLL
	Bis(2-chloroethyl) ether	< 3.61	U	ug/kg dw	1	7.23	3.61	08/16/2016 03:27	JLL
	Bis(2-chloroisopropyl) ether	< 3.61	U	ug/kg dw	1	7.23	3.61	08/16/2016 03:27	JLL
	Bis(2-ethylhexyl)phthalate	< 3.61	U	ug/kg dw	1	7.23	3.61	08/16/2016 03:27	JLL
	Butyl benzyl phthalate	< 3.61	U	ug/kg dw	1	7.23	3.61	08/16/2016 03:27	JLL
	Chrysene	< 3.61	U	ug/kg dw	1	7.23	3.61	08/16/2016 03:27	JLL
	Dibenzo(a,h)anthracene	< 3.61	U	ug/kg dw	1	7.23	3.61	08/16/2016 03:27	JLL
	Dibenzofuran	< 3.61	U	ug/kg dw	1	7.23	3.61	08/16/2016 03:27	JLL
	Diethyl phthalate	< 3.61	U	ug/kg dw	1	7.23	3.61	08/16/2016 03:27	JLL
	Dimethyl phthalate	< 3.61	U	ug/kg dw	1	7.23	3.61	08/16/2016 03:27	JLL
	Di-n-butyl phthalate	< 3.61	U	ug/kg dw	1	7.23	3.61	08/16/2016 03:27	JLL
	Di-n-octyl Phthalate	< 3.61	U	ug/kg dw	1	7.23	3.61	08/16/2016 03:27	JLL
	Fluoranthene	< 3.61	U	ug/kg dw	1	7.23	3.61	08/16/2016 03:27	JLL
	Fluorene	< 3.61	U	ug/kg dw	1	7.23	3.61	08/16/2016 03:27	JLL
	Hexachlorobenzene	< 3.61	U	ug/kg dw	1	7.23	3.61	08/16/2016 03:27	JLL
	Hexachlorobutadiene	< 3.61	U	ug/kg dw	1	7.23	3.61	08/16/2016 03:27	JLL
	Hexachlorocyclopentadiene	< 3.61	U	ug/kg dw	1	7.23	3.61	08/16/2016 03:27	JLL

Client Name: Llo	/d Engineering, Inc.	Attn: Marisa We	Attn: Marisa Weber			
Project ID: Qu	ntana Terminal Dock 1					
Job ID :	1608151	Sample Matrix:	Sediment			
Client Sample ID:	QI-16-05-S	Date Collected:	08/04/2016			
Job Sample ID:	1608151.20	Time Collected:	12:43			
Other Information:						

Test Method	Parameter	Result	Q	Units	DF	LRL	SDL	%Rec Ctrl Li	mit Date/Time Analyzed	Analyst
SW846 8270D	Semivolatile Organic Compounds		Batch ID:	Qb16081603	Prep Info:	PB160816	503 SW	/846 3570	08/09/2016 10:03	
	Hexachloroethane	< 3.61	U	ug/kg dw	1	7.23	3.61		08/16/2016 03:27	JLL
	Indeno(1,2,3-cd)pyrene	< 3.61	U	ug/kg dw	1	7.23	3.61		08/16/2016 03:27	JLL
	Isophorone	< 3.61	U	ug/kg dw	1	7.23	3.61		08/16/2016 03:27	JLL
	Naphthalene	< 3.61	U	ug/kg dw	1	7.23	3.61		08/16/2016 03:27	JLL
	Nitrobenzene	< 3.61	U	ug/kg dw	1	7.23	3.61		08/16/2016 03:27	JLL
	n-Nitrosodimethylamine	< 3.61	U	ug/kg dw	1	7.23	3.61		08/16/2016 03:27	JLL
	n-nitroso-di-n-propylamine	< 3.61	U	ug/kg dw	1	7.23	3.61		08/16/2016 03:27	JLL
	n-Nitrosodiphenylamine	< 3.61	U	ug/kg dw	1	7.23	3.61		08/16/2016 03:27	JLL
	Pentachlorophenol	< 7.23	U	ug/kg dw	1	14.5	7.23		08/16/2016 03:27	JLL
	Phenanthrene	< 3.61	U	ug/kg dw	1	7.23	3.61		08/16/2016 03:27	JLL
	Phenol	< 7.23	U	ug/kg dw	1	14.5	7.23		08/16/2016 03:27	JLL
	Pyrene	< 3.61	U	ug/kg dw	1	7.23	3.61		08/16/2016 03:27	JLL
SW846 9014	Cyanide, Total		Batch ID:	Qb16081837	Prep Info:	PB160818	315 SW	/846 9010C	08/12/2016 11:20	ARC
	Cyanide, Total	< 0.72	U	mg/kg dw	1	1.45	0.72		08/12/2016 13:29	ARC
SW846 9060A	Total Organic Carbon		Batch ID:	Qb16081831	Prep Info:					
	Total Organic Carbon	1.80		%	1	0.140	0.072		08/16/2016 14:09	ARC
TCEQ 1005	Total Petroleum Hydrocarbons		Batch ID:		Prep Info:					
	1-Chlorooctadecane(surr)	84.7		%	1			70-130	08/18/2016 07:39	EM
	1-Chlorooctane(surr)	89.5		%	1			70-130	08/18/2016 07:39	EM
TCEQ 1005	Total Petroleum Hydrocarbons		Batch ID:	Qb16081709	Prep Info:	PB160817	706 TC	EQ 1005	08/17/2016 13:00	EM

d Engineering, Inc.	Attn: Marisa Weber
ntana Terminal Dock 1	
1608151	Sample Matrix: Sediment
QI-16-05-S	Date Collected: 08/04/2016
1608151.20	Time Collected: 12:43
	ntana Terminal Dock 1 1608151 QI-16-05-S

Test Method	Parameter	Result	Q	Units	DF	LRL	SDL	%Rec Ctrl Limit Date/Time Analyzed	Analyst
TCEQ 1005	Total Petroleum Hydrocarbons		Batch ID: (2b16081709	Prep Info:	PB16081	706 TCE	Q 1005 08/17/2016 13:00	EM
	ТРН, С6-С35	< 28.9	U	mg/kg dw	1	145	28.9	08/18/2016 07:39	EM

Client Name: Lloy	yd Engineering, Inc.	Attn: Mar	Attn: Marisa Weber			
Project ID: Qui	intana Terminal Dock 1					
Job ID :	1608151	Sample Matrix:	Sediment			
Client Sample ID:	QI-16-06-S	Date Collected	08/04/2016			
Job Sample ID:	1608151.21	Time Collected	09:41			
Other Information:						

Test Method	Parameter	Result	Q	Units	DF	LRL	SDL	%Rec Ctrl Limit Date/Time Analyzed	Analyst
Calculation	Chromium, Trivalent		Batch ID:	Qb16090103	Prep Info:				
	Trivalent Chromium	15.7		mg/kg dw	1	2.83	1.42	09/01/2016 11:10	MM
EPA 160.4	Volatile Solids, Total		Batch ID:	Qb16081829	Prep Info:				
	Volatile Solids	8.31		%	1	1.00	0.010	08/10/2016 18:22	ARC
EPA 200.8	Metals, Total		Batch ID:	Qb16083002	Prep Info:	PB160830	002 EPA 200	.2 08/30/2016 09:48	CL
	Antimony	< 0.283	U	mg/kg	1	0.283	0.030	08/30/2016 23:34	CL
	Arsenic	6.38		mg/kg	1	0.142	0.0071	08/30/2016 23:34	CL
	Beryllium	0.924		mg/kg	1	0.057	0.011	08/30/2016 23:34	CL
	Cadmium	< 0.283	J	mg/kg	1	0.283	0.014	08/30/2016 23:34	CL
	Chromium	15.7		mg/kg	1	0.85	0.043	08/30/2016 23:34	CL
	Copper	14.3		mg/kg	1	0.283	0.048	08/30/2016 23:34	CL
	Lead	13.8		mg/kg	1	0.142	0.0071	08/30/2016 23:34	CL
	Nickel	17.9		mg/kg	1	0.283	0.014	08/30/2016 23:34	CL
	Selenium	2.57	В	mg/kg	1	0.567	0.110	08/30/2016 23:34	CL
	Silver	< 0.142	J	mg/kg	1	0.142	0.0071	08/30/2016 23:34	CL
	Thallium	< 0.142	J	mg/kg	1	0.142	0.006	08/30/2016 23:34	CL
	Zinc	55.0		mg/kg	1	0.567	0.030	08/30/2016 23:34	CL
EPA 350.2	Ammonia		Batch ID:	Qb16081833	Prep Info:				
	Ammonia as N	184	J	mg/kg dw	1	283	56.7	08/17/2016 16:00	ARC
SM 2540 G	Solids, Total		Batch ID:	Qb16081828	Prep Info:				
	% Solids	35.3		%	1	1.00	0.010	08/10/2016 18:22	ARC

nt Name: Lloy	Name: Lloyd Engineering, Inc.				Attn: Marisa Weber				
Project ID: Qui	intana Terminal Dock 1								
Job ID :	1608151					Sample Matrix:	Sediment		
Client Sample ID:	QI-16-06-S					Date Collected:	08/04/20		
Job Sample ID:	1608151.21					Time Collected:	09:41		
Other Information:									

Test Method	Parameter	Result	Q	Units	DF	LRL	SDL	%Rec Ctrl Li	mit Date/Time Analyzed	Analyst
SW846 7196A	Chromium, Hexavalent		Batch ID: Q	b16081835	Prep Info:					
	Chromium, Hexavalent	< 1.42	U	mg/kg	1	2.83	1.42		08/17/2016 16:20	ARC
SW846 7471B	Mercury, Total		Batch ID: Q	b16081903	Prep Info:	PB160819	03 SW	/846 7471B	08/18/2016 15:06	MBW
	Mercury	0.028	J	mg/kg dw	1	0.057	0.028		08/19/2016 08:28	MBW
SW846 8081B	Organochlorine Pesticides		Batch ID:		Prep Info:					
	2,4,5,6 Tetrachloro-m-xylene(surr)	72.2		%	1			60-140	08/18/2016 00:35	
	Decachlorobiphenyl(surr)	96.5		%	1			60-140	08/18/2016 00:35	
SW846 8081B	Organochlorine Pesticides		Batch ID: Q	b16081806	Prep Info:	PB160818	03 SW	/846 3570	08/12/2016 08:54	
	4,4-DDD	< 0.425	U	ug/kg dw	1	0.85	0.425		08/18/2016 00:35	
	4,4-DDE	< 0.425	U	ug/kg dw	1	0.85	0.425		08/18/2016 00:35	
	4,4-DDT	< 0.425	U	ug/kg dw	1	0.85	0.425		08/18/2016 00:35	
	a-BHC	< 0.425	U	ug/kg dw	1	0.85	0.425		08/18/2016 00:35	
	a-Chlordane	< 0.425	U	ug/kg dw	1	0.85	0.425		08/18/2016 00:35	
	Aldrin	< 0.425	U	ug/kg dw	1	0.85	0.425		08/18/2016 00:35	
	b-BHC	< 0.425	U	ug/kg dw	1	0.85	0.425		08/18/2016 00:35	
	Chlordane	< 0.425	U	ug/kg dw	1	0.85	0.425		08/18/2016 00:35	
	d-BHC	< 0.425	U	ug/kg dw	1	0.85	0.425		08/18/2016 00:35	
	Dieldrin	< 0.425	U	ug/kg dw	1	0.85	0.425		08/18/2016 00:35	
	Endosulfan I	< 0.425	U	ug/kg dw	1	0.85	0.425		08/18/2016 00:35	
	Endosulfan II	< 0.425	U	ug/kg dw	1	0.85	0.425		08/18/2016 00:35	
	Endosulfan sulfate	< 0.425	U	ug/kg dw	1	0.85	0.425		08/18/2016 00:35	

Client Name: Llo	byd Engineering, Inc.	Attn: Marisa Weber
Project ID: Qu	uintana Terminal Dock 1	
Job ID :	1608151	Sample Matrix: Sediment
Client Sample ID:	QI-16-06-S	Date Collected: 08/04/2016
Job Sample ID:	1608151.21	Time Collected: 09:41
Other Information		

Test Method	Parameter	Result	Q	Units	DF	LRL	SDL	%Rec Ctrl Li	mit Date/Time Analyzed	Analyst
SW846 8081B	Organochlorine Pesticides		Batch ID:	Qb16081806	Prep Info:	PB160818	803 SW	846 3570	08/12/2016 08:54	
	Endrin	< 0.425	U	ug/kg dw	1	0.85	0.425		08/18/2016 00:35	
	Endrin aldehyde	< 0.425	U	ug/kg dw	1	0.85	0.425		08/18/2016 00:35	
	Endrin ketone	< 0.425	U	ug/kg dw	1	0.85	0.425		08/18/2016 00:35	
	g-BHC	< 0.425	U	ug/kg dw	1	0.85	0.425		08/18/2016 00:35	
	Heptachlor	< 0.425	U	ug/kg dw	1	0.85	0.425		08/18/2016 00:35	
	Heptachlor epoxide	< 0.425	U	ug/kg dw	1	0.85	0.425		08/18/2016 00:35	
	Toxaphene	< 0.425	U	ug/kg dw	1	0.85	0.425		08/18/2016 00:35	
	y-Chlordane	< 0.425	U	ug/kg dw	1	0.85	0.425		08/18/2016 00:35	
SW846 8082A	Polychlorinated Biphenyls		Batch ID:		Prep Info:					
	2,4,5,6 Tetrachloro-m-xylene(surr)	163	S	%	1			60-140	08/11/2016 13:34	
	Decachlorobiphenyl(surr)	195	S	%	1			60-140	08/11/2016 13:34	
SW846 8082A	Polychlorinated Biphenyls		Batch ID:	Qb16081601	Prep Info:	PB16081601 SW8		846 3570	08/08/2016 11:14	
	Total PCBs	< 2.83	U	ug/kg dw	1	5.67	2.83		08/11/2016 13:34	
SW846 8260C	Volatile Organic Compounds		Batch ID:		Prep Info:					
	1,2-Dichloroethane-d4(surr)	96.2		%	1			50-150	08/09/2016 17:22	EM
	4-Bromofluorobenzene(surr)	77.4		%	1			50-150	08/09/2016 17:22	EM
	Dibromofluoromethane(surr)	94.5		%	1			50-150	08/09/2016 17:22	EM
	Toluene-d8(surr)	95.6		%	1			50-150	08/09/2016 17:22	EM
SW846 8260C	Volatile Organic Compounds		Batch ID:	Qb16081706	Prep Info:					
	Ethylbenzene	< 2.50	U	ug/kg dw	1	5.00	2.50		08/09/2016 17:22	JM

Client Name: Llo	yd Engineering, Inc.	Attn: Marisa Weber
Project ID: Qu	intana Terminal Dock 1	
Job ID :	1608151	Sample Matrix: Sediment
Client Sample ID:	QI-16-06-S	Date Collected: 08/04/201
Job Sample ID:	1608151.21	Time Collected: 09:41
Other Information:		

Test Method	Parameter	Result	Q	Units	DF	LRL	SDL	%Rec Ctrl Li	mit Date/Time Analyzed	Analyst
SW846 8260C	Volatile Organic Compounds		Batch ID: Q	b16081706	Prep Info:					
	Tetrachloroethylene	< 2.50	U	ug/kg dw	1	5.00	2.50		08/09/2016 17:22	JM
	Trichloroethylene	< 2.50	U	ug/kg dw	1	5.00	2.50		08/09/2016 17:22	JM
	xylenes (total)	< 2.50	U	ug/kg dw	1	5.00	2.50		08/09/2016 17:22	JM
SW846 8270D	Semivolatile Organic Compounds		Batch ID:		Prep Info:					
	2,4,6-Tribromophenol(surr)	134		%	1			60-140	08/16/2016 04:02	JLL
	2-Fluorobiphenyl(surr)	92.2		%	1			60-140	08/16/2016 04:02	JLL
	2-Fluorophenol(surr)	200	S	%	1			60-140	08/16/2016 04:02	JLL
	Nitrobenzene-d5(surr)	94.0		%	1			60-140	08/16/2016 04:02	JLL
	Phenol-d5(surr)	189	S	%	1			60-140	08/16/2016 04:02	JLL
	Terphenyl-d14(surr)	23.7	S	%	1			60-140	08/16/2016 04:02	JLL
SW846 8270D	Semivolatile Organic Compounds		Batch ID: Q	b16081603	Prep Info:	PB16081	603 SV	V846 3570	08/09/2016 10:03	
	1,2,4-Trichlorobenzene	< 3.54	U	ug/kg dw	1	7.09	3.54		08/16/2016 04:02	JLL
	1,2-Dichlorobenzene	< 3.54	U	ug/kg dw	1	7.09	3.54		08/16/2016 04:02	JLL
	1,2-Diphenylhydrazine as Azobenzene	< 3.54	U	ug/kg dw	1	7.09	3.54		08/16/2016 04:02	JLL
	1,3-Dichlorobenzene	< 3.54	U	ug/kg dw	1	7.09	3.54		08/16/2016 04:02	JLL
	1,4-Dichlorobenzene	< 3.54	U	ug/kg dw	1	7.09	3.54		08/16/2016 04:02	JLL
	2,4,6-Trichlorophenol	< 7.09	U	ug/kg dw	1	14.2	7.09		08/16/2016 04:02	JLL
	2,4-Dichlorophenol	< 7.09	U	ug/kg dw	1	14.2	7.09		08/16/2016 04:02	JLL
	2,4-Dimethylphenol	< 7.09	U	ug/kg dw	1	14.2	7.09		08/16/2016 04:02	JLL
	2,4-Dinitrophenol	< 113	U	ug/kg dw	1	227	113		08/16/2016 04:02	JLL

Client Name: Llo	yd Engineering, Inc.	Attn: Marisa	Attn: Marisa Weber			
Project ID: Qu	intana Terminal Dock 1					
Job ID :	1608151	Sample Matrix:	Sediment			
Client Sample ID:	QI-16-06-S	Date Collected:	08/04/2016			
Job Sample ID:	1608151.21	Time Collected:	09:41			
Other Information:						

Test Method	Parameter	Result	Q	Units	DF	LRL	SDL	%Rec Ctrl Limit Date/Time Analyzed	Analyst
SW846 8270D	Semivolatile Organic Compounds		Batch ID:	Qb16081603	Prep Info	: PB16081	603 SW8	846 3570 08/09/2016 10:03	
	2,4-Dinitrotoluene	< 3.54	U	ug/kg dw	1	7.09	3.54	08/16/2016 04:02	JLL
	2,6-Dinitrotoluene	< 3.54	U	ug/kg dw	1	7.09	3.54	08/16/2016 04:02	JLL
	2-Chloronaphthalene	< 3.54	U	ug/kg dw	1	7.09	3.54	08/16/2016 04:02	JLL
	2-Chlorophenol	< 7.09	U	ug/kg dw	1	14.2	7.09	08/16/2016 04:02	JLL
	2-Methylnaphthalene	< 3.54	U	ug/kg dw	1	7.09	3.54	08/16/2016 04:02	JLL
	2-Methylphenol	< 7.09	U	ug/kg dw	1	14.2	7.09	08/16/2016 04:02	JLL
	2-Nitrophenol	< 7.09	U	ug/kg dw	1	14.2	7.09	08/16/2016 04:02	JLL
	3,3-Dichlorobenzidine	< 3.54	U	ug/kg dw	1	7.09	3.54	08/16/2016 04:02	JLL
	4,6-Dinitro-2-methylphenol	< 28.3	U	ug/kg dw	1	56.7	28.3	08/16/2016 04:02	JLL
	4-Bromophenyl phenyl ether	< 3.54	U	ug/kg dw	1	7.09	3.54	08/16/2016 04:02	JLL
	4-Chloro-3-methylphenol	< 7.09	U	ug/kg dw	1	14.2	7.09	08/16/2016 04:02	JLL
	4-Chlorophenyl phenyl ether	< 3.54	U	ug/kg dw	1	7.09	3.54	08/16/2016 04:02	JLL
	4-Methylphenol	< 7.09	U	ug/kg dw	1	14.2	7.09	08/16/2016 04:02	JLL
	4-Nitrophenol	< 7.09	U	ug/kg dw	1	14.2	7.09	08/16/2016 04:02	JLL
	Acenaphthene	< 3.54	U	ug/kg dw	1	7.09	3.54	08/16/2016 04:02	JLL
	Acenaphthylene	< 3.54	U	ug/kg dw	1	7.09	3.54	08/16/2016 04:02	JLL
	Anthracene	< 3.54	U	ug/kg dw	1	7.09	3.54	08/16/2016 04:02	JLL
	Benzidine	< 3.54	U	ug/kg dw	1	7.09	3.54	08/16/2016 04:02	JLL
	Benzo(a)anthracene	< 3.54	U	ug/kg dw	1	7.09	3.54	08/16/2016 04:02	JLL
	Benzo(a)pyrene	< 3.54	U	ug/kg dw	1	7.09	3.54	08/16/2016 04:02	JLL
	Benzo(b)fluoranthene	< 3.54	U	ug/kg dw	1	7.09	3.54	08/16/2016 04:02	JLL

Client Name: Llo	yd Engineering, Inc.		Attn: Marisa W	eber
Project ID: Qu	intana Terminal Dock 1			
Job ID :	1608151	S	Sample Matrix:	Sediment
Client Sample ID:	QI-16-06-S	D	Date Collected:	08/04/2016
Job Sample ID:	1608151.21	Т	ime Collected:	09:41
Other Information:				

Test Method	Parameter	Result	Q	Units	DF	LRL	SDL	%Rec Ctrl Limit Date/Time Analyzed	Analyst
SW846 8270D	Semivolatile Organic Compounds		Batch ID:	Qb16081603	Prep Info	: PB16081	603 SW	846 3570 08/09/2016 10:03	
	Benzo(g,h,i)perylene	< 3.54	U	ug/kg dw	1	7.09	3.54	08/16/2016 04:02	JLL
	Benzo(k)fluoranthene	< 3.54	U	ug/kg dw	1	7.09	3.54	08/16/2016 04:02	JLL
	Benzoic acid	< 3.54	U	ug/kg dw	1	7.09	3.54	08/16/2016 04:02	JLL
	Benzyl alcohol	< 3.54	U	ug/kg dw	1	7.09	3.54	08/16/2016 04:02	JLL
	Bis(2-chloroethoxy) methane	< 3.54	U	ug/kg dw	1	7.09	3.54	08/16/2016 04:02	JLL
	Bis(2-chloroethyl) ether	< 3.54	U	ug/kg dw	1	7.09	3.54	08/16/2016 04:02	JLL
	Bis(2-chloroisopropyl) ether	< 3.54	U	ug/kg dw	1	7.09	3.54	08/16/2016 04:02	JLL
	Bis(2-ethylhexyl)phthalate	< 3.54	U	ug/kg dw	1	7.09	3.54	08/16/2016 04:02	JLL
	Butyl benzyl phthalate	< 3.54	U	ug/kg dw	1	7.09	3.54	08/16/2016 04:02	JLL
	Chrysene	< 3.54	U	ug/kg dw	1	7.09	3.54	08/16/2016 04:02	JLL
	Dibenzo(a,h)anthracene	< 3.54	U	ug/kg dw	1	7.09	3.54	08/16/2016 04:02	JLL
	Dibenzofuran	< 3.54	U	ug/kg dw	1	7.09	3.54	08/16/2016 04:02	JLL
	Diethyl phthalate	< 3.54	U	ug/kg dw	1	7.09	3.54	08/16/2016 04:02	JLL
	Dimethyl phthalate	< 3.54	U	ug/kg dw	1	7.09	3.54	08/16/2016 04:02	JLL
	Di-n-butyl phthalate	< 3.54	U	ug/kg dw	1	7.09	3.54	08/16/2016 04:02	JLL
	Di-n-octyl Phthalate	< 3.54	U	ug/kg dw	1	7.09	3.54	08/16/2016 04:02	JLL
	Fluoranthene	< 3.54	U	ug/kg dw	1	7.09	3.54	08/16/2016 04:02	JLL
	Fluorene	< 3.54	U	ug/kg dw	1	7.09	3.54	08/16/2016 04:02	JLL
	Hexachlorobenzene	< 3.54	U	ug/kg dw	1	7.09	3.54	08/16/2016 04:02	JLL
	Hexachlorobutadiene	< 3.54	U	ug/kg dw	1	7.09	3.54	08/16/2016 04:02	JLL
	Hexachlorocyclopentadiene	< 3.54	U	ug/kg dw	1	7.09	3.54	08/16/2016 04:02	JLL

Client Name: Llo	/d Engineering, Inc.	Attn: Marisa Weber
Project ID: Qu	ntana Terminal Dock 1	
Job ID :	1608151	Sample Matrix: Sediment
Client Sample ID:	QI-16-06-S	Date Collected: 08/04/2016
Job Sample ID:	1608151.21	Time Collected: 09:41
Other Information:		

Test Method	Parameter	Result	Q	Units	DF	LRL	SDL	%Rec Ctrl Lir	mit Date/Time Analyzed	Analyst
SW846 8270D	Semivolatile Organic Compounds		Batch ID:	Qb16081603	Prep Info:	PB160816	503 SV	V846 3570	08/09/2016 10:03	
	Hexachloroethane	< 3.54	U	ug/kg dw	1	7.09	3.54		08/16/2016 04:02	JLL
	Indeno(1,2,3-cd)pyrene	< 3.54	U	ug/kg dw	1	7.09	3.54		08/16/2016 04:02	JLL
	Isophorone	< 3.54	U	ug/kg dw	1	7.09	3.54		08/16/2016 04:02	JLL
	Naphthalene	< 3.54	U	ug/kg dw	1	7.09	3.54		08/16/2016 04:02	JLL
	Nitrobenzene	< 3.54	U	ug/kg dw	1	7.09	3.54		08/16/2016 04:02	JLL
	n-Nitrosodimethylamine	< 3.54	U	ug/kg dw	1	7.09	3.54		08/16/2016 04:02	JLL
	n-nitroso-di-n-propylamine	< 3.54	U	ug/kg dw	1	7.09	3.54		08/16/2016 04:02	JLL
	n-Nitrosodiphenylamine	< 3.54	U	ug/kg dw	1	7.09	3.54		08/16/2016 04:02	JLL
	Pentachlorophenol	< 7.09	U	ug/kg dw	1	14.2	7.09		08/16/2016 04:02	JLL
	Phenanthrene	< 3.54	U	ug/kg dw	1	7.09	3.54		08/16/2016 04:02	JLL
	Phenol	< 7.09	U	ug/kg dw	1	14.2	7.09		08/16/2016 04:02	JLL
	Pyrene	< 3.54	U	ug/kg dw	1	7.09	3.54		08/16/2016 04:02	JLL
SW846 9014	Cyanide, Total		Batch ID:	Qb16081837	Prep Info:	PB160818	815 SV	V846 9010C	08/12/2016 11:20	ARC
	Cyanide, Total	< 0.71	U	mg/kg dw	1	1.42	0.71		08/12/2016 13:29	ARC
SW846 9060A	Total Organic Carbon		Batch ID:	Qb16081831	Prep Info:					
	Total Organic Carbon	2.73		%	1	0.140	0.071		08/16/2016 14:09	ARC
TCEQ 1005	Total Petroleum Hydrocarbons		Batch ID:		Prep Info:					
	1-Chlorooctadecane(surr)	82.3		%	1			70-130	08/18/2016 08:10	EM
	1-Chlorooctane(surr)	85.0		%	1			70-130	08/18/2016 08:10	EM
TCEQ 1005	Total Petroleum Hydrocarbons		Batch ID:	Qb16081709	Prep Info:	PB160817	706 TC	EQ 1005	08/17/2016 13:00	EM

d Engineering, Inc.	Attn: Marisa Weber							
tana Terminal Dock 1								
1608151	Sample Matrix: Sediment							
QI-16-06-S	Date Collected: 08/04/2016							
1608151.21	Time Collected: 09:41							
ľ	tana Terminal Dock 1 1608151 QI-16-06-S							

Test Method	Parameter	Result	Q	Units	DF	LRL	SDL	%Rec Ctrl Limit Date/Time Analyzed	Analyst
TCEQ 1005	Total Petroleum Hydrocarbons		Batch ID:	Qb16081709	Prep Info:	PB16081	706 TCE	Q 1005 08/17/2016 13:00	EM
	TPH, C6-C35	< 28.3	U	mg/kg dw	1	142	28.3	08/18/2016 08:10	EM

Client Name: Llo	oyd Engineering, Inc.	Attn: Marisa Wel	Attn: Marisa Weber			
Project ID: Qu	uintana Terminal Dock 1					
Job ID :	1608151	Sample Matrix:	Sediment			
Client Sample ID:	QI-16-07-S	Date Collected:	08/04/2016			
Job Sample ID:	1608151.22	Time Collected:	10:40			
Other Information:	:					

Test Method	Parameter	Result	Q	Units	DF	LRL	SDL	%Rec Ctrl Limit Date/Time Analyzed	Analyst
Calculation	Chromium, Trivalent		Batch ID:	Qb16090103	Prep Info:				
	Trivalent Chromium	15.1		mg/kg dw	1	2.68	1.34	09/01/2016 11:10	MM
EPA 160.4	Volatile Solids, Total		Batch ID:	Batch ID: Qb16081829 Pi					
	Volatile Solids	7.89		%	1	1.00	0.010	08/10/2016 18:22	ARC
EPA 200.8	Metals, Total		Batch ID:	Qb16083002	Prep Info:	PB160830	002 EPA 200	0.2 08/30/2016 09:48	CL
	Antimony	< 0.268	U	mg/kg	1	0.268	0.030	08/30/2016 23:40	CL
	Arsenic	6.40		mg/kg	1	0.134	0.0067	08/30/2016 23:40	CL
	Beryllium	0.943		mg/kg	1	0.054	0.011	08/30/2016 23:40	CL
	Cadmium	< 0.268	J	mg/kg	1	0.268	0.013	08/30/2016 23:40	CL
	Chromium	15.1		mg/kg	1	0.804	0.040	08/30/2016 23:40	CL
	Copper	14.0		mg/kg	1	0.268	0.046	08/30/2016 23:40	CL
	Lead	13.6		mg/kg	1	0.134	0.0067	08/30/2016 23:40	CL
	Nickel	17.1		mg/kg	1	0.268	0.013	08/30/2016 23:40	CL
	Selenium	2.81	В	mg/kg	1	0.536	0.110	08/30/2016 23:40	CL
	Silver	< 0.134	J	mg/kg	1	0.134	0.0067	08/30/2016 23:40	CL
	Thallium	< 0.134	J	mg/kg	1	0.134	0.005	08/30/2016 23:40	CL
	Zinc	53.8		mg/kg	1	0.536	0.030	08/30/2016 23:40	CL
EPA 350.2	Ammonia		Batch ID:	Qb16081833	Prep Info:				
	Ammonia as N	209	J	mg/kg dw	1	268	53.6	08/17/2016 16:00	ARC
SM 2540 G	Solids, Total		Batch ID:	Qb16081828	Prep Info:				
	% Solids	37.3		%	1	1.00	0.010	08/10/2016 18:22	ARC

Client Name: Lloy	loyd Engineering, Inc. Attn: Marisa Weber					
Project ID: Qui	ntana Terminal Dock 1					
	_					
Job ID :	1608151		Sample I	Matrix: Sediment		
Client Sample ID:	QI-16-07-S		Date Col	lected: 08/04/2016		
Job Sample ID:	1608151.22		Time Col	llected: 10:40		
Other Information:						

Task Mathaal	Developmentary	Decili	0	11.2.	DE		CDI		with Data /Time Analysis	A
Test Method	Parameter	Result	Q	Units	DF	LRL	SDL	%Rec Ctri Li	mit Date/Time Analyzed	Analyst
SW846 7196A	Chromium, Hexavalent		Batch ID: Q	b16081835	Prep Info:					
	Chromium, Hexavalent	< 1.34	U	mg/kg	1	2.68	1.34		08/17/2016 16:20	ARC
SW846 7471B	Mercury, Total		Batch ID: Q	b16081903	Prep Info:	PB160819	03 SW	/846 7471B	08/18/2016 15:06	MBW
	Mercury	< 0.027	U	mg/kg dw	1	0.054	0.027		08/19/2016 08:28	MBW
SW846 8081B	Organochlorine Pesticides		Batch ID:		Prep Info:					
	2,4,5,6 Tetrachloro-m-xylene(surr)	60.5		%	1			60-140	08/18/2016 00:57	
	Decachlorobiphenyl(surr)	95.7		%	1			60-140	08/18/2016 00:57	
SW846 8081B	Organochlorine Pesticides		Batch ID: Q	b16081806	Prep Info:	PB160818	03 SW	/846 3570	08/12/2016 08:54	
	4,4-DDD	< 0.402	U	ug/kg dw	1	0.804	0.402		08/18/2016 00:57	
	4,4-DDE	< 0.402	U	ug/kg dw	1	0.804	0.402		08/18/2016 00:57	
	4,4-DDT	< 0.402	U	ug/kg dw	1	0.804	0.402		08/18/2016 00:57	
	a-BHC	< 0.402	U	ug/kg dw	1	0.804	0.402		08/18/2016 00:57	
	a-Chlordane	< 0.402	U	ug/kg dw	1	0.804	0.402		08/18/2016 00:57	
	Aldrin	< 0.402	U	ug/kg dw	1	0.804	0.402		08/18/2016 00:57	
	b-BHC	< 0.402	U	ug/kg dw	1	0.804	0.402		08/18/2016 00:57	
	Chlordane	< 0.402	U	ug/kg dw	1	0.804	0.402		08/18/2016 00:57	
	d-BHC	< 0.402	U	ug/kg dw	1	0.804	0.402		08/18/2016 00:57	
	Dieldrin	< 0.402	U	ug/kg dw	1	0.804	0.402		08/18/2016 00:57	
	Endosulfan I	< 0.402	U	ug/kg dw	1	0.804	0.402		08/18/2016 00:57	
	Endosulfan II	< 0.402	U	ug/kg dw	1	0.804	0.402		08/18/2016 00:57	
	Endosulfan sulfate	< 0.402	U	ug/kg dw	1	0.804	0.402		08/18/2016 00:57	

Client Name: Llo	yd Engineering, Inc.	Attn: Marisa Webe	Attn: Marisa Weber				
Project ID: Qu	intana Terminal Dock 1						
Job ID :	1608151	Sample Matrix: Se	ediment				
Client Sample ID:	QI-16-07-S	Date Collected: 08	3/04/2016				
Job Sample ID:	1608151.22	Time Collected: 10):40				
Other Information:							

Test Method	Parameter	Result	Q	Units	DF	LRL	SDL	%Rec Ctrl Li	mit Date/Time Analyzed	Analyst
SW846 8081B	Organochlorine Pesticides		Batch ID:	Qb16081806	Prep Info:	PB160818	803 SW	846 3570	08/12/2016 08:54	
	Endrin	< 0.402	U	ug/kg dw	1	0.804	0.402		08/18/2016 00:57	
	Endrin aldehyde	< 0.402	U	ug/kg dw	1	0.804	0.402		08/18/2016 00:57	
	Endrin ketone	< 0.402	U	ug/kg dw	1	0.804	0.402		08/18/2016 00:57	
	g-BHC	< 0.402	U	ug/kg dw	1	0.804	0.402		08/18/2016 00:57	
	Heptachlor	< 0.402	U	ug/kg dw	1	0.804	0.402		08/18/2016 00:57	
	Heptachlor epoxide	< 0.402	U	ug/kg dw	1	0.804	0.402		08/18/2016 00:57	
	Toxaphene	< 0.402	U	ug/kg dw	1	0.804	0.402		08/18/2016 00:57	
	y-Chlordane	< 0.402	U	ug/kg dw	1	0.804	0.402		08/18/2016 00:57	
SW846 8082A	Polychlorinated Biphenyls		Batch ID:		Prep Info:					
	2,4,5,6 Tetrachloro-m-xylene(surr)	188	S	%	1			60-140	08/11/2016 13:56	
	Decachlorobiphenyl(surr)	215	S	%	1			60-140	08/11/2016 13:56	
SW846 8082A	Polychlorinated Biphenyls		Batch ID:	Qb16081601	Prep Info:	PB160816	01 SW	846 3570	08/08/2016 11:14	
	Total PCBs	< 2.68	U	ug/kg dw	1	5.36	2.68		08/11/2016 13:56	
SW846 8260C	Volatile Organic Compounds		Batch ID:		Prep Info:					
	1,2-Dichloroethane-d4(surr)	94.6		%	1			50-150	08/09/2016 17:52	EM
	4-Bromofluorobenzene(surr)	78.4		%	1			50-150	08/09/2016 17:52	EM
	Dibromofluoromethane(surr)	91.9		%	1			50-150	08/09/2016 17:52	EM
	Toluene-d8(surr)	93.9		%	1			50-150	08/09/2016 17:52	EM
SW846 8260C	Volatile Organic Compounds		Batch ID:	Qb16081706	Prep Info:					
	Ethylbenzene	< 2.50	U	ug/kg dw	1	5.00	2.50		08/09/2016 17:52	JM

Client Name: Llo	yd Engineering, Inc.	Attn: Marisa Weber
Project ID: Qu	intana Terminal Dock 1	
Job ID :	1608151	Sample Matrix: Sedimer
Client Sample ID:	QI-16-07-S	Date Collected: 08/04/20
Job Sample ID:	1608151.22	Time Collected: 10:40
Other Information:		

Test Method	Parameter	Result	Q	Units	DF	LRL	SDL	%Rec Ctrl Li	mit Date/Time Analyzed	Analyst
SW846 8260C	Volatile Organic Compounds		Batch ID: Q	016081706	Prep Info:					
	Tetrachloroethylene	< 2.50	U	ug/kg dw	1	5.00	2.50		08/09/2016 17:52	JM
	Trichloroethylene	< 2.50	U	ug/kg dw	1	5.00	2.50		08/09/2016 17:52	JM
	xylenes (total)	< 2.50	U	ug/kg dw	1	5.00	2.50		08/09/2016 17:52	JM
SW846 8270D	Semivolatile Organic Compounds		Batch ID:		Prep Info:					
	2,4,6-Tribromophenol(surr)	100		%	1			60-140	08/16/2016 04:37	JLL
	2-Fluorobiphenyl(surr)	79.1		%	1			60-140	08/16/2016 04:37	JLL
	2-Fluorophenol(surr)	145	S	%	1			60-140	08/16/2016 04:37	JLL
	Nitrobenzene-d5(surr)	72.3		%	1			60-140	08/16/2016 04:37	JLL
	Phenol-d5(surr)	143	S	%	1			60-140	08/16/2016 04:37	JLL
	Terphenyl-d14(surr)	21.9	S	%	1			60-140	08/16/2016 04:37	JLL
SW846 8270D	Semivolatile Organic Compounds		Batch ID: Q	016081603	Prep Info:	PB16081	603 SV	V846 3570	08/09/2016 10:03	
	1,2,4-Trichlorobenzene	< 3.35	U	ug/kg dw	1	6.70	3.35		08/16/2016 04:37	JLL
	1,2-Dichlorobenzene	< 3.35	U	ug/kg dw	1	6.70	3.35		08/16/2016 04:37	JLL
	1,2-Diphenylhydrazine as Azobenzene	< 3.35	U	ug/kg dw	1	6.70	3.35		08/16/2016 04:37	JLL
	1,3-Dichlorobenzene	< 3.35	U	ug/kg dw	1	6.70	3.35		08/16/2016 04:37	JLL
	1,4-Dichlorobenzene	< 3.35	U	ug/kg dw	1	6.70	3.35		08/16/2016 04:37	JLL
	2,4,6-Trichlorophenol	< 6.70	U	ug/kg dw	1	13.4	6.70		08/16/2016 04:37	JLL
	2,4-Dichlorophenol	< 6.70	U	ug/kg dw	1	13.4	6.70		08/16/2016 04:37	JLL
	2,4-Dimethylphenol	< 6.70	U	ug/kg dw	1	13.4	6.70		08/16/2016 04:37	JLL
	2,4-Dinitrophenol	< 107	U	ug/kg dw	1	214	107		08/16/2016 04:37	JLL

Client Name: Llo	byd Engineering, Inc.	Attn: Marisa We	ber
Project ID: Qu	uintana Terminal Dock 1		
Job ID :	1608151	Sample Matrix:	Sediment
Client Sample ID:	QI-16-07-S	Date Collected:	08/04/2016
Job Sample ID:	1608151.22	Time Collected:	10:40
Other Information:			

Test Method	Parameter	Result	Q	Units	DF	LRL	SDL	%Rec Ctrl Limit Date/Time Analyzed	Analyst
SW846 8270D	Semivolatile Organic Compounds		Batch ID:	Qb16081603	Prep Info:	PB16081	503 SW8	846 3570 08/09/2016 10:03	
	2,4-Dinitrotoluene	< 3.35	U	ug/kg dw	1	6.70	3.35	08/16/2016 04:37	JLL
	2,6-Dinitrotoluene	< 3.35	U	ug/kg dw	1	6.70	3.35	08/16/2016 04:37	JLL
	2-Chloronaphthalene	< 3.35	U	ug/kg dw	1	6.70	3.35	08/16/2016 04:37	JLL
	2-Chlorophenol	< 6.70	U	ug/kg dw	1	13.4	6.70	08/16/2016 04:37	JLL
	2-Methylnaphthalene	< 3.35	U	ug/kg dw	1	6.70	3.35	08/16/2016 04:37	JLL
	2-Methylphenol	< 6.70	U	ug/kg dw	1	13.4	6.70	08/16/2016 04:37	JLL
	2-Nitrophenol	< 6.70	U	ug/kg dw	1	13.4	6.70	08/16/2016 04:37	JLL
	3,3-Dichlorobenzidine	< 3.35	U	ug/kg dw	1	6.70	3.35	08/16/2016 04:37	JLL
	4,6-Dinitro-2-methylphenol	< 26.8	U	ug/kg dw	1	53.6	26.8	08/16/2016 04:37	JLL
	4-Bromophenyl phenyl ether	< 3.35	U	ug/kg dw	1	6.70	3.35	08/16/2016 04:37	JLL
	4-Chloro-3-methylphenol	< 6.70	U	ug/kg dw	1	13.4	6.70	08/16/2016 04:37	JLL
	4-Chlorophenyl phenyl ether	< 3.35	U	ug/kg dw	1	6.70	3.35	08/16/2016 04:37	JLL
	4-Methylphenol	< 6.70	U	ug/kg dw	1	13.4	6.70	08/16/2016 04:37	JLL
	4-Nitrophenol	< 6.70	U	ug/kg dw	1	13.4	6.70	08/16/2016 04:37	JLL
	Acenaphthene	< 3.35	U	ug/kg dw	1	6.70	3.35	08/16/2016 04:37	JLL
	Acenaphthylene	< 3.35	U	ug/kg dw	1	6.70	3.35	08/16/2016 04:37	JLL
	Anthracene	< 3.35	U	ug/kg dw	1	6.70	3.35	08/16/2016 04:37	JLL
	Benzidine	< 3.35	U	ug/kg dw	1	6.70	3.35	08/16/2016 04:37	JLL
	Benzo(a)anthracene	< 3.35	U	ug/kg dw	1	6.70	3.35	08/16/2016 04:37	JLL
	Benzo(a)pyrene	< 3.35	U	ug/kg dw	1	6.70	3.35	08/16/2016 04:37	JLL
	Benzo(b)fluoranthene	< 3.35	U	ug/kg dw	1	6.70	3.35	08/16/2016 04:37	JLL

Client Name: Llo	yd Engineering, Inc.	Attn: Marisa W	/eber
Project ID: Qu	intana Terminal Dock 1		
Job ID :	1608151	Sample Matrix:	Sediment
Client Sample ID:	QI-16-07-S	Date Collected:	08/04/2016
Job Sample ID:	1608151.22	Time Collected:	10:40
Other Information:			

Test Method	Parameter	Result	Q	Units	DF	LRL	SDL	%Rec Ctrl Limit Date/Time Analyzed	Analyst
SW846 8270D	Semivolatile Organic Compounds		Batch ID:	Qb16081603	Prep Info:	PB16081	503 SW	846 3570 08/09/2016 10:03	
	Benzo(g,h,i)perylene	< 3.35	U	ug/kg dw	1	6.70	3.35	08/16/2016 04:37	JLL
	Benzo(k)fluoranthene	< 3.35	U	ug/kg dw	1	6.70	3.35	08/16/2016 04:37	JLL
	Benzoic acid	< 3.35	U	ug/kg dw	1	6.70	3.35	08/16/2016 04:37	JLL
	Benzyl alcohol	< 3.35	U	ug/kg dw	1	6.70	3.35	08/16/2016 04:37	JLL
	Bis(2-chloroethoxy) methane	< 3.35	U	ug/kg dw	1	6.70	3.35	08/16/2016 04:37	JLL
	Bis(2-chloroethyl) ether	< 3.35	U	ug/kg dw	1	6.70	3.35	08/16/2016 04:37	JLL
	Bis(2-chloroisopropyl) ether	< 3.35	U	ug/kg dw	1	6.70	3.35	08/16/2016 04:37	JLL
	Bis(2-ethylhexyl)phthalate	< 3.35	U	ug/kg dw	1	6.70	3.35	08/16/2016 04:37	JLL
	Butyl benzyl phthalate	< 3.35	U	ug/kg dw	1	6.70	3.35	08/16/2016 04:37	JLL
	Chrysene	< 3.35	U	ug/kg dw	1	6.70	3.35	08/16/2016 04:37	JLL
	Dibenzo(a,h)anthracene	< 3.35	U	ug/kg dw	1	6.70	3.35	08/16/2016 04:37	JLL
	Dibenzofuran	< 3.35	U	ug/kg dw	1	6.70	3.35	08/16/2016 04:37	JLL
	Diethyl phthalate	< 3.35	U	ug/kg dw	1	6.70	3.35	08/16/2016 04:37	JLL
	Dimethyl phthalate	< 3.35	U	ug/kg dw	1	6.70	3.35	08/16/2016 04:37	JLL
	Di-n-butyl phthalate	< 3.35	U	ug/kg dw	1	6.70	3.35	08/16/2016 04:37	JLL
	Di-n-octyl Phthalate	< 3.35	U	ug/kg dw	1	6.70	3.35	08/16/2016 04:37	JLL
	Fluoranthene	< 3.35	U	ug/kg dw	1	6.70	3.35	08/16/2016 04:37	JLL
	Fluorene	< 3.35	U	ug/kg dw	1	6.70	3.35	08/16/2016 04:37	JLL
	Hexachlorobenzene	< 3.35	U	ug/kg dw	1	6.70	3.35	08/16/2016 04:37	JLL
	Hexachlorobutadiene	< 3.35	U	ug/kg dw	1	6.70	3.35	08/16/2016 04:37	JLL
	Hexachlorocyclopentadiene	< 3.35	U	ug/kg dw	1	6.70	3.35	08/16/2016 04:37	JLL

Client Name: Llo	/d Engineering, Inc.	Attn: Marisa Weber
Project ID: Qu	ntana Terminal Dock 1	
Job ID :	1608151	Sample Matrix: Sediment
Client Sample ID:	QI-16-07-S	Date Collected: 08/04/2016
Job Sample ID:	1608151.22	Time Collected: 10:40
Other Information:		

Test Method	Parameter	Result	Q	Units	DF	LRL	SDL	%Rec Ctrl Li	mit Date/Time Analyzed	Analyst
SW846 8270D	Semivolatile Organic Compounds		Batch ID: Q	b16081603	Prep Info:	PB160816	03 SW	/846 3570	08/09/2016 10:03	
	Hexachloroethane	< 3.35	U	ug/kg dw	1	6.70	3.35		08/16/2016 04:37	JLL
	Indeno(1,2,3-cd)pyrene	< 3.35	U	ug/kg dw	1	6.70	3.35		08/16/2016 04:37	JLL
	Isophorone	< 3.35	U	ug/kg dw	1	6.70	3.35		08/16/2016 04:37	JLL
	Naphthalene	< 3.35	U	ug/kg dw	1	6.70	3.35		08/16/2016 04:37	JLL
	Nitrobenzene	< 3.35	U	ug/kg dw	1	6.70	3.35		08/16/2016 04:37	JLL
	n-Nitrosodimethylamine	< 3.35	U	ug/kg dw	1	6.70	3.35		08/16/2016 04:37	JLL
	n-nitroso-di-n-propylamine	< 3.35	U	ug/kg dw	1	6.70	3.35		08/16/2016 04:37	JLL
	n-Nitrosodiphenylamine	< 3.35	U	ug/kg dw	1	6.70	3.35		08/16/2016 04:37	JLL
	Pentachlorophenol	< 6.70	U	ug/kg dw	1	13.4	6.70		08/16/2016 04:37	JLL
	Phenanthrene	< 3.35	U	ug/kg dw	1	6.70	3.35		08/16/2016 04:37	JLL
	Phenol	< 6.70	U	ug/kg dw	1	13.4	6.70		08/16/2016 04:37	JLL
	Pyrene	< 3.35	U	ug/kg dw	1	6.70	3.35		08/16/2016 04:37	JLL
SW846 9014	Cyanide, Total		Batch ID: Q	b16081837	Prep Info:	PB160818	15 SW	/846 9010C	08/12/2016 11:20	ARC
	Cyanide, Total	< 0.67	U	mg/kg dw	1	1.34	0.67		08/12/2016 13:29	ARC
SW846 9060A	Total Organic Carbon		Batch ID: Q	b16081831	Prep Info:					
	Total Organic Carbon	1.52		%	1	0.130	0.067		08/16/2016 14:09	ARC
TCEQ 1005	Total Petroleum Hydrocarbons		Batch ID:		Prep Info:					
	1-Chlorooctadecane(surr)	75.8		%	1			70-130	08/18/2016 08:41	EM
	1-Chlorooctane(surr)	89.2		%	1			70-130	08/18/2016 08:41	EM
TCEQ 1005	Total Petroleum Hydrocarbons		Batch ID: Q	b16081709	Prep Info:	PB160817	'06 TC	EQ 1005	08/17/2016 13:00	EM

ingineering, Inc.	Attn: Marisa W	eber
na Terminal Dock 1		
508151	Sample Matrix:	Sediment
I-16-07-S	Date Collected:	08/04/2016
508151.22	Time Collected:	10:40
5	08151 -16-07-S	08151 Sample Matrix: -16-07-S Date Collected:

Test Method	Parameter	Result	Q	Units	DF	LRL	SDL	%Rec Ctrl Limit Date/Time Analyzed	Analyst
TCEQ 1005	Total Petroleum Hydrocarbons		Batch ID: Q	b16081709	Prep Info:	PB16081	706 TCE0	Q 1005 08/17/2016 13:00	EM
	ТРН, С6-С35	< 26.8	U	mg/kg dw	1	134	26.8	08/18/2016 08:41	EM

RP16090102

JobID :

1608151

8725 Fawn Trail - The Woodlands, TX 77385 - www.NWDLS.com - (936) 321-6060

Analysis : Polychlorinated Biphenyls					Met	thod : SW84	6 8082A					Ui	nits : ug/k	g dw	
QC Bate	ch ID : Qb16081601														
Sample	es in This QC Batch	1608151.16,17,18,19,20,2	1,22												
Sample	Preparation PB160	81601 Prep Method:	SW846 3570	Prep	Date:		By:	Sotruba							
QC Тур	e: Method Blank														
	Parameter					CAS #	Res	ult		DF	LRL	SD	L		Qual
MB	Total PCBs						< 2	.00		1	2.00	1.(0		
MB	2,4,5,6 Tetrachlor	o-m-xylene (Surr)					0.9	89		1					S
MB	Decachlorobiphen	yl (Surr)			2	2051-24-3	1.1	12		1					S
QC Тур	e: LCS/LCSD														
	Parameter		LCS Spk Amt	LCS Result	LCS % Rec	LCSD Spk Amt	LCSD Resul		CSD Rec	RPD		RPD CtrlLimit	%Recov CtrlLin		Qual
LCSD	Total PCBs		6	6.41	107	6	7.32	-	122	13.20	5	40	60-14	0	
LCS	2,4,5,6 Tetrachlor	o-m-xylene (Surr)	0.600	0.692	115	0.600	0.993	3 3	166				60-14	0	S
LCS	Decachlorobiphen	yl (Surr)	0.600	1.19	198	0.600	1.30	-	217				60-14	0	S
QC Тур	e: MS/MSD														
	QC Sample ID	Parameter			Sample Result	MS Spk Amt	MS Result	MS % Rec	MSD Spk Amt	MSD Result	MSD % Rec	RPD	RPD CtrlLimit	%Rec CtrlLimit	: Qual
MS	1608151.16	Total PCBs			< 2.50	6	5.91	98.5	6	6.84	114	14.59	40	60-140	
MS	1608151.16	2,4,5,6 Tetrachloro-m-xylene	e (Surr)			0.600	0.864	144	0.600	0.907	151			60-140	S
MS	1608151.16	Decachlorobiphenyl (Surr)				0.600	1.13	188	0.600	1.19	198			60-140	S

Refer to the Definition page for terms.

RP16090102

JobID :

1608151

Analysis : Polychlorinated Biphenyls				Met	hod : SW84	Method : SW846 8082A					Units : ug/L				
QC Bato	ch ID : Qb16081602	2													
Sample	s in This QC Batch	: 1608151.02,03,04,05,06,07,08,09	,10,11,12,13	3,14,15											
Sample	Preparation PB16	081602 Prep Method: SW846	3511	Prep	Date:		By: :	Sotruba							
QC Тур	e: Method Blank														
	Parameter					CAS #	Res	ult		DF	LRL	SD	L	C	Qual
MB	Total PCBs						< 0.	012		1	0.012	0.0	06		
MB	2,4,5,6 Tetrachlo	ro-m-xylene (Surr)					0.1	71		1					S
MB	Decachlorobipher	nyl (Surr)			2	051-24-3	0.1	94		1					S
QC Тур	e: LCS/LCSD														
			LCS Spk	LCS	LCS	LCSD Spk	LCSD	L	CSD			RPD	%Recov	erv	
	Parameter		Amt	Result	% Rec	Amt	Resul		Rec	RPD)	CtrlLimit	CtrlLin		Qual
LCSD	Total PCBs		1.2	1.08	90.0	1.2	1.06	8	38.3	1.87	7	40	60-14	0	
LCS	2,4,5,6 Tetrachlo	ro-m-xylene (Surr)	0.12	0.174	145	0.12	0.175		146				60-14	0	S
LCS	Decachlorobipher	nyl (Surr)	0.12	0.146	122	0.12	0.183	_	153				60-14	0	S
QC Тур	e: MS/MSD														
	QC Sample ID	Parameter			Sample Result	MS Spk Amt	MS Result	MS % Rec	MSD Spk Amt	MSD Result	MSD % Rec	RPD	RPD CtrlLimit	%Rec CtrlLimit	Qual
MS	1608151.02	Total PCBs			< 0.006	1.2	1.05	87.5	1.2	1.05	87.5	0.00	40	60-140	
MS	1608151.02	2,4,5,6 Tetrachloro-m-xylene (Surr)				0.12	0.174	145	0.12	0.176	147			60-140	S
MS	1608151.02	Decachlorobiphenyl (Surr)				0.12	0.166	138	0.12	0.161	134			60-140	

RP16090102

JobID :

1608151

Analysi	s : Semivolatile Organic Compounds	Method : SW84	6 8270D			Units : ug/kg dw		
QC Bat	ch ID : Qb16081603							
Sample	es in This QC Batch : 1608151.16,17,18,19,20,21,22							
Sample	Preparation PB16081603 Prep Method: SW846 3570	Prep Date:	By: Sotruba					
QC Тур	e: Method Blank							
	Parameter	CAS #	Result	DF	LRL	SDL	Qual	
MB	1,2,4-Trichlorobenzene	120-82-1	< 2.50	1	2.50	1.25		
MB	1,2-Dichlorobenzene	95-50-1	< 2.50	1	2.50	1.25		
MB	1,2-Diphenylhydrazine as Azobenzene	122-66-7	< 2.50	1	2.50	1.25		
MB	1,3-Dichlorobenzene	541-73-1	< 2.50	1	2.50	1.25		
MB	1,4-Dichlorobenzene	106-46-7	< 2.50	1	2.50	1.25		
MB	2,4,6-Trichlorophenol	88-06-2	< 5.00	1	5.00	2.50		
MB	2,4-Dichlorophenol	120-83-2	< 5.00	1	5.00	2.50		
MB	2,4-Dimethylphenol	105-67-9	< 5.00	1	5.00	2.50		
MB	2,4-Dinitrophenol	51-28-5	< 80.0	1	80.0	40.0		
MB	2,4-Dinitrotoluene	121-14-2	< 2.50	1	2.50	1.25		
MB	2,6-Dinitrotoluene	606-20-2	< 2.50	1	2.50	1.25		
MB	2-Chloronaphthalene	91-58-7	< 2.50	1	2.50	1.25		
MB	2-Chlorophenol	95-57-8	< 5.00	1	5.00	2.50		
MB	2-Methylnaphthalene	91-57-6	< 2.50	1	2.50	1.25		
MB	2-Methylphenol	95-48-7	< 5.00	1	5.00	2.50		
MB	2-Nitrophenol	88-75-5	< 5.00	1	5.00	2.50		
MB	3,3-Dichlorobenzidine	91-94-1	< 2.50	1	2.50	1.25		
MB	4,6-Dinitro-2-methylphenol	534-52-1	< 20.0	1	20.0	10.0		
MB	4-Bromophenyl phenyl ether	101-55-3	< 2.50	1	2.50	1.25		
MB	4-Chloro-3-methylphenol	59-50-7	< 5.00	1	5.00	2.50		
MB	4-Chlorophenyl phenyl ether	7005-72-3	< 2.50	1	2.50	1.25		
MB	4-Methylphenol	106-44-5	< 5.00	1	5.00	2.50		
MB	4-Nitrophenol	100-02-7	< 5.00	1	5.00	2.50		
MB	Acenaphthene	83-32-9	< 2.50	1	2.50	1.25		
MB	Acenaphthylene	208-96-8	< 2.50	1	2.50	1.25		
MB	Anthracene	120-12-7	< 2.50	1	2.50	1.25		
MB	Benzidine	92-87-5	< 2.50	1	2.50	1.25		
MB	Benzo(a)anthracene	56-55-3	< 2.50	1	2.50	1.25		
MB	Benzo(a)pyrene	50-32-8	< 2.50	1	2.50	1.25		
MB	Benzo(b)fluoranthene	205-99-2	< 2.50	1	2.50	1.25		

RP16090102

1608151

Analysis : Semivolatile Organic Compounds	Method : SW846 8270D	Units : ug/kg dw
QC Batch ID : Qb16081603		
Samples in This QC Batch : 1608151.16,17,18,19,20,21,22		
OC Type: Method Blank		

QCTYP	e: Method Blank						
	Parameter	CAS #	Result	DF	LRL	SDL	Qual
MB	Benzo(g,h,i)perylene	191-24-2	< 2.50	1	2.50	1.25	
MB	Benzo(k)fluoranthene	207-08-9	< 2.50	1	2.50	1.25	
MB	Benzoic acid	65-85-0	< 2.50	1	2.50	1.25	
MB	Benzyl alcohol	100-51-6	< 2.50	1	2.50	1.25	
MB	Bis(2-chloroethoxy) methane	111-91-1	< 2.50	1	2.50	1.25	
MB	Bis(2-chloroethyl) ether	111-44-4	< 2.50	1	2.50	1.25	
MB	Bis(2-chloroisopropyl) ether	108-60-1	< 2.50	1	2.50	1.25	
MB	Bis(2-ethylhexyl)phthalate	117-81-7	< 2.50	1	2.50	1.25	
MB	Butyl benzyl phthalate	85-68-7	< 2.50	1	2.50	1.25	
MB	Chrysene	218-01-9	< 2.50	1	2.50	1.25	
MB	Dibenzo(a,h)anthracene	53-70-3	< 2.50	1	2.50	1.25	
MB	Dibenzofuran	132-64-9	< 2.50	1	2.50	1.25	
MB	Diethyl phthalate	84-66-2	< 2.50	1	2.50	1.25	
MB	Dimethyl phthalate	131-11-3	< 2.50	1	2.50	1.25	
MB	Di-n-butyl phthalate	84-74-2	< 2.50	1	2.50	1.25	
MB	Di-n-octyl Phthalate	117-84-0	< 2.50	1	2.50	1.25	
MB	Fluoranthene	206-44-0	< 2.50	1	2.50	1.25	
MB	Fluorene	86-73-7	< 2.50	1	2.50	1.25	
MB	Hexachlorobenzene	118-74-1	< 2.50	1	2.50	1.25	
MB	Hexachlorobutadiene	87-68-3	< 2.50	1	2.50	1.25	
MB	Hexachlorocyclopentadiene	77-47-4	< 2.50	1	2.50	1.25	
MB	Hexachloroethane	67-72-1	< 2.50	1	2.50	1.25	
MB	Indeno(1,2,3-cd)pyrene	193-39-5	< 2.50	1	2.50	1.25	
MB	Isophorone	78-59-1	< 2.50	1	2.50	1.25	
MB	Naphthalene	91-20-3	< 2.50	1	2.50	1.25	
MB	Nitrobenzene	98-95-3	< 2.50	1	2.50	1.25	
MB	n-Nitrosodimethylamine	62-75-9	< 2.50	1	2.50	1.25	
MB	n-nitroso-di-n-propylamine	621-64-7	< 2.50	1	2.50	1.25	
MB	n-Nitrosodiphenylamine	86-30-6	< 2.50	1	2.50	1.25	
MB	Pentachlorophenol	87-86-5	< 5.00	1	5.00	2.50	
MB	Phenanthrene	85-01-8	< 2.50	1	2.50	1.25	
MB	Phenol	108-95-2	< 5.00	1	5.00	2.50	

JobID :

1608151

Analysis : Semivolatile Organic Compounds	Method : SW84	6 8270D			Units : ug/k	kg dw
QC Batch ID : Qb16081603						
Samples in This QC Batch : 1608151.16,17,18,19,20,21,22						
QC Type: Method Blank						
Parameter	CAS #	Result	DF	I RI	SDI	Qual

	Parameter	CAS #	Result	DF	LRL	SDL	Qual
MB	Pyrene	129-00-0	< 2.50	1	2.50	1.25	
MB	2-Fluorophenol (Surr)	367-12-4	54.2	1			
MB	Phenol-d5 (Surr)		67.0	1			
MB	Nitrobenzene-d5 (Surr)	4165-60-0	23.7	1			S
MB	2-Fluorobiphenyl (Surr)	132-60-8	40.0	1			
MB	2,4,6-Tribromophenol (Surr)	118-79-6	6.38	1			S
MB	Terphenyl-d14 (Surr)		25.8	1			

QC Type	e: LCS/LCSD										
	Parameter	LCS Spk Amt	LCS Result	LCS % Rec	LCSD Spk Amt	LCSD Result	LCSD % Rec	RPD	RPD CtrlLimit	%Recovery CtrlLimit	Qual
LCSD	1,2,4-Trichlorobenzene	40	20.7	51.7	40	19.5	48.8	5.92	40	60-140	J1
LCSD	1,2-Dichlorobenzene	40	29.2	73.0	40	22.9	57.3	24.12	40	60-140	J1
LCSD	1,2-Diphenylhydrazine as Azobenzene	40	33.4	83.4	40	33.5	83.8	0.45	40	60-140	
LCSD	1,3-Dichlorobenzene	40	21.1	52.9	40	17.6	44	18.28	40	60-140	J1
LCSD	1,4-Dichlorobenzene	40	23.3	58.4	40	19.8	49.6	16.41	40	60-140	J1
LCSD	2,4,6-Trichlorophenol	80	61.4	76.8	80	60.2	75.3	1.97	40	60-140	
LCSD	2,4-Dichlorophenol	80	61.2	76.5	80	60.5	75.7	1.13	40	60-140	
LCSD	2,4-Dimethylphenol	80	59.7	74.6	80	59.7	74.6	0.00	40	60-140	
LCSD	2,4-Dinitrophenol	80	94.1	118	80	179	223	62.15	40	60-140	J1
LCSD	2,4-Dinitrotoluene	40	35.0	87.5	40	29.9	74.7	15.66	40	60-140	
LCSD	2,6-Dinitrotoluene	40	35.0	87.5	40	34.4	86.1	1.67	40	60-140	
LCSD	2-Chloronaphthalene	40	26.4	65.9	40	26.8	66.9	1.62	40	60-140	
LCSD	2-Chlorophenol	80	78.1	97.6	80	77.4	96.7	0.87	40	60-140	
LCSD	2-Methylnaphthalene	40	26.6	66.4	40	27.1	67.7	2.01	40	60-140	
LCSD	2-Methylphenol	80	60.2	75.2	80	63.1	78.9	4.74	40	60-140	
LCSD	2-Nitrophenol	80	57.5	71.9	80	59.9	74.9	4.11	40	60-140	
LCSD	3,3-Dichlorobenzidine	40	24.8	62.1	40	28.3	70.8	13.06	40	60-140	
LCSD	4,6-Dinitro-2-methylphenol	80	155	194	80	100	125	43.52	40	60-140	J1
LCSD	4-Bromophenyl phenyl ether	40	29.5	73.8	40	28.9	72.4	2.16	40	60-140	
LCSD	4-Chloro-3-methylphenol	80	55.4	69.3	80	61.8	77.2	10.90	40	60-140	

RP16090102

JobID :

1608151

Analysis	: Semivolatile Organic Compounds			Me	thod : SW846	5 8270D			Un	its : ug/kg dw	
QC Batc	h ID : Qb16081603										
Samples	in This QC Batch : 1608151.16,17,18,19,20,21,22										
QC Type	e: LCS/LCSD										
	Parameter	LCS Spk Amt	LCS Result	LCS % Rec	LCSD Spk Amt	LCSD Result	LCSD % Rec	RPD	RPD CtrlLimit	%Recovery CtrlLimit	Qual
LCSD	4-Chlorophenyl phenyl ether	40	29.7	74.3	40	29.8	74.6	0.24	40	60-140	
LCSD	4-Methylphenol	80	54.9	68.6	80	56.7	70.9	3.21	40	60-140	
LCSD	4-Nitrophenol	80	40.0	50.1	80	52.8	66	27.49	40	60-140	J1
LCSD	Acenaphthene	40	30.6	76.5	40	29.2	73.1	4.62	40	60-140	
LCSD	Acenaphthylene	40	30.3	75.8	40	29.3	73.2	3.39	40	60-140	
LCSD	Anthracene	40	32.7	81.7	40	31.7	79.2	2.98	40	60-140	
LCSD	Benzidine	40	9.70	24.3	40	9.86	24.7	1.64	40	60-140	J1
LCSD	Benzo(a)anthracene	40	31.7	79.2	40	31.4	78.6	0.92	40	60-140	
LCSD	Benzo(a)pyrene	40	31.9	79.8	40	31.4	78.4	1.61	40	60-140	
LCSD	Benzo(b)fluoranthene	40	32.5	81.3	40	31.1	77.7	4.40	40	60-140	
LCSD	Benzo(g,h,i)perylene	40	36.2	90.5	40	34.6	86.4	4.46	40	60-140	
LCSD	Benzo(k)fluoranthene	40	34.2	85.4	40	32.1	80.2	6.22	40	60-140	
LCSD	Benzoic acid	40	29.4	73.6	40	29.6	74.1	0.54	40	60-140	
LCSD	Benzyl alcohol	40	49.4	123	40	49.8	124	0.89	40	60-140	
LCSD	Bis(2-chloroethoxy) methane	40	34.7	86.8	40	32.5	81.3	6.63	40	60-140	
LCSD	Bis(2-chloroethyl) ether	40	37.3	93.2	40	37.6	94	0.83	40	60-140	
LCSD	Bis(2-chloroisopropyl) ether	40	94.2	235	40	84.3	211	11.07	40	60-140	J1
LCSD	Bis(2-ethylhexyl)phthalate	40	37.6	94.0	40	40.4	101	7.23	40	60-140	
LCSD	Butyl benzyl phthalate	40	37.9	94.8	40	40.1	100	5.59	40	60-140	
LCSD	Chrysene	40	29.8	74.4	40	28.9	72.3	2.97	40	60-140	
LCSD	Dibenzo(a,h)anthracene	40	37.3	93.2	40	35.6	89	4.64	40	60-140	
LCSD	Dibenzofuran	40	28.4	71.1	40	27.6	69.1	2.96	40	60-140	
LCSD	Diethyl phthalate	40	35.6	89.0	40	35.7	89.3	0.34	40	60-140	
LCSD	Dimethyl phthalate	40	30.6	76.6	40	28.1	70.4	8.65	40	60-140	
LCSD	Di-n-butyl phthalate	40	36.7	91.7	40	36.6	91.6	0.22	40	60-140	
LCSD	Di-n-octyl Phthalate	40	38.2	95.5	40	39.5	98.9	3.40	40	60-140	
LCSD	Fluoranthene	40	33.2	83.1	40	31.9	79.9	4.05	40	60-140	
LCSD	Fluorene	40	28.6	71.5	40	28.9	72.3	1.01	40	60-140	
LCSD	Hexachlorobenzene	40	28.3	70.8	40	26.8	66.9	5.48	40	60-140	
LCSD	Hexachlorobutadiene	40	39.0	97.4	40	31.6	79.1	20.89	40	60-140	
LCSD	Hexachlorocyclopentadiene	40	6.19	15.5	40	6.90	17.3	10.85	40	60-140	J1
LCSD	Hexachloroethane	40	52.1	130	40	47.0	118	10.27	40	60-140	

RP16090102

JobID :

1608151

8725 Fawn Trail - The Woodlands, TX 77385 - www.NWDLS.com - (936) 321-6060

Analysis	s : Semivolatile Organic Compounds			Ме	thod : SW846	5 8270D			Un	its : ug/kg dw	
QC Batc	h ID : Qb16081603										
Samples	s in This QC Batch : 1608151.16,17,18,19,20,21,22										
	e: LCS/LCSD										
QC TYP	Parameter	LCS Spk Amt	LCS Result	LCS % Rec	LCSD Spk Amt	LCSD Result	LCSD % Rec	RPD	RPD CtrlLimit	%Recovery CtrlLimit	Qual
LCSD	Indeno(1,2,3-cd)pyrene	40	35.3	88.2	40	34.2	85.5	3.11	40	60-140	
LCSD	Isophorone	40	18.3	45.7	40	18.3	45.7	0.05	40	60-140	J1
LCSD	Naphthalene	40	28.1	70.2	40	26.5	66.3	5.72	40	60-140	
LCSD	Nitrobenzene	40	31.5	78.7	40	30.6	76.6	2.77	40	60-140	
LCSD	n-Nitrosodimethylamine	40	76.0	190	40	47.9	120	45.31	40	60-140	J1
LCSD	n-nitroso-di-n-propylamine	40	95.6	239	40	89.2	223	6.87	40	60-140	J1
LCSD	n-Nitrosodiphenylamine	40	33.0	82.4	40	32.7	81.7	0.79	40	60-140	
LCSD	Pentachlorophenol	80	5.94	7.43	80	30.8	38.6	135.33	40	60-140	J1
LCSD	Phenanthrene	40	26.6	66.5	40	25.0	62.5	6.16	40	60-140	
LCSD	Phenol	80	78.2	97.8	80	80.0	100	2.25	40	60-140	
LCSD	Pyrene	40	25.8	64.6	40	25.4	63.6	1.68	40	60-140	
LCS	2-Fluorophenol (Surr)	80	106	132	80	97.8	122			60-140	
LCS	Phenol-d5 (Surr)	80	122	153	80	113	141			60-140	S
LCS	Nitrobenzene-d5 (Surr)	40	29.7	74.3	40	29.7	74.2			60-140	
LCS	2-Fluorobiphenyl (Surr)	40	45.4	114	40	39.6	99			60-140	
LCS	2,4,6-Tribromophenol (Surr)	80	97.0	121	80	103	128			60-140	
LCS	Terphenyl-d14 (Surr)	40	20.3	50.7	40	19.3	48.2			60-140	S

QC Туре	e: MS/MSD												
	QC Sample ID	Parameter	Sample Result	MS Spk Amt	MS Result	MS % Rec	MSD Spk Amt	MSD Result	MSD % Rec	RPD	RPD CtrlLimit	%Rec CtrlLimit	Qual
MS	1608151.18	1,2,4-Trichlorobenzene	< 3.20	40	20.2	50.5	40	18.4	46.1	9.12	40	60-140	J1
MS	1608151.18	1,2-Dichlorobenzene	< 3.20	40	32.7	81.7	40	29.6	74.1	9.82	40	60-140	
MS	1608151.18	1,2-Diphenylhydrazine as Azobenzene	< 3.20	40	32.0	80	40	31.9	79.7	0.38	40	60-140	
MS	1608151.18	1,3-Dichlorobenzene	< 3.20	40	25.2	63.1	40	20.5	51.2	20.96	40	60-140	J1
MS	1608151.18	1,4-Dichlorobenzene	< 3.20	40	32.2	80.4	40	19.4	48.5	49.45	40	60-140	J1
MS	1608151.18	2,4,6-Trichlorophenol	< 6.40	80	78.8	98.6	80	65.5	81.9	18.45	40	60-140	
MS	1608151.18	2,4-Dichlorophenol	< 6.40	80	69.9	87.4	80	60.5	75.6	14.41	40	60-140	
MS	1608151.18	2,4-Dimethylphenol	< 6.40	80	67.0	83.7	80	59.2	74	12.37	40	60-140	
MS	1608151.18	2,4-Dinitrophenol	< 102	80	223	279	80	244	305	8.79	40	60-140	J1
MS	1608151.18	2,4-Dinitrotoluene	< 3.20	40	28.4	71	40	27.7	69.4	2.39	40	60-140	
MS	1608151.18	2,6-Dinitrotoluene	< 3.20	40	42.4	106	40	41.7	104	1.76	40	60-140	

Page 164 of 249

RP16090102

MS MS MS MS

MS MS MS

MS

MS MS JobID :

1608151

Analysi	s : Semivolatile Org	ganic Compounds	Met	hod : SW8	46 8270	D				U	nits : ug/ł	(g dw	
QC Bat	ch ID : Qb16081603	3											
Sample	es in This QC Batch	: 1608151.16,17,18,19,20,21,22											
QC Тур	e: MS/MSD												
	QC Sample ID	Parameter	Sample Result	MS Spk Amt	MS Result	MS % Rec	MSD Spk Amt	MSD Result	MSD % Rec	RPD	RPD CtrlLimit	%Rec CtrlLimit	Qua
MS	1608151.18	2-Chloronaphthalene	< 3.20	40	24.4	60.9	40	22.1	55.2	9.82	40	60-140	J1
MS	1608151.18	2-Chlorophenol	< 6.40	40	95.7	239	80	79.6	99.5	18.34	40	60-140	J1
MS	1608151.18	4,6-Dinitro-2-methylphenol	< 25.6	80	163	203	80	142	178	13.56	40	60-140	J1
MS	1608151.18	2-Methylnaphthalene	< 3.20	40	25.1	62.7	40	23.0	57.6	8.40	40	60-140	J1
MS	1608151.18	2-Methylphenol	< 6.40	80	72.0	90	80	52.4	65.4	31.59	40	60-140	
MS	1608151.18	2-Nitrophenol	< 6.40	80	53.0	66.2	80	49.9	62.3	6.05	40	60-140	
MS	1608151.18	3,3-Dichlorobenzidine	< 3.20	40	17.9	44.7	40	12.4	31.1	36.09	40	60-140	J1
MS	1608151.18	4-Bromophenyl phenyl ether	< 3.20	40	22.7	56.8	40	20.4	51	10.76	40	60-140	J1
MS	1608151.18	4-Chloro-3-methylphenol	< 6.40	80	62.9	78.6	80	61.3	76.7	2.54	40	60-140	
MS	1608151.18	4-Chlorophenyl phenyl ether	< 3.20	40	24.5	61.4	40	24.2	60.4	1.56	40	60-140	
MS	1608151.18	4-Methylphenol	< 6.40	80	65.2	81.5	80	52.1	65.2	22.25	40	60-140	
MS	1608151.18	4-Nitrophenol	< 6.40	80	45.3	56.7	80	12.1	15.1	115.85	40	60-140	J1
MS	1608151.18	Acenaphthene	< 3.20	40	28.6	71.4	40	25.7	64.3	10.50	40	60-140	
MS	1608151.18	Acenaphthylene	< 3.20	40	31.5	78.8	40	28.8	72.1	8.88	40	60-140	
MS	1608151.18	Anthracene	< 3.20	40	28.5	71.2	40	25.3	63.4	11.60	40	60-140	
MS	1608151.18	Benzidine	< 3.20	40	15.8	39.6	40	17.4	43.5	9.45	40	60-140	J1
MS	1608151.18	Benzo(a)anthracene	< 3.20	40	25.2	63	40	22.4	55.9	11.98	40	60-140	J1
MS	1608151.18	Benzo(a)pyrene	< 3.20	40	22.7	56.7	40	20.6	51.6	9.47	40	60-140	J1
MS	1608151.18	Benzo(b)fluoranthene	< 3.20	40	19.5	48.7	40	17.3	43.2	11.97	40	60-140	J1
MS	1608151.18	Benzo(g,h,i)perylene	< 3.20	40	20.8	52.1	40	19.5	48.9	6.44	40	60-140	J1
MS	1608151.18	Benzo(k)fluoranthene	< 3.20	40	19.8	49.4	40	18.4	45.9	7.34	40	60-140	J1
MS	1608151.18	Benzoic acid	< 3.20	40	33.3	83.2	40	28.8	72	14.44	40	60-140	

1608151.18	Benzo(g,h,i)perylene		< 3.20	40	20.8	52.1	40	19.5	48.9	6.44	40	60-140	J1
1608151.18	Benzo(k)fluoranthene		< 3.20	40	19.8	49.4	40	18.4	45.9	7.34	40	60-140	J1
1608151.18	Benzoic acid		< 3.20	40	33.3	83.2	40	28.8	72	14.44	40	60-140	
1608151.18	Benzyl alcohol		< 3.20	40	55.4	139	40	38.4	95.9	36.43	40	60-140	
1608151.18	Bis(2-chloroethoxy) methane		< 3.20	40	39.2	98	40	35.4	88.6	10.16	40	60-140	
1608151.18	Bis(2-chloroethyl) ether		< 3.20	40	43.8	109	40	34.0	85.1	24.98	40	60-140	
1608151.18	Bis(2-chloroisopropyl) ether		< 3.20	40	134	336	40	104	261	25.16	40	60-140	J1
1608151.18	Bis(2-ethylhexyl)phthalate		< 3.20	40	36.8	91.9	40	34.3	85.8	6.87	40	60-140	
1608151.18	Butyl benzyl phthalate		< 3.20	40	40.0	100	40	36.4	91.1	9.31	40	60-140	
1608151.18	Chrysene		< 3.20	40	22.4	56.1	40	19.0	47.6	16.30	40	60-140	J1
1608151.18	Dibenzo(a,h)anthracene		< 3.20	40	22.3	55.8	40	21.0	52.5	6.09	40	60-140	J1
1608151.18	Dibenzofuran		< 3.20	40	26.4	65.9	40	24.3	60.8	8.09	40	60-140	
1608151.18	Diethyl phthalate		< 3.20	40	37.0	92.5	40	37.0	92.6	0.08	40	60-140	
		Page 165 of 249											

RP16090102

MS

1608151.18

1608151.18

1608151.18

1608151.18

1608151.18

1608151.18

1608151.18

1608151.18

1608151.18

1608151.18

1608151.18

1608151.18

1608151.18

1608151.18

Nitrobenzene

n-Nitrosodimethylamine

n-Nitrosodiphenylamine

Pentachlorophenol

2-Fluorophenol (Surr)

Nitrobenzene-d5 (Surr)

2-Fluorobiphenyl (Surr)

Terphenyl-d14 (Surr)

2,4,6-Tribromophenol (Surr)

Phenol-d5 (Surr)

Phenanthrene

Phenol

Pyrene

n-nitroso-di-n-propylamine

JobID :

1608151

43.8

0.

61.6

32.2

49.5

21.2

92.5

20.3

153

167

39.7

36.7

132

9.79

110

0

154

80.4

61.9

52.9

116

50.8

191

208

99.3

91.7

165

24.5

40

40

40

40

80

40

80

40

80

80

40

40

80

40

40

40

40

40

80

40

80

40

80

80

40

40

80

40

32.7

64.9

90.6

28.7

42.9

18.5

74.6

18.7

113

117

30.9

32.2

123

9.36

81.7

162

226

71.8

53.6

46.2

93.3

46.8

142

146

77.4

80.6

154

23.4

29.15

NaN

38.14

11.27

14.34

13.47

21.46

8.35

40

40

40

40

40

40

40

40

60-140

60-140

60-140

60-140

60-140

60-140

60-140

60-140

60-140 60-140

60-140

60-140

60-140

60-140

J1

J1

J1

J1

J1

S

S

S

S

8725 Fawn Trail - The Woodlands, TX 77385 - www.NWDLS.com - (936) 321-6060

Analysi	s : Semivolatile Or	ganic Compounds	Met	hod : SW8	46 82701)				U	nits : ug/l	‹g dw	
QC Bat	ch ID : Qb16081603	3											
Sample	es in This QC Batch	: 1608151.16,17,18,19,20,21,22											
QC Тур	e: MS/MSD												
	QC Sample ID	Parameter	Sample Result	MS Spk Amt	MS Result	MS % Rec	MSD Spk Amt	MSD Result	MSD % Rec	RPD	RPD CtrlLimit	%Rec CtrlLimit	Qual
MS	1608151.18	Dimethyl phthalate	< 3.20	40	29.3	73.3	40	26.6	66.5	9.66	40	60-140	
MS	1608151.18	Di-n-butyl phthalate	< 3.20	40	35.0	87.4	40	31.9	79.7	9.18	40	60-140	
MS	1608151.18	Di-n-octyl Phthalate	< 3.20	40	32.0	80.1	40	30.6	76.4	4.76	40	60-140	
MS	1608151.18	Fluoranthene	< 3.20	40	28.3	70.7	40	25.2	63.1	11.36	40	60-140	
MS	1608151.18	Fluorene	< 3.20	40	27.6	68.9	40	27.0	67.6	2.02	40	60-140	
MS	1608151.18	Hexachlorobenzene	< 3.20	40	18.9	47.3	40	17.0	42.5	10.74	40	60-140	J1
MS	1608151.18	Hexachlorobutadiene	< 3.20	40	47.9	120	40	42.5	106	12.03	40	60-140	
MS	1608151.18	Hexachlorocyclopentadiene	< 3.20	40	4.98	12.5	40	4.32	10.8	14.19	40	60-140	J1
MS	1608151.18	Hexachloroethane	< 3.20	40	70.5	176	40	47.1	118	39.73	40	60-140	J1
MS	1608151.18	Indeno(1,2,3-cd)pyrene	< 3.20	40	22.3	55.7	40	20.4	51.1	8.76	40	60-140	J1
MS	1608151.18	Isophorone	< 3.20	40	23.4	58.4	40	19.0	47.4	20.84	40	60-140	J1
MS	1608151.18	Naphthalene	< 3.20	40	29.9	74.7	40	27.2	68	9.40	40	60-140	

< 3.20

< 3.20

< 3.20

< 3.20

< 6.40

< 3.20

< 6.40

< 3.20

Refer to the Definition page for terms.

RP16090102

JobID :

1608151

Analysis	Organochlorine Pesticides		Method : SW8	46 8081B			Units : ug/L	
QC Batch	ID : Qb16081604							
Samples	in This QC Batch : 1608151	1.02,03,04,05,06,07,08,09,10,11,12,1	3,14,15					
Extractio		Prep Method: SW846 3511	Prep Date:	By: Sotruba				
LXUACUU	FD10001004	PIEP MELIOU. 5W070 5511	Piep Date.	By. Soliuba				
QC Type:	Method Blank							
	Parameter		CAS #	Result	DF	LRL	SDL	Qual
MB	a-Chlordane		5103-71-9	< 0.006	1	0.006	0.003	
MB	y-Chlordane		5103-74-2	< 0.006	1	0.006	0.003	
MB	4,4-DDD		72-54-8	< 0.012	1	0.012	0.003	
MB	4,4-DDE		72-55-9	< 0.012	1	0.012	0.003	
MB	4,4-DDT		50-29-3	< 0.012	1	0.012	0.003	
MB	Aldrin		309-00-2	< 0.006	1	0.006	0.003	
MB	a-BHC		319-84-6	< 0.006	1	0.006	0.003	
MB	b-BHC		319-85-7	< 0.006	1	0.006	0.003	
MB	Chlordane		57-74-9	< 0.006	1	0.006	0.003	
MB	d-BHC		319-86-8	< 0.006	1	0.006	0.003	
MB	Dieldrin		60-57-1	< 0.006	1	0.006	0.003	
MB	Endosulfan I		959-98-8	< 0.006	1	0.006	0.003	
MB	Endosulfan II		33213-65-9	< 0.006	1	0.006	0.003	
MB	Endosulfan sulfate		1031-07-8	< 0.006	1	0.006	0.003	
MB	Endrin		72-20-8	< 0.006	1	0.006	0.003	
MB	Endrin aldehyde		7421-93-4	< 0.006	1	0.006	0.003	
MB	Endrin ketone		53494-70-5	< 0.006	1	0.006	0.003	
MB	g-BHC		58-89-9	< 0.006	1	0.006	0.003	
MB	Heptachlor		76-44-8	< 0.006	1	0.006	0.003	
MB	Heptachlor epoxide		1024-57-3	< 0.006	1	0.006	0.003	
MB	Toxaphene		8001-35-2	< 0.300	1	0.300	0.150	
MB	Decachlorobiphenyl (Surr)		2051-24-3	0.176	1			S
MB	2,4,5,6 Tetrachloro-m-xylene	(Surr)		0.179	1			S

QC Type:	LCS/LCSD										
		LCS Spk	LCS	LCS	LCSD Spk	LCSD	LCSD		RPD	%Recovery	
	Parameter	Amt	Result	% Rec	Amt	Result	% Rec	RPD	CtrlLimit	CtrlLimit	Qual
LCSD	4,4-DDD	0.12	0.166	138	0.12	0.166	138	0.00	40	60-140	
LCSD	4,4-DDE	0.12	0.135	113	0.12	0.136	113	0.74	40	60-140	

RP16090102

JobID :

1608151

8725 Fawn Trail - The Woodlands, TX 77385 - www.NWDLS.com - (936) 321-6060

Analysis : Organochlorine Pesticides	Method : SW846 8081B	Units : ug/L
QC Batch ID : Qb16081604		

Samples in This QC Batch : 1608151.02,03,04,05,06,07,08,09,10,11,12,13,14,15

QC Type	e: LCS/LCSD										
	Parameter	LCS Spk Amt	LCS Result	LCS % Rec	LCSD Spk Amt	LCSD Result	LCSD % Rec	RPD	RPD CtrlLimit	%Recovery CtrlLimit	Qual
LCSD	4,4-DDT	0.12	0.164	137	0.12	0.168	140	2.41	40	60-140	
LCSD	Aldrin	0.12	0.0938	78.2	0.12	0.0981	81.8	4.48	40	60-140	
LCSD	a-BHC	0.12	0.124	103	0.12	0.129	108	3.95	40	60-140	
LCSD	b-BHC	0.12	0.137	114	0.12	0.143	119	4.29	40	60-140	
LCSD	Chlordane	0.48	0.482	100	0.48	0.498	104	3.27	40	60-140	
LCSD	d-BHC	0.12	0.137	114	0.12	0.142	118	3.58	40	60-140	
LCSD	Dieldrin	0.12	0.154	128	0.12	0.150	125	2.70	40	60-140	
LCSD	Endosulfan I	0.12	0.0609	50.8	0.12	0.062	51.7	1.79	40	60-140	J1
LCSD	Endosulfan II	0.12	0.0741	61.8	0.12	0.0749	62.4	1.07	40	60-140	
LCSD	Endosulfan sulfate	0.12	0.136	113	0.12	0.137	114	0.73	40	60-140	
LCSD	Endrin	0.12	0.149	124	0.12	0.149	124	0.00	40	60-140	
LCSD	Endrin aldehyde	0.12	0.145	121	0.12	0.150	125	3.39	40	60-140	
LCSD	Endrin ketone	0.12	0.150	125	0.12	0.150	125	0.00	40	60-140	
LCSD	g-BHC	0.12	0.134	112	0.12	0.143	119	6.50	40	60-140	
LCSD	Heptachlor	0.12	0.116	96.7	0.12	0.121	101	4.22	40	60-140	
LCSD	Heptachlor epoxide	0.12	0.132	110	0.12	0.135	113	2.25	40	60-140	
LCSD	Toxaphene	1.2	0.0000291	116	1.2	0.0000738	119	199.98	40	60-140	J1
LCS	Decachlorobiphenyl (Surr)	0.12	0.161	134						60-140	
LCS	2,4,5,6 Tetrachloro-m-xylene (Surr)	0.12	0.165	138	0.12	0.167	139			60-140	

QC Type	e: MS/MSD												
	QC Sample ID	Parameter	Sample Result	MS Spk Amt	MS Result	MS % Rec	MSD Spk Amt	MSD Result	MSD % Rec	RPD	RPD CtrlLimit	%Rec CtrlLimit	Qual
MS	1608151.02	4,4-DDD	< 0.003	0.12	0.158	131	0.12	0.152	127	3.49	40	60-140	
MS	1608151.02	4,4-DDE	< 0.003	0.12	0.121	101	0.12	0.125	104	3.25	40	60-140	
MS	1608151.02	4,4-DDT	< 0.003	0.12	0.142	118	0.12	0.150	125	5.48	40	60-140	
MS	1608151.02	Aldrin	< 0.003	0.12	0.0896	74.7	0.12	0.0983	81.9	9.26	40	60-140	
MS	1608151.02	a-BHC	< 0.003	0.12	0.130	108	0.12	0.130	108	0.00	40	60-140	
MS	1608151.02	b-BHC	< 0.003	0.12	0.140	117	0.12	0.139	116	0.72	40	60-140	
MS	1608151.02	Chlordane	< 0.003	0.48	0.451	94	0.48	0.468	97.5	3.70	40	60-140	
MS	1608151.02	d-BHC	< 0.003	0.12	0.133	111	0.12	0.134	112	0.75	40	60-140	

RP16090102

JobID :

1608151

8725 Fawn Trail - The Woodlands, TX 77385 - www.NWDLS.com - (936) 321-6060

Analysis : Organochlorine Pesticides	Method : SW846 8081B	Units : ug/L
QC Batch ID : Qb16081604		

Samples in This QC Batch : 1608151.02,03,04,05,06,07,08,09,10,11,12,13,14,15

QC Typ	e: MS/MSD												
	QC Sample ID	Parameter	Sample Result	MS Spk Amt	MS Result	MS % Rec	MSD Spk Amt	MSD Result	MSD % Rec	RPD	RPD CtrlLimit	%Rec CtrlLimit	Qual
MS	1608151.02	Dieldrin	< 0.003	0.12	0.152	126	0.12	0.147	123	2.88	40	60-140	
MS	1608151.02	Endosulfan I	< 0.003	0.12	0.0536	44.7	0.12	0.0551	45.9	2.76	40	60-140	J1
MS	1608151.02	Endosulfan II	< 0.003	0.12	0.0674	56.2	0.12	0.0694	57.8	2.92	40	60-140	J1
MS	1608151.02	Endosulfan sulfate	< 0.003	0.12	0.132	110	0.12	0.136	113	2.99	40	60-140	
MS	1608151.02	Endrin	< 0.003	0.12	0.141	118	0.12	0.146	122	3.48	40	60-140	
MS	1608151.02	Endrin aldehyde	< 0.003	0.12	0.136	113	0.12	0.143	119	5.02	40	60-140	
MS	1608151.02	Endrin ketone	< 0.003	0.12	0.154	128	0.12	0.155	129	0.65	40	60-140	l
MS	1608151.02	g-BHC	< 0.003	0.12	0.138	115	0.12	0.138	115	0.00	40	60-140	l
MS	1608151.02	Heptachlor	< 0.003	0.12	0.105	87.5	0.12	0.113	94.2	7.34	40	60-140	
MS	1608151.02	Heptachlor epoxide	< 0.003	0.12	0.126	105	0.12	0.128	107	1.58	40	60-140	
MS	1608151.02	Toxaphene	< 0.150	0.12	0.	0	0.12	< 0.150	0		40	60-140	J1
MS	1608151.02	2,4,5,6 Tetrachloro-m-xylene (Surr)		0.12	0.159	133	0.12	0.151	126			60-140	l

RP16090102

JobID :

1608151

Analysi	s : Total Petroleum	Hydrocarbons			Me	thod : TCEQ	1005					Un	its : mg/	L	
QC Bate	ch ID : Qb16081701														
Sample	s in This QC Batch	: 1608151.02,03,04,05,06,07,08	3												
Sample	Preparation PB160	081701 Prep Method: TC	EQ 1005	Prep	Date:		By:	Emiller							
QC Тур	e: Method Blank														
	Parameter					CAS #	Res	ult		DF	LRL	SD	L	(Qual
MB	TPH, C6-C35						< 1	0.0		1	10.0	3.2	2		
MB	1-Chlorooctane (S	Surr)				111-85-3	32	.4		1					
MB	1-Chlorooctadeca	ne (Surr)					30	.1		1					
QC Тур	e: LCS/LCSD														
	Parameter		LCS Spk Amt	LCS Result	LCS % Rec	LCSD Spk Amt	LCSD Resul		CSD Rec	RPD		RPD CtrlLimit	%Recov CtrlLin		Qual
LCSD	TPH, C6-C35		66.67	68.5	103	66.67	67.3	:	101	1.75		20	75-12	5	
LCS	1-Chlorooctane (S	Surr)	33.33	32.8	98.3	33.33	32.2	ç	96.8				70-13	0	
LCS	1-Chlorooctadeca	ne (Surr)	33.33	29.1	87.2	33.33	29.5	8	38.5				70-13	0	
QC Тур	e: MS/MSD														
	QC Sample ID	Parameter			Sample Result	MS Spk Amt	MS Result	MS % Rec	MSD Spk Amt	MSD Result	MSD % Rec	RPD	RPD CtrlLimit	%Rec CtrlLimit	Qual
MS	1608151.06	ТРН, С6-С35			< 3.22	66.67	86.9	130	66.67	84.9	127	2.37	20	75-125	J1
MS	1608151.06	1-Chlorooctane (Surr)				33.33	38.2	115						70-130	
MS	1608151.06	1-Chlorooctadecane (Surr)				33.33	31.8	95.3						70-130	

RP16090102

JobID :

1608151

8725 Fawn Trail - The Woodlands, TX 77385 - www.NWDLS.com - (936) 321-6060

Analysis	s : Metals, Total by	ICP-MS				Me	thod : EPA 2	200.8					U	nits : ug/l	-	
QC Bato	ch ID : Qb16081702	2														
Sample	s in This QC Batch	: 1608151.0	01,02,03,04,05,06,07,08	,09,10,11,1	2,13,14,15	5										
Sample	Preparation PB16	081702	Prep Method: EPA 20	0.2	Prep	Date:		By:	Cliles							
QC Тур	e: Method Blank															
	Parameter						CAS #	Res	sult		DF	LRL	SD	DL	C	Qual
MB	Selenium						7782-49-2	< 2	.00		1	2.00	0.3	33		
QC Тур	e: Duplicate															
	QC Sample ID	Parameter				Result	QC Sample	Result			RPD	RPD C	trl Limits		Qu	Jal
DUP	1608151.01	Selenium				< 0.333	< 0.3	33			NaN		30			
DUP2	1608151.11	Selenium				11.9	16.9				34.70		30		J	1
QC Тур	e: LCS/LCSD															
				LCS Spk	LCS	LCS	LCSD Spk	LCSD		CSD			RPD	%Recov		
	Parameter			Amt	Result	% Rec	Amt	Resul	t %	Rec	RPD		CtrlLimit	CtrlLin		Qual
LCS	Selenium			200	207	104								85-11	.5	
QC Тур	e: MS/MSD															
	QC Sample ID	Parameter				Sample Result	MS Spk Amt	MS Result	MS % Rec	MSD Spk Amt	MSD Result	MSD % Rec	RPD	RPD CtrlLimit	%Rec CtrlLimit	Qual
MS	1608151.01	Selenium				< 0.333	200	213	106		213				70-130	
MS2	1608151.11	Selenium				16.9	200	171	77.1		171				70-130	

Refer to the Definition page for terms.

RP16090102

JobID :

1608151

Analysi	is : Metals, Dissolved		Method :	EPA 200.8			Units : ug/L	
QC Bat	ch ID : Qb16081703							
Sample	es in This QC Batch : 160815	51.01,02,03,04,05,06,07,08,09,10,11,	12,13,14,15					
Sample	Preparation PB16081703	Prep Method: EPA 200.2	Prep Date:	By: Cliles				
QC Тур	e: Method Blank							
	Parameter		CAS #	Result	DF	LRL	SDL	Qual
МВ	Antimony		7440-36	-0 < 1.00	1	1.00	0.200	
МВ	Arsenic		7440-38	-2 < 0.500	1	0.500	0.100	
МВ	Beryllium		7440-41	-7 < 0.200	1	0.200	0.010	
МВ	Cadmium		7440-43	-9 < 1.00	1	1.00	0.050	
МВ	Chromium		7440-47	-3 < 3.00	1	3.00	0.075	
МВ	Copper		7440-50	-8 < 1.00	1	1.00	0.050	
МВ	Lead		7439-92	-1 < 0.500	1	0.500	0.025	
МВ	Nickel		7440-02	-0 < 1.00	1	1.00	0.050	
МВ	Silver		7440-22	-4 < 0.500	1	0.500	0.025	
МВ	Thallium		7440-28	-0 < 0.500	1	0.500	0.025	
МВ	Zinc		7440-66	-6 < 2.00	1	2.00	0.100	

QC Type	e: Duplicate						
	QC Sample ID	Parameter	Result	QC Sample Result	RPD	RPD Ctrl Limits	Qual
DUP	1608151.01	Antimony	< 0.200	< 0.200	NaN	30	
DUP	1608151.01	Arsenic	< 0.100	< 0.100	NaN	30	
DUP	1608151.01	Beryllium	< 0.010	< 0.010	NaN	30	
DUP	1608151.01	Cadmium	< 0.050	< 0.050	NaN	30	
DUP	1608151.01	Chromium	< 0.075	< 0.075	NaN	30	
DUP	1608151.01	Copper	0.135	0.265	65.00	30	J1
DUP	1608151.01	Lead	< 0.025	< 0.025	NaN	30	
DUP	1608151.01	Nickel	0.091	0.074	20.61	30	
DUP	1608151.01	Silver	< 0.025	< 0.025	NaN	30	
DUP	1608151.01	Thallium	< 0.025	< 0.025	NaN	30	
DUP	1608151.01	Zinc	0.808	1.49	59.36	30	J1
DUP2	1608151.11	Antimony	< 1.00	< 1.00	NaN	30	
DUP2	1608151.11	Arsenic	13.4	13.0	3.00	30	
DUP2	1608151.11	Beryllium	< 0.100	< 0.100	NaN	30	
DUP2	1608151.11	Cadmium	< 0.250	< 0.250	NaN	30	

RP16090102

Units : ug/L

JobID :

1608151

8725 Fawn Trail - The Woodlands, TX 77385 - www.NWDLS.com - (936) 321-6060

Analysis : Metals, Dissolved Method : EPA 200.8 QC Batch ID : Qb16081703

Samples in This QC Batch : 1608151.01,02,03,04,05,06,07,08,09,10,11,12,13,14,15

QC Type	: Duplicate						
	QC Sample ID	Parameter	Result	QC Sample Result	RPD	RPD Ctrl Limits	Qual
DUP2	1608151.11	Chromium	< 0.375	< 0.375	NaN	30	
DUP2	1608151.11	Copper	0.504	0.528	4.65	30	
DUP2	1608151.11	Lead	0.133	0.154	14.63	30	
DUP2	1608151.11	Nickel	1.49	1.94	26.24	30	
DUP2	1608151.11	Silver	< 0.125	< 0.125	NaN	30	
DUP2	1608151.11	Thallium	< 0.125	< 0.125	NaN	30	
DUP2	1608151.11	Zinc	3.96	5.09	24.97	30	

QC Тур	e: LCS/LCSD										
	Parameter	LCS Spk Amt	LCS Result	LCS % Rec	LCSD Spk Amt	LCSD Result	LCSD % Rec	RPD	RPD CtrlLimit	%Recovery CtrlLimit	Qual
LCS	Antimony	100	104	104						85-115	
LCS	Arsenic	50	49.7	99.4						85-115	
LCS	Beryllium	20	20.5	103						85-115	
LCS	Cadmium	100	101	101						85-115	
LCS	Chromium	300	300	100						85-115	
LCS	Copper	100	102	102						85-115	
LCS	Lead	50	50.3	101						85-115	
LCS	Nickel	100	100	100						85-115	
LCS	Silver	50	52.0	104						85-115	
LCS	Thallium	50	50.3	101						85-115	
LCS	Zinc	200	202	101						85-115	

QC Тур	e: MS/MSD													
				Sample	MS	MS	MS	MSD	MSD	MSD		RPD	%Rec	
	QC Sample ID	Parameter		Result	Spk Amt	Result	% Rec	Spk Amt	Result	% Rec	RPD	CtrlLimit	CtrlLimit	Qual
MS	1608151.01	Antimony		< 0.200	100	103	103		103				70-130	
MS	1608151.01	Arsenic		< 0.100	50	49.8	99.5		49.8				70-130	
MS	1608151.01	Beryllium		< 0.010	20	20.8	104		20.8				70-130	
MS	1608151.01	Cadmium		< 0.050	100	100	100		100				70-130	
MS	1608151.01	Chromium		< 0.075	300	303	101		303				70-130	
MS	1608151.01	Copper		0.265	100	102	102		102				70-130	
			Page 173 of 249											

JobID :

1608151

8725 Fawn Trail - The Woodlands, TX 77385 - www.NWDLS.com - (936) 321-6060

Analysis : Metals, Dissolved	Method : EPA 200.8	Units : ug/L

QC Batch ID : Qb16081703

Samples in This QC Batch : 1608151.01,02,03,04,05,06,07,08,09,10,11,12,13,14,15

QC Тур	e: MS/MSD												
	QC Sample ID	Parameter	Sample Result	MS Spk Amt	MS Result	MS % Rec	MSD Spk Amt	MSD Result	MSD % Rec	RPD	RPD CtrlLimit	%Rec CtrlLimit	Qual
MS	1608151.01	Lead	< 0.025	50	49.7	99.4		49.7				70-130	
MS	1608151.01	Nickel	0.074	100	100	99.6		100				70-130	
MS	1608151.01	Silver	< 0.025	50	51.9	104		51.9				70-130	
MS	1608151.01	Thallium	< 0.025	50	49.4	98.8		49.4				70-130	
MS	1608151.01	Zinc	1.49	200	199	98.8		199				70-130	
MS2	1608151.11	Antimony	< 1.00	100	99.1	98.9		99.1				70-130	
MS2	1608151.11	Arsenic	13.0	50	62.9	99.8		62.9				70-130	
MS2	1608151.11	Beryllium	< 0.100	20	18.6	92.9		18.6				70-130	
MS2	1608151.11	Cadmium	< 0.250	100	84.4	84.3		84.4				70-130	
MS2	1608151.11	Chromium	< 0.375	300	323	108		323				70-130	
MS2	1608151.11	Copper	0.528	100	98.5	98		98.5				70-130	
MS2	1608151.11	Lead	0.154	50	47.3	94.3		47.3				70-130	
MS2	1608151.11	Nickel	1.94	100	100	97.6		100				70-130	
MS2	1608151.11	Silver	< 0.125	50	44.1	88.2		44.1				70-130	
MS2	1608151.11	Thallium	< 0.125	50	32.5	65		32.5				70-130	J1
MS2	1608151.11	Zinc	5.09	200	180	87.5		180				70-130	

Refer to the Definition page for terms.

RP16090102

RP16090102

JobID :

1608151

8725 Fawn Trail - The Woodlands, TX 77385 - www.NWDLS.com - (936) 321-6060

Analysis : Volatile Organic Compounds	Method : SW846 8260C	Units : ug/L
QC Batch ID : Qb16081704		

Samples in This QC Batch : 1608151.02,03,04,05,06,07,08

QC Typ	e: Method Blank						
	Parameter	CAS #	Result	DF	LRL	SDL	Qual
MB	Ethylbenzene	100-41-4	< 5.00	1	5.00	1.00	
MB	Tetrachloroethylene	127-18-4	< 5.00	1	5.00	1.00	
МВ	Trichloroethylene	79-01-6	< 5.00	1	5.00	1.00	
MB	xylenes (total)	1330-20-7	< 5.00	1	5.00	1.00	
MB	1,2-Dichloroethane-d4 (Surr)	17060-07-0	47.6	1			
МВ	4-Bromofluorobenzene (Surr)		40.5	1			
МВ	Dibromofluoromethane (Surr)	1868-53-7	48.1	1			
МВ	Toluene-d8 (Surr)	2037-26-5	47.7	1			

QC Type	: LCS/LCSD										
	Parameter	LCS Spk Amt	LCS Result	LCS % Rec	LCSD Spk Amt	LCSD Result	LCSD % Rec	RPD	RPD CtrlLimit	%Recovery CtrlLimit	Qual
LCSD	Ethylbenzene	50	52.4	105	50	48.6	97.2	7.50	40	50-150	
LCSD	Tetrachloroethylene	50	47.0	94.0	50	43.7	87.4	7.30	40	50-150	
LCSD	Trichloroethylene	50	50.9	102	50	47.8	95.6	6.30	40	50-150	
LCSD	xylenes (total)	150	160	106	150	149	99.7	6.88	40	50-150	
LCS	1,2-Dichloroethane-d4 (Surr)	50	46.8	93.7	50	46.1	92.2			50-150	
LCS	4-Bromofluorobenzene (Surr)	50	50.4	101	50	48.4	96.7			50-150	
LCS	Dibromofluoromethane (Surr)	50	47.8	95.6	50	46.6	93.1			50-150	
LCS	Toluene-d8 (Surr)	50	49.4	98.9	50	47.3	94.5			50-150	

QC Тур	pe: MS/MSD												
	QC Sample ID	Parameter	Sample Result	MS Søk Amt	MS Result	MS % Rec	MSD Spk Amt	MSD Result	MSD % Rec	RPD	RPD CtrlLimit	%Rec CtrlLimit	Qual
				-			•						Quui
MS	1608151.02	Ethylbenzene	< 1.00	50	52.4	105	50	52.2	104	0.40	40	50-150	
MS	1608151.02	Tetrachloroethylene	< 1.00	50	51.3	103	50	55.7	111	8.20	40	50-150	
MS	1608151.02	Trichloroethylene	< 1.00	50	49.8	99.6	50	49.5	99	0.60	40	50-150	
MS	1608151.02	xylenes (total)	< 1.00	150	159	106	150	159	106	0.23	40	50-150	
MS	1608151.02	1,2-Dichloroethane-d4 (Surr)		50	42.9	85.7	50	42.4	84.7			50-150	

RP16090102

JobID :

1608151

8725 Fawn Trail - The Woodlands, TX 77385 - www.NWDLS.com - (936) 321-6060

Analysi	s : Volatile Organic	Met	hod : SW8	46 82600	2			Units : ug/L					
QC Bat	ch ID : Qb16081704	ł											
Sample	es in This QC Batch	: 1608151.02,03,04,05,06,07,08											
QC Тур	e: MS/MSD		Sample	MS	MS	MS	MSD	MSD	MSD		RPD	%Rec	
	QC Sample ID	Parameter	Result	Spk Amt	Result	% Rec			% Rec	RPD	CtrlLimit	CtrlLimit	Qual
MS	1608151.02	4-Bromofluorobenzene (Surr)		50	50.6	101	50	50.4	101			50-150	
MS	1608151.02	Dibromofluoromethane (Surr)		50	43.8	87.6	50	43.5	87.1			50-150	
MS	1608151.02	Toluene-d8 (Surr)		50	48.4	96.7	50	47.8	95.6			50-150	

Refer to the Definition page for terms.

RP16090102

JobID :

1608151

8725 Fawn Trail - The Woodlands, TX 77385 - www.NWDLS.com - (936) 321-6060

Analysis : Volatile Organic Compounds	Method : SW846 8260C	Units : ug/L
QC Batch ID : Qb16081705		

Samples in This QC Batch : 1608151.09,10,11,12,13,14,15

QC Тур	pe: Method Blank						
	Parameter	CAS #	Result	DF	LRL	SDL	Qual
MB	Ethylbenzene	100-41-4	< 5.00	1	5.00	1.00	
MB	Tetrachloroethylene	127-18-4	< 5.00	1	5.00	1.00	
МВ	Trichloroethylene	79-01-6	< 5.00	1	5.00	1.00	
МВ	xylenes (total)	1330-20-7	< 5.00	1	5.00	1.00	
MB	1,2-Dichloroethane-d4 (Surr)	17060-07-0	48.0	1			
МВ	4-Bromofluorobenzene (Surr)		40.8	1			
МВ	Dibromofluoromethane (Surr)	1868-53-7	47.7	1			
MB	Toluene-d8 (Surr)	2037-26-5	47.7	1			

QC Туре	:: LCS/LCSD										
	Parameter	LCS Spk Amt	LCS Result	LCS % Rec	LCSD Spk Amt	LCSD Result	LCSD % Rec	RPD	RPD CtrlLimit	%Recovery CtrlLimit	Qual
LCSD	Ethylbenzene	50	55.6	111	50	53.2	106	4.40	40	50-150	
LCSD	Tetrachloroethylene	50	48.8	97.6	50	46.4	92.8	5.00	40	50-150	
LCSD	Trichloroethylene	50	49.5	99.0	50	46.6	93.2	6.00	40	50-150	
LCSD	xylenes (total)	150	169	113	150	165	110	2.53	40	50-150	
LCS	1,2-Dichloroethane-d4 (Surr)	50	49.6	99.2	50	50.3	101			50-150	
LCS	4-Bromofluorobenzene (Surr)	50	53.8	108	50	51.6	103			50-150	
LCS	Dibromofluoromethane (Surr)	50	49.8	100	50	48.7	97.3			50-150	
LCS	Toluene-d8 (Surr)	50	51.6	103	50	49.2	98.4			50-150	

QC Туре	e: MS/MSD												
	QC Sample ID	Parameter	Sample Result	MS Spk Amt	MS Result	MS % Rec	MSD Spk Amt	MSD Result	MSD % Rec	RPD	RPD CtrlLimit	%Rec CtrlLimit	Qual
MS	1608151.09	Ethylbenzene	< 1.00	50	59.3	119	50	54.3	109	8.80	40	50-150	
MS	1608151.09	Tetrachloroethylene	< 1.00	50	54.1	108	50	49.7	99.4	8.50	40	50-150	
MS	1608151.09	Trichloroethylene	< 1.00	50	53.7	107	50	50.2	100	6.70	40	50-150	
MS	1608151.09	xylenes (total)	< 1.00	150	179	119	150	163	109	9.47	40	50-150	
MS	1608151.09	1,2-Dichloroethane-d4 (Surr)		50	45.2	90.4	50	44.8	89.6			50-150	

RP16090102

JobID :

1608151

8725 Fawn Trail - The Woodlands, TX 77385 - www.NWDLS.com - (936) 321-6060

Analysi	lysis : Volatile Organic Compounds			hod : SW8	46 82600				Units : ug/L				
QC Bate	ch ID : Qb16081705	5											
Sample	s in This QC Batch	: 1608151.09,10,11,12,13,14,15											
QC Тур	e: MS/MSD		Sample	MS	MS	MS	MSD	MSD	MSD		RPD	%Rec	
	QC Sample ID	Parameter	Result	Spk Amt	Result	% Rec	Spk Amt	Result	% Rec	RPD	CtrlLimit	CtrlLimit	Qual
MS	1608151.09	4-Bromofluorobenzene (Surr)		50	50.4	101	50	50.1	100			50-150	
MS	1608151.09	Dibromofluoromethane (Surr)		50	45.8	91.6	50	46.1	92.1			50-150	
MS	1608151.09	Toluene-d8 (Surr)		50	49.0	98	50	49.7	99.4			50-150	

Refer to the Definition page for terms.

RP16090102

JobID :

1608151

8725 Fawn Trail - The Woodlands, TX 77385 - www.NWDLS.com - (936) 321-6060

Analysis : Volatile Organic Compounds	Method : SW846 8260C	Units : ug/kg dw
QC Batch ID : Qb16081706		

Samples in This QC Batch : 1608151.16,17,18,19,20,21,22

QC Typ	e: Method Blank						
	Parameter	CAS #	Result	DF	LRL	SDL	Qual
MB	Ethylbenzene	100-41-4	< 2.50	1	5.00	2.50	
MB	Tetrachloroethylene	127-18-4	< 2.50	1	5.00	2.50	
МВ	Trichloroethylene	79-01-6	< 2.50	1	5.00	2.50	
MB	xylenes (total)	1330-20-7	< 2.50	1	5.00	2.50	
MB	1,2-Dichloroethane-d4 (Surr)	17060-07-0	482	1			
МВ	4-Bromofluorobenzene (Surr)		414	1			
МВ	Dibromofluoromethane (Surr)	1868-53-7	475	1			
МВ	Toluene-d8 (Surr)	2037-26-5	485	1			

QC Туре	e: LCS/LCSD										
	Parameter	LCS Spk Amt	LCS Result	LCS % Rec	LCSD Spk Amt	LCSD Result	LCSD % Rec	RPD	RPD CtrlLimit	%Recovery CtrlLimit	Qual
LCSD	Ethylbenzene	5000	556	111	5000	515	103	8.00	40	70-130	
LCSD	Tetrachloroethylene	5000	497	99.4	5000	464	92.8	7.00	40	70-130	
LCSD	Trichloroethylene	5000	498	100	5000	464	92.8	7.00	40	70-130	
LCSD	xylenes (total)	15000	167	112	15000	157	105	6.41	40	70-130	
LCS	1,2-Dichloroethane-d4 (Surr)	5000	499	100	5000	483	96.6			50-150	
LCS	4-Bromofluorobenzene (Surr)	5000	522	104	5000	498	99.6			50-150	
LCS	Dibromofluoromethane (Surr)	5000	495	99.1	5000	477	95.4			50-150	
LCS	Toluene-d8 (Surr)	5000	523	105	5000	488	97.7			50-150	

QC Typ	e: MS/MSD												
	QC Sample ID	Parameter	Sample Result	MS Spk Amt	MS Result	MS % Rec	MSD Spk Amt	MSD Result	MSD % Rec	RPD	RPD CtrlLimit	%Rec CtrlLimit	Qual
MS	1608151.16	Ethylbenzene	< 2.50	5000	601	120	5000	564	113	6.00	40	70-130	
MS	1608151.16	Tetrachloroethylene	< 2.50	5000	557	111	5000	517	103	7.00	40	70-130	
MS	1608151.16	Trichloroethylene	< 2.50	5000	550	110	5000	511	102	7.00	40	70-130	
MS	1608151.16	xylenes (total)	< 2.50	15000	181	121	15000	171	114	5.34	40	70-130	
MS	1608151.16	1,2-Dichloroethane-d4 (Surr)		5000	424	84.8	5000	422	84.4			50-150	

RP16090102

JobID :

1608151

8725 Fawn Trail - The Woodlands, TX 77385 - www.NWDLS.com - (936) 321-6060

Analysi	Analysis : Volatile Organic Compounds		Met	hod : SW8	46 82600		Units : ug/kg dw						
QC Bate	ch ID : Qb16081706												
Sample	s in This QC Batch	: 1608151.16,17,18,19,20,21,22											
QC Тур	e: MS/MSD		Sample	MS	MS	MS	MSD	MSD	MSD		RPD	%Rec	
	QC Sample ID	Parameter	Result	Spk Amt	Result	% Rec	Spk Amt	Result	% Rec	RPD	CtrlLimit	CtrlLimit	Qual
MS	1608151.16	4-Bromofluorobenzene (Surr)		5000	504	101	5000	495	99			50-150	
MS	1608151.16	Dibromofluoromethane (Surr)		5000	443	88.5	5000	433	86.6			50-150	
MS	1608151.16	Toluene-d8 (Surr)		5000	491	98.2	5000	485	97			50-150	

Refer to the Definition page for terms.

RP16090102

JobID :

1608151

Analysis : Total Petroleum Hydrocarbons					Method : TCEQ 1005								Units : mg/kg dw						
QC Bate	ch ID : Qb16081707																		
Sample	s in This QC Batch	: 1608151.17,18																	
Sample	Preparation PB160	981704 Prep Method: TCE	Q 1005	Prep	Date:		By:	Emiller											
QC Тур	e: Method Blank																		
	Parameter					CAS #	Res	ult		DF	LRL	SD	L	(Qual				
МВ	TPH, C6-C35						< 5	0.0		1	50.0	10.	0						
MB	1-Chlorooctane (S	Surr)				111-85-3	25	59		1					ļ				
MB	1-Chlorooctadeca	ne (Surr)					24	15		1									
QC Тур	e: LCS/LCSD																		
	Parameter		LCS Spk Amt	LCS Result	LCS % Rec	LCSD Spk Amt	LCSD Resul		CSD Rec	RPD		RPD CtrlLimit	%Recov CtrlLin		Qual				
LCSD	TPH, C6-C35		500	519	104	500	603	-	121	14.91	L	20	60-14	0					
LCS	1-Chlorooctane (S	Surr)	250	252	101	250	280	:	112				70-13	0					
LCS	1-Chlorooctadeca	ne (Surr)	250	239	95.7	250	252	:	101				70-13	0					
QC Тур	e: MS/MSD																		
	QC Sample ID	Parameter			Sample Result	MS Spk Amt	MS Result	MS % Rec	MSD Spk Amt	MSD Result	MSD % Rec	RPD	RPD CtrlLimit	%Rec CtrlLimit	Qual				
MS	1608162.31	ТРН, С6-С35			243	500	225	-35.3	500	440	395	64.68	20	60-140	J1				
MS	1608162.31	1-Chlorooctane (Surr)				250	254	102	250	282	113			70-130					
MS	1608162.31	1-Chlorooctadecane (Surr)				250	275	110	250	271	108			70-130					

RP16090102

JobID :

1608151

Analysis	s : Total Petroleum	Hydrocarbons			Ме	thod : TCEQ	1005					Ur	its : mg/	L	
QC Bato	ch ID : Qb16081708														
Sample	s in This QC Batch	: 1608151.09,10,11,12,13,14,15	i												
Sample	Preparation PB160	81705 Prep Method: TCE	EQ 1005	Prep	Date:		By:	Emiller							
QC Туре	e: Method Blank														
	Parameter					CAS #	Res	sult		DF	LRL	SD	L		Qual
MB MB MB	TPH, C6-C35 1-Chlorooctane (S 1-Chlorooctadecar					111-85-3	24	10.0 1.3 1.8		1 1 1	10.0	3.2	2		-
QC Туре	e: LCS/LCSD		LCS Spk	LCS	LCS	LCSD Spk	LCSD		CSD			RPD	%Recov	(en)	
	Parameter		Amt	Result	% Rec	Amt	Resul		Rec	RPD		CtrlLimit	CtrlLin		Qual
lcsd lcs lcs	TPH, C6-C35 1-Chlorooctane (S 1-Chlorooctadecar	•	66.67 33.33 33.33	65.6 32.0 29.3	98.4 96.0 87.9	66.67 33.33 33.33	53.1 28.9 28.6	8	9.6 6.7 5.9	21.02	2	20	75-12 70-13 70-13	0	J1
QC Туре	e: MS/MSD QC Sample ID	Parameter			Sample Result	MS Spk Amt	MS Result	MS % Rec	MSD Spk Amt	MSD Result	MSD % Rec	RPD	RPD CtrlLimit	%Rec CtrlLimit	: Qual
MS MS MS	1608162.02 1608162.02 1608162.02	TPH, C6-C35 1-Chlorooctane (Surr) 1-Chlorooctadecane (Surr)			< 3.22	66.67 33.33 33.33	70.8 33.7 29.4	106 101 88.1	66.67 33.33 33.33	53.9 28.5 28.0	80.8 85.4 83.9	27.21	20	75-125 70-130 70-130	J1

RP16090102

JobID :

1608151

Analysi	s : Total Petroleum			Me	thod : TCEQ	1005				Units : mg/kg dw						
QC Bate	ch ID : Qb16081709)														
Sample	s in This QC Batch	: 1608151.16,19,20,21,22														
Sample	Preparation PB160	081706 Prep Method: TCE	Q 1005	Prep	Date:		By:	Emiller								
QC Тур	e: Method Blank															
	Parameter					CAS #	Res	sult		DF	LRL	SD	L	(Qual	
MB	TPH, C6-C35							50.0		1	50.0	10	0			
MB MB	1-Chlorooctane (S 1-Chlorooctadeca	•				111-85-3	22 21			1 1						
															<u> </u>	
QC Тур	e: LCS/LCSD															
	Parameter		LCS Spk Amt	LCS Result	LCS % Rec	LCSD Spk Amt	LCSE Resul		.CSD b Rec	RPD		RPD CtrlLimit	%Recov CtrlLin		Qual	
LCSD	TPH, C6-C35		500	477	95.4	500	530		106	10.53	}	20	60-14	0		
LCS	1-Chlorooctane (S		250	258	103	250	260		104				70-13	0		
LCS	1-Chlorooctadeca	ne (Surr)	250	255	102	250	241	(96.3				70-13	0		
QC Тур	e: MS/MSD															
	QC Sample ID	Parameter			Sample Result	MS Spk Amt	MS Result	MS % Rec	MSD Spk Amt	MSD Result	MSD % Rec	RPD	RPD CtrlLimit	%Rec CtrlLimit	Qual	
MS	1608162.23	ТРН, С6-С35			10.2	500	301	58.2	500	374	72.8	21.49	20	60-140	J1	
MS	1608162.23	1-Chlorooctane (Surr)				250	170	68.1	250	208	83.1			70-130	S	
MS	1608162.23	1-Chlorooctadecane (Surr)				250	135	53.9	250	168	67.1			70-130	S	

RP16090102

JobID :

1608151

Analysi	s : Organochlorine Pesticides	;	Method : SW84	l6 8081B		Units : ug/kg dw				
QC Bat	ch ID : Qb16081806									
Sample	s in This QC Batch : 160815	51.16,17,18,19,20,21,22								
Sample	Preparation PB16081803	Prep Method: SW846 3570	Prep Date:	By: Sotruba						
QC Тур	e: Method Blank									
	Parameter		CAS #	Result	DF	LRL	SDL	Qual		
MB	4,4-DDD		72-54-8	< 0.300	1	0.300	0.150			
мв	4,4-DDE		72-55-9	< 0.300	1	0.300	0.150			
МВ	4,4-DDT		50-29-3	< 0.300	1	0.300	0.150			
МВ	a-BHC		319-84-6	< 0.300	1	0.300	0.150			
MB	a-Chlordane		5103-71-9	< 0.300	1	0.300	0.150			
MB	Aldrin		309-00-2	< 0.300	1	0.300	0.150			
МВ	b-BHC		319-85-7	< 0.300	1	0.300	0.150			
МВ	Chlordane		57-74-9	< 0.300	1	0.300	0.150			
МВ	d-BHC		319-86-8	< 0.300	1	0.300	0.150			
MB	Dieldrin		60-57-1	< 0.300	1	0.300	0.150			
MB	Endosulfan I		959-98-8	< 0.300	1	0.300	0.150			
MB	Endosulfan II		33213-65-9	< 0.300	1	0.300	0.150			
MB	Endosulfan sulfate		1031-07-8	< 0.300	1	0.300	0.150			
MB	Endrin		72-20-8	< 0.300	1	0.300	0.150			
MB	Endrin aldehyde		7421-93-4	< 0.300	1	0.300	0.150			
MB	Endrin ketone		53494-70-5	< 0.300	1	0.300	0.150			
MB	g-BHC		58-89-9	< 0.300	1	0.300	0.150			
МВ	Heptachlor		76-44-8	< 0.300	1	0.300	0.150			
MB	Heptachlor epoxide		1024-57-3	< 0.300	1	0.300	0.150			
MB	Toxaphene		8001-35-2	< 0.300	1	0.300	0.150			
МВ	y-Chlordane		5103-74-2	< 0.300	1	0.300	0.150			
MB	Decachlorobiphenyl (Surr)		2051-24-3	6.09	1					
MB	2,4,5,6 Tetrachloro-m-xylene	e (Surr)		6.72	1					

QC Type:	: LCS/LCSD										
		LCS Spk	LCS	LCS	LCSD Spk	LCSD	LCSD		RPD	%Recovery	
	Parameter	Amt	Result	% Rec	Amt	Result	% Rec	RPD	CtrlLimit	CtrlLimit	Qual
LCSD	4,4-DDD	6	6.14	102	6	6.25	104	1.78	40	60-140	
LCSD	4,4-DDE	6	5.83	97.2	6	5.95	99.2	2.04	40	60-140	

RP16090102

JobID :

1608151

Analysis : Organochlorine Pesticides	Method : SW846 8081B	Units : ug/kg dw
QC Batch ID : Qb16081806		
Samples in This QC Batch : 1608151.16,17,18,19,20,21,22		

QC Type	e: LCS/LCSD										
	Parameter	LCS Spk Amt	LCS Result	LCS % Rec	LCSD Spk Amt	LCSD Result	LCSD % Rec	RPD	RPD CtrlLimit	%Recovery CtrlLimit	Qual
LCSD	4,4-DDT	6	6.51	109	6	6.50	108	0.15	40	60-140	
LCSD	a-BHC	6	6.80	113	6	6.68	111	1.78	40	60-140	
LCSD	Aldrin	6	6.87	115	6	6.86	114	0.15	40	60-140	
LCSD	b-BHC	6	6.26	104	6	6.21	104	0.80	40	60-140	
LCSD	Chlordane	36	23.5	65.3	36	23.7	65.8	0.80	40	60-140	
LCSD	d-BHC	6	6.83	114	6	6.54	109	4.34	40	60-140	
LCSD	Dieldrin	6	6.23	104	6	6.39	107	2.54	40	60-140	
LCSD	Endosulfan I	6	5.86	97.7	6	5.99	99.8	2.19	40	60-140	
LCSD	Endosulfan II	6	5.50	91.7	6	5.61	93.5	1.98	40	60-140	
LCSD	Endosulfan sulfate	6	5.20	86.7	6	5.30	88.3	1.90	40	60-140	
LCSD	Endrin	6	4.85	80.8	6	4.76	79.3	1.87	40	60-140	
LCSD	Endrin aldehyde	6	4.81	80.2	6	5.01	83.5	4.07	40	60-140	
LCSD	Endrin ketone	6	6.59	110	6	6.79	113	2.99	40	60-140	
LCSD	g-BHC	6	6.90	115	6	6.80	113	1.46	40	60-140	
LCSD	Heptachlor	6	6.91	115	6	6.73	112	2.64	40	60-140	
LCSD	Heptachlor epoxide	6	6.02	100	6	6.12	102	1.65	40	60-140	
LCSD	Toxaphene	60	54.5	90.8	60	64.3	107	16.58	40	60-140	
LCS	Decachlorobiphenyl (Surr)	6.00	5.42	90.3	6.00	5.82	97			60-140	
LCS	2,4,5,6 Tetrachloro-m-xylene (Surr)	6.00	5.04	84.0	6.00	4.87	81.2			60-140	

QC Тур	e: MS/MSD												
	QC Sample ID	Parameter	Sample Result	MS Spk Amt	MS Result	MS % Rec	MSD Spk Amt	MSD Result	MSD % Rec	RPD	RPD CtrlLimit	%Rec CtrlLimit	Qual
MS	1608151.17	4,4-DDD	< 0.366	6	6.84	114	6	6.81	114	0.44	40	60-140	
MS	1608151.17	4,4-DDE	< 0.366	6	6.48	108	6	6.12	102	5.71	40	60-140	
MS	1608151.17	4,4-DDT	< 0.366	6	6.93	116	6	6.96	116	0.43	40	60-140	
MS	1608151.17	a-BHC	< 0.366	6	6.69	112	6	6.75	113	0.89	40	60-140	
MS	1608151.17	a-Chlordane	< 0.366	6	6.64	111	6	6.32	105	4.94	40	60-140	
MS	1608151.17	Aldrin	< 0.366	6	6.89	115	6	6.76	113	1.90	40	60-140	
MS	1608151.17	b-BHC	< 0.366	6	7.87	131	6	7.85	131	0.25	40	60-140	
MS	1608151.17	Chlordane	< 0.366	36	26.0	72.2	36	24.5	68.1	5.90	40	60-140	

RP16090102

JobID :

1608151

Analysis : Organochlorine Pesticides	Method : SW846 8081B	Units : ug/kg dw
QC Batch ID : Qb16081806		
Samples in This QC Batch : 1608151.16,17,18,19,20,21,22		

QC Тур	e: MS/MSD												
	QC Sample ID	Parameter	Sample Result	MS Spk Amt	MS Result	MS % Rec	MSD Spk Amt	MSD Result	MSD % Rec	RPD	RPD CtrlLimit	%Rec CtrlLimit	Qual
MS	1608151.17	d-BHC	< 0.366	6	8.18	136	6	7.93	132	3.10	40	60-140	
MS	1608151.17	Dieldrin	< 0.366	6	6.78	113	6	6.59	110	2.84	40	60-140	
MS	1608151.17	Endosulfan II	< 0.366	6	5.79	96.5	6	5.76	96	0.52	40	60-140	
MS	1608151.17	Endosulfan sulfate	< 0.366	6	5.67	94.5	6	5.61	93.5	1.06	40	60-140	
MS	1608151.17	Endrin	< 0.366	6	5.89	98.2	6	5.43	90.5	8.13	40	60-140	
MS	1608151.17	Endrin aldehyde	< 0.366	6	4.99	83.2	6	4.87	81.2	2.43	40	60-140	
MS	1608151.17	Endrin ketone	< 0.366	6	6.87	115	6	6.94	116	1.01	40	60-140	
MS	1608151.17	g-BHC	< 0.366	6	6.42	107	6	6.54	109	1.85	40	60-140	
MS	1608151.17	Heptachlor	< 0.366	6	7.21	120	6	6.66	111	7.93	40	60-140	
MS	1608151.17	Heptachlor epoxide	< 0.366	6	6.69	112	6	6.60	110	1.35	40	60-140	
MS	1608151.17	y-Chlordane	< 0.366	6	7.49	125	6	6.75	113	10.39	40	60-140	
MS	1608151.17	Decachlorobiphenyl (Surr)		6.00	5.84	97.3	6.00	6.06	101			60-140	
MS	1608151.17	2,4,5,6 Tetrachloro-m-xylene (Surr)		6.00	3.96	66	6.00	3.72	62			60-140	

RP16090102

JobID :

1608151

8725 Fawn Trail - The Woodlands, TX 77385 - www.NWDLS.com - (936) 321-6060

Analysis : Chromium, Dissolved Hexavalent	Method : SM 3500-Cr B	Units : ug/L
QC Batch ID : Qb16081813		
Samples in This QC Batch : 1608151.01,02,03,04,05,06,07,08		

QC Type	e: Method Blank														
	Parameter					CAS #	Res	sult		DF	LRL	SD	L	C	Qual
MB	Chromium, Hexav	valent					< 3	.00		1	3.00	1.5	0		
t															
QC Туре	e: LCS/LCSD														
	Parameter		LCS Spk Amt	LCS Result	LCS % Rec	LCSD Spk Amt	LCSD Resul		CSD Rec	RPD		RPD CtrlLimit	%Recov CtrlLin		Qual
LCS	Chromium, Hexav	valent	250	266	106								90-11	.0	
QC Type	e: MS/MSD														
	QC Sample ID	Parameter			Sample Result	MS Spk Amt	MS Result	MS % Rec	MSD Spk Amt	MSD Result	MSD % Rec	RPD	RPD CtrlLimit	%Rec CtrlLimit	Qual
MS	1608151.01	Chromium, Hexavalent			< 1.50	250	251	101	250	240	95.9	4.80	15	85-115	

JobID :

1608151

8725 Fawn Trail - The Woodlands, TX 77385 - www.NWDLS.com - (936) 321-6060

Analysis : Chromium, Dissolved Hexavalent	Method : SM 3500-Cr B	Units : ug/L
QC Batch ID : Qb16081814		
Samples in This QC Batch : 1608151.09,10,11,12,13,14,15		

QC Type	e: Method Blank														
	Parameter					CAS #	Res	sult		DF	LRL	SD	L	(Qual
MB	Chromium, Hexa	valent					< 3	.00		1	3.00	1.5	50		
_															
QC Type	e: LCS/LCSD														
	Parameter		LCS Spk Amt	LCS Result	LCS % Rec	LCSD Spk Amt	LCSD Resul		CSD Rec	RPD		RPD CtrlLimit	%Recov CtrlLin		Qual
LCS	Chromium, Hexa	valent	250	239	95.6								90-11	.0	
QC Type	e: MS/MSD														
	QC Sample ID	Parameter			Sample Result	MS Spk Amt	MS Result	MS % Rec	MSD Spk Amt	MSD Result	MSD % Rec	RPD	RPD CtrlLimit	%Rec CtrlLimit	Qual
MS	1608151.09	Chromium, Hexavalent			< 1.50	250	245	97.8	250	241	96.4	1.50	15	85-115	

Refer to the Definition page for terms.

RP16090102

RP16090102

JobID :

1608151

8725 Fawn Trail - The Woodlands, TX 77385 - www.NWDLS.com - (936) 321-6060

Analysi	is : Cyanide, Tota	I				Me	thod : SM 4	500-CN C	C, E				U	nits : mg/	L	
QC Bat	ch ID : Qb160818	319														
Sample	es in This QC Batc	h : 1608151.0	02,03,04,05,06,	.07,08,09,10,11,12,1	3,14,15											
Sample	e Preparation PB:	16081811	Prep Method	I: SM 4500-CN C	Prep	Date:		By: /	Arazo							
QC Тур	pe: Method Blank															
	Parameter						CAS #	Res	ult		DF	LRL	SD	L		Qual
MB	Cyanide, Total							< 0.	010		1	0.010	0.0	05		
QC Typ	oe: Duplicate															
	QC Sample ID	Parameter				Result	QC Sample	e Result			RPD	RPD Ct	rl Limits		Q	ual
DUP	1608151.02	Cyanide, To	otal			< 0.005	< 0.0	05			NaN	Ĩ	20			
QC Typ	e: LCS/LCSD															
	Parameter			LCS Spk Amt	LCS Result	LCS % Rec	LCSD Spk Amt	LCSD Result		CSD Rec	RPD)	RPD CtrlLimit	%Recov CtrlLin		Qual
LCS	Cyanide, Total			0.1	0.102	102								90-11	LO	
QC Typ	pe: MS/MSD															
	QC Sample ID	Parameter				Sample Result	MS Spk Amt	MS Result	MS % Rec	MSD Spk Amt	MSD Result	MSD % Rec	RPD	RPD CtrlLimit	%Rec CtrlLimit	t Qua
MS	1608151.02	Cyanide, To	tal				0.1	0.0948	94.8	F	0.0948				80-120	_

RP16090102

JobID :

1608151

8725 Fawn Trail - The Woodlands, TX 77385 - www.NWDLS.com - (936) 321-6060

Analysis : Total Organic Carbon	Method : EPA 415.1	Units : %
QC Batch ID : Qb16081821		

Samples in This QC Batch : 1608151.02,03,04,05,06,07,08,09,10,11,12,13,14,15

QC Type	: Method Blank						
	Parameter	CAS #	Result	DF	LRL	SDL	Qual
MB	Total Organic Carbon		< 0.0001	1	0.0001	0.00005	
MB2	Total Organic Carbon		< 0.0001	1	0.0001	0.00005	
MB3	Total Organic Carbon		< 0.0001	1	0.0001	0.00005	

QC Ty	/pe: MS/MSD												
			Sample	MS	MS	MS	MSD	MSD	MSD		RPD	%Rec	
	QC Sample ID	Parameter	Result	Spk Amt	Result	% Rec	Spk Amt	Result	% Rec	RPD	CtrlLimit	CtrlLimit	Qual
MS	1608151.02	Total Organic Carbon	0.000276	0.005	0.00551	105	0.005	0.00537	102	2.59	15	85-115	

RP16090102

JobID :

1608151

8725 Fawn Trail - The Woodlands, TX 77385 - www.NWDLS.com - (936) 321-6060

Analysis : Ammonia as Nitrogen	Method : SM 4500-NH3 D	Units : mg/L
QC Batch ID : Qb16081824		
Samples in This QC Batch : 1608151.02,03,04,05,06,07,08,09,10,11,12,13,14,15		

QC Typ	e: Method Blank														
	Parameter					CAS #	Res	sult		DF	LRL	SD	DL	C	Qual
MB	Ammonia as N						< 0.	.100		1	0.100	0.0	50		
QC Typ	e: LCS/LCSD														
	Parameter		LCS Spk Amt	LCS Result	LCS % Rec	LCSD Spk Amt	LCSD Resul		CSD Rec	RPD)	RPD CtrlLimit	%Recov CtrlLin		Qual
LCS	Ammonia as N		5.00	4.68	93.6								90-11	0	
QC Typ	e: MS/MSD														
	QC Sample ID	Parameter			Sample Result	MS Spk Amt	MS Result	MS % Rec	MSD Spk Amt	MSD Result	MSD % Rec	RPD	RPD CtrlLimit	%Rec CtrlLimit	Qual
MS	1608151.02	Ammonia as N			0.0462	5.00	4.88	96.7	5.00	4.79	94.9	1.86	30	70-130	

RP16090102

JobID :

1608151

Analysi	s : Semivolatile Organic Compounds	Method : SW8	346 8270D			Units : ug/	L
QC Bate	ch ID : Qb16081826						
Sample	s in This QC Batch : 1608151.02,03,04,05,06,07,08						
Sample	Preparation PB16081812 Prep Method: SW846 3511	Prep Date:	By: Jlanham				
QC Тур	e: Method Blank						
	Parameter	CAS #	Result	DF	LRL	SDL	Qual
MB	1,2,4-Trichlorobenzene	120-82-1	< 0.562	1	0.562	0.281	
MB	1,2-Dichlorobenzene	95-50-1	< 0.562	1	0.562	0.281	
MB	1,2-Diphenylhydrazine as Azobenzene	122-66-7	< 0.562	1	0.562	0.281	
МВ	1,3-Dichlorobenzene	541-73-1	< 0.562	1	0.562	0.281	
MB	1,4-Dichlorobenzene	106-46-7	< 0.562	1	0.562	0.281	
МВ	2,4,6-Trichlorophenol	88-06-2	< 1.12	1	1.12	0.56	
МВ	2,4-Dichlorophenol	120-83-2	< 1.12	1	1.12	0.56	
МВ	2,4-Dimethylphenol	105-67-9	< 1.12	1	1.12	0.56	
мв	2,4-Dinitrophenol	51-28-5	< 18.0	1	18.0	9.00	
мв	2,4-Dinitrotoluene	121-14-2	< 0.562	1	0.562	0.281	
МВ	2,6-Dinitrotoluene	606-20-2	< 0.562	1	0.562	0.281	
МВ	2-Chloronaphthalene	91-58-7	< 0.562	1	0.562	0.281	
мв	2-Chlorophenol	95-57-8	< 1.12	1	1.12	0.56	
МВ	2-Methylnaphthalene	91-57-6	< 0.562	1	0.562	0.281	
МВ	2-Methylphenol	95-48-7	< 1.12	1	1.12	0.56	
мв	2-Nitrophenol	88-75-5	< 1.12	1	1.12	0.56	
МВ	3,3-Dichlorobenzidine	91-94-1	< 0.562	1	0.562	0.281	
МВ	4,6-Dinitro-2-methylphenol	534-52-1	< 1.12	1	1.12	0.56	
мв	4-Bromophenyl phenyl ether	101-55-3	< 0.562	1	0.562	0.281	
мв	4-Chloro-3-methylphenol	59-50-7	< 1.12	1	1.12	0.56	
мв	4-Chlorophenyl phenyl ether	7005-72-3	< 0.562	1	0.562	0.281	
мв	4-Methylphenol	106-44-5	< 1.12	1	1.12	0.56	
МВ	4-Nitrophenol	100-02-7	< 1.12	1	1.12	0.56	
мв	Acenaphthene	83-32-9	< 0.562	1	0.562	0.281	
мв	Acenaphthylene	208-96-8	< 0.562	1	0.562	0.281	
мв	Anthracene	120-12-7	< 0.562	1	0.562	0.281	
MB	Benzidine	92-87-5	< 0.562	1	0.562	0.281	
мв	Benzo(a)anthracene	56-55-3	< 0.562	1	0.562	0.281	
MB	Benzo(a)pyrene	50-32-8	< 0.562	1	0.562	0.281	
MB	Benzo(b)fluoranthene	205-99-2	< 0.562	1	0.562	0.281	

RP16090102

JobID :

1608151

Analysis : Semivolatile Organic Compounds	Method : SW846 8270D	Units : ug/L
QC Batch ID : Qb16081826		
Samples in This QC Batch : 1608151.02,03,04,05,06,07,08		

QC Typ	e: Method Blank						
	Parameter	CAS #	Result	DF	LRL	SDL	Qual
MB	Benzo(g,h,i)perylene	191-24-2	< 0.562	1	0.562	0.281	
MB	Benzo(k)fluoranthene	207-08-9	< 0.562	1	0.562	0.281	
MB	Benzoic acid	65-85-0	< 0.562	1	0.562	0.281	
MB	Benzyl alcohol	100-51-6	< 0.562	1	0.562	0.281	
MB	Bis(2-chloroethoxy) methane	111-91-1	< 0.562	1	0.562	0.281	
MB	Bis(2-chloroethyl) ether	111-44-4	< 0.562	1	0.562	0.281	
MB	Bis(2-chloroisopropyl) ether	108-60-1	< 0.562	1	0.562	0.281	
MB	Bis(2-ethylhexyl)phthalate	117-81-7	< 0.562	1	0.562	0.281	
MB	Butyl benzyl phthalate	85-68-7	< 0.562	1	0.562	0.281	
MB	Chrysene	218-01-9	< 0.562	1	0.562	0.281	
MB	Dibenzo(a,h)anthracene	53-70-3	< 0.562	1	0.562	0.281	
MB	Dibenzofuran	132-64-9	< 0.562	1	0.562	0.281	
MB	Diethyl phthalate	84-66-2	< 0.562	1	0.562	0.281	
MB	Dimethyl phthalate	131-11-3	< 0.562	1	0.562	0.281	
MB	Di-n-butyl phthalate	84-74-2	< 0.562	1	0.562	0.281	
MB	Di-n-octyl Phthalate	117-84-0	< 0.562	1	0.562	0.281	
MB	Fluoranthene	206-44-0	< 0.562	1	0.562	0.281	
MB	Fluorene	86-73-7	< 0.562	1	0.562	0.281	
MB	Hexachlorobenzene	118-74-1	< 0.562	1	0.562	0.281	
MB	Hexachlorobutadiene	87-68-3	< 0.562	1	0.562	0.281	
MB	Hexachlorocyclopentadiene	77-47-4	< 0.562	1	0.562	0.281	
MB	Hexachloroethane	67-72-1	< 0.562	1	0.562	0.281	
MB	Indeno(1,2,3-cd)pyrene	193-39-5	< 0.562	1	0.562	0.281	
MB	Isophorone	78-59-1	< 0.562	1	0.562	0.281	
MB	Naphthalene	91-20-3	< 0.562	1	0.562	0.281	
MB	Nitrobenzene	98-95-3	< 0.562	1	0.562	0.281	
MB	n-Nitrosodimethylamine	62-75-9	< 0.562	1	0.562	0.281	
MB	n-nitroso-di-n-propylamine	621-64-7	< 0.562	1	0.562	0.281	
MB	n-Nitrosodiphenylamine	86-30-6	< 0.562	1	0.562	0.281	
MB	Pentachlorophenol	87-86-5	< 1.12	1	1.12	0.56	
MB	Phenanthrene	85-01-8	< 0.562	1	0.562	0.281	
MB	Phenol	108-95-2	< 1.12	1	1.12	0.56	

JobID :

1608151

Analysis : Semivolatile Organic Compounds	Method : SW846 8270D	Units : ug/L
QC Batch ID : Qb16081826		
Samples in This QC Batch : 1608151.02,03,04,05,06,07,08		

QC Тур	e: Method Blank						
	Parameter	CAS #	Result	DF	LRL	SDL	Qual
MB	Pyrene	129-00-0	< 0.562	1	0.562	0.281	
MB	2-Fluorophenol (Surr)	367-12-4	30.8	1			S
MB	Phenol-d5 (Surr)		15.6	1			
MB	Nitrobenzene-d5 (Surr)	4165-60-0	10.6	1			
MB	2-Fluorobiphenyl (Surr)	132-60-8	9.44	1			
MB	2,4,6-Tribromophenol (Surr)	118-79-6	27.2	1			
МВ	Terphenyl-d14 (Surr)		12.1	1			

QC Type	e: LCS/LCSD										
	Parameter	LCS Spk Amt	LCS Result	LCS % Rec	LCSD Spk Amt	LCSD Result	LCSD % Rec	RPD	RPD CtrlLimit	%Recovery CtrlLimit	Qual
LCSD	1,2,4-Trichlorobenzene	40.0	13.0	32.4	10	12.5	125	3.54	40	60-140	J1
LCSD	1,2-Dichlorobenzene	40.0	10.2	25.5	10	4.53	45.3	76.82	40	60-140	J1
LCSD	1,2-Diphenylhydrazine as Azobenzene	40.0	37.4	93.5	10	32.7	327	13.44	40	60-140	J1
LCSD	1,3-Dichlorobenzene	40.0	10.7	26.8	10	8.83	88.3	19.34	40	60-140	J1
LCSD	1,4-Dichlorobenzene	40.0	8.62	21.6	10	8.01	80.1	7.34	40	60-140	J1
LCSD	2,4,6-Trichlorophenol	80.0	17.9	22.4	20	8.39	42	72.44	40	60-140	J1
LCSD	2,4-Dichlorophenol	80.0	31.8	39.8	20	30.0	150	5.92	40	60-140	J1
LCSD	2,4-Dimethylphenol	80.0	24.0	30.0	20	42.0	210	54.62	40	60-140	J1
LCSD	2,4-Dinitrophenol	80.0	44.3	55.4	20	40.1	201	10.02	40	60-140	J1
LCSD	2,4-Dinitrotoluene	40.0	12.0	30.1	10	10.6	106	12.80	40	60-140	J1
LCSD	2,6-Dinitrotoluene	40.0	6.86	17.2	10	6.14	61.4	11.08	40	60-140	J1
LCSD	2-Chloronaphthalene	40.0	14.9	37.2	10	13.4	134	10.40	40	60-140	J1
LCSD	2-Chlorophenol	80.0	27.1	33.9	20	22.7	114	17.67	40	60-140	J1
LCSD	2-Methylnaphthalene	40.0	13.5	33.8	10	17.6	176	26.29	40	60-140	J1
LCSD	2-Methylphenol	80.0	34.6	43.3	20	27.7	139	22.26	40	60-140	J1
LCSD	2-Nitrophenol	80.0	22.9	28.6	20	16.3	81.5	33.50	40	60-140	J1
LCSD	3,3-Dichlorobenzidine	40.0	10.8	27.0	10	9.11	91.1	17.07	40	60-140	J1
LCSD	4,6-Dinitro-2-methylphenol	80.0	31.4	39.3	20	30.4	152	3.38	40	60-140	J1
LCSD	4-Bromophenyl phenyl ether	40.0	23.4	58.4	10	20.2	203	14.47	40	60-140	J1
LCSD	4-Chloro-3-methylphenol	80.0	42.2	52.8	20	26.3	131	46.49	40	60-140	J1

RP16090102

JobID :

1608151

Analysis : Semivolatile Organic Compounds				Me	thod : SW840	6 8270D			Un	its : ug/L	
QC Bato	h ID : Qb16081826										
Samples	in This QC Batch : 1608151.02,03,04,05,06,07,08										
QC Type	e: LCS/LCSD										
	Parameter	LCS Spk Amt	LCS Result	LCS % Rec	LCSD Spk Amt	LCSD Result	LCSD % Rec	RPD	RPD CtrlLimit	%Recovery CtrlLimit	Qual
LCSD	4-Chlorophenyl phenyl ether	40.0	13.7	34.2	10	11.9	119	13.99	40	60-140	J1
LCSD	4-Methylphenol	80.0	45.8	57.2	20	35.8	179	24.47	40	60-140	J1
LCSD	4-Nitrophenol	80.0	45.8	57.3	20	36.9	185	21.59	40	60-140	J1
LCSD	Acenaphthene	40.0	10.3	25.8	10	9.10	91	12.66	40	60-140	J1
LCSD	Acenaphthylene	40.0	11.8	29.5	10	10.5	105	11.49	40	60-140	J1
LCSD	Anthracene	40.0	14.7	36.8	10	12.8	128	13.82	40	60-140	J1
LCSD	Benzidine	10	7.10	71.0	10	10.6	106	39.55	40	60-140	
LCSD	Benzo(a)anthracene	40.0	11.6	29.1	10	10.1	101	14.08	40	60-140	J1
LCSD	Benzo(a)pyrene	40.0	11.7	29.2	10	10.4	104	11.68	40	60-140	J1
LCSD	Benzo(b)fluoranthene	40.0	10.3	25.8	10	9.17	91.7	11.61	40	60-140	J1
LCSD	Benzo(g,h,i)perylene	40.0	11.2	27.9	10	9.89	98.9	11.98	40	60-140	J1
LCSD	Benzo(k)fluoranthene	40.0	11.9	29.7	10	10.7	107	10.37	40	60-140	J1
LCSD	Benzoic acid	40.0	11.7	29.3	10	5.96	59.6	65.01	40	60-140	J1
LCSD	Benzyl alcohol	40.0	18.2	45.5	10	16.2	162	11.68	40	60-140	J1
LCSD	Bis(2-chloroethoxy) methane	40.0	9.47	23.7	10	7.79	77.9	19.47	40	60-140	J1
LCSD	Bis(2-chloroethyl) ether	40.0	9.24	23.1	10	9.17	91.7	0.76	40	60-140	J1
LCSD	Bis(2-chloroisopropyl) ether	40.0	8.83	22.1	10	7.71	77.1	13.54	40	60-140	J1
LCSD	Bis(2-ethylhexyl)phthalate	40.0	14.5	36.2	10	12.7	127	13.10	40	60-140	J1
LCSD	Butyl benzyl phthalate	40.0	20.7	51.8	10	18.4	184	11.76	40	60-140	J1
LCSD	Chrysene	40.0	13.3	33.2	10	11.4	114	15.31	40	60-140	J1
LCSD	Dibenzo(a,h)anthracene	40.0	11.4	28.5	10	10.7	107	6.25	40	60-140	J1
LCSD	Dibenzofuran	40.0	12.3	30.8	10	10.5	105	16.03	40	60-140	J1
LCSD	Diethyl phthalate	40.0	14.4	35.9	10	12.4	124	14.72	40	60-140	J1
LCSD	Dimethyl phthalate	40.0	13.4	33.5	10	11.4	114	16.13	40	60-140	J1
LCSD	Di-n-butyl phthalate	40.0	19.1	47.8	10	16.2	162	16.53	40	60-140	J1
LCSD	Di-n-octyl Phthalate	40.0	15.8	39.6	10	14.4	144	9.40	40	60-140	J1
LCSD	Fluoranthene	40.0	18.7	46.8	10	15.9	159	16.29	40	60-140	J1
LCSD	Fluorene	40.0	11.9	29.8	10	10.4	104	13.70	40	60-140	J1
LCSD	Hexachlorobenzene	40.0	12.0	29.9	10	9.67	96.7	21.26	40	60-140	J1
LCSD	Hexachlorobutadiene	40.0	11.3	28.2	10	8.82	88.2	24.39	40	60-140	J1
LCSD	Hexachlorocyclopentadiene	10	1.74	17.4	10	1.72	17.2	1.16	40	60-140	J1
LCSD	Hexachloroethane	40.0	13.2	33.1	10	9.22	92.2	35.65	40	60-140	J1

RP16090102

JobID :

1608151

8725 Fawn Trail - The Woodlands, TX 77385 - www.NWDLS.com - (936) 321-6060

Analysis	s : Semivolatile Organic Compounds			Me	Units : ug/L						
QC Bato	h ID : Qb16081826										
Samples	s in This QC Batch : 1608151.02,03,04,05,06,07,08										
QC Туре	e: LCS/LCSD										
	Parameter	LCS Spk Amt	LCS Result	LCS % Rec	LCSD Spk Amt	LCSD Result	LCSD % Rec	RPD	RPD CtrlLimit	%Recovery CtrlLimit	Qual
LCSD	Indeno(1,2,3-cd)pyrene	40.0	9.87	24.7	10	8.79	87.9	11.58	40	60-140	J1
LCSD	Isophorone	40.0	8.41	21.0	10	6.52	65.2	25.32	40	60-140	J1
LCSD	Naphthalene	40.0	12.7	31.7	10	12.6	126	0.71	40	60-140	J1
LCSD	Nitrobenzene	40.0	13.4	33.6	10	14.8	148	9.78	40	60-140	J1
LCSD	n-Nitrosodimethylamine	40.0	8.13	20.3	10	7.86	78.6	3.38	40	60-140	J1
LCSD	n-nitroso-di-n-propylamine	40.0	9.26	23.2	10	8.61	86.1	7.27	40	60-140	J1
LCSD	n-Nitrosodiphenylamine	40.0	12.5	31.2	10	10.8	108	14.51	40	60-140	J1
LCSD	Pentachlorophenol	80.0	44.5	55.6	20	20.6	103	73.41	40	60-140	J1
LCSD	Phenanthrene	40.0	11.7	29.2	10	9.90	99	16.41	40	60-140	J1
LCSD	Phenol	80.0	17.6	22.0	20	15.0	75.2	15.95	40	60-140	J1
LCSD	Pyrene	40.0	13.7	34.2	10	11.6	116	16.46	40	60-140	J1
LCS	2-Fluorophenol (Surr)	20	32.9	164	20	24.1	120			60-140	S
LCS	Phenol-d5 (Surr)	20	15.5	77.6	20	16.0	80			60-140	
LCS	Nitrobenzene-d5 (Surr)	10	10.2	102	10	10.6	106			60-140	
LCS	2-Fluorobiphenyl (Surr)	10	10.4	104	10	9.08	90.8			60-140	
LCS	2,4,6-Tribromophenol (Surr)	20	24.1	121	20	25.2	126			60-140	
LCS	Terphenyl-d14 (Surr)	10	10.3	103	10	8.98	89.8			60-140	

QC Тур	e: MS/MSD												
	QC Sample ID	Parameter	Sample Result	MS Spk Amt	MS Result	MS % Rec	MSD Spk Amt	MSD Result	MSD % Rec	RPD	RPD CtrlLimit	%Rec CtrlLimit	Qual
MS	1608151.02	1,2,4-Trichlorobenzene	0.	10	14.2	143	10	13.3	133	6.60	40	60-140	J1
MS	1608151.02	1,2-Dichlorobenzene	0.	10	4.62	46.2	10	8.96	89.6	63.92	40	60-140	J1
MS	1608151.02	1,2-Diphenylhydrazine as Azobenzene	0.	10	35.6	356	10	36.7	367	2.90	40	60-140	J1
MS	1608151.02	1,3-Dichlorobenzene	0.	10	4.86	48.6	10	6.53	65.3	29.32	40	60-140	J1
MS	1608151.02	1,4-Dichlorobenzene	0.	10	7.98	79.8	10	9.08	90.8	12.88	40	60-140	
MS	1608151.02	2,4,6-Trichlorophenol	0.	20	6.65	33.3	20	5.18	25.9	24.85	40	60-140	J1
MS	1608151.02	2,4-Dichlorophenol	0.	20	35.6	178	20	35.0	175	1.78	40	60-140	J1
MS	1608151.02	2,4-Dimethylphenol	0.	20	42.8	214	20	47.5	238	10.38	40	60-140	J1
MS	1608151.02	2,4-Dinitrophenol	0.	20	45.9	230	20	42.8	214	7.13	40	60-140	J1
MS	1608151.02	2,4-Dinitrotoluene	0.	10	11.8	119	10	11.3	113	4.40	40	60-140	
MS	1608151.02	2,6-Dinitrotoluene	0.	10	6.40	64	10	6.39	63.9	0.16	40	60-140	

Page 196 of 249

RP16090102

JobID :

1608151

Analysis : Semivolatile Organic Compounds	Method : SW846 8270D	Units : ug/L
QC Batch ID : Qb16081826		
Samples in This QC Batch : 1608151.02,03,04,05,06,07,08		

QC Тур	e: MS/MSD												
	OC Comple ID	Davamatar	Sample	MS Sali Amb	MS	MS	MSD	MSD	MSD		RPD	%Rec	0
	QC Sample ID	Parameter	Result	Spk Amt	Result	% Rec	•	Result	% Rec	RPD	CtrlLimit	CtrlLimit	
MS	1608151.02	2-Chloronaphthalene	0.	10	16.6	166	10	16.2	162	2.45	40	60-140	J1
MS	1608151.02	2-Chlorophenol	0.	10	24.8	248	20	23.2	116	6.46	40	60-140	J1
MS	1608151.02	2-Methylnaphthalene	0.	10	14.0	140	10	13.1	131	6.28	40	60-140	
MS	1608151.02	2-Methylphenol	0.	20	28.3	141	20	31.2	156	9.76	40	60-140	J1
MS	1608151.02	2-Nitrophenol	0.	20	29.6	148	20	26.5	133	11.12	40	60-140	J1
MS	1608151.02	3,3-Dichlorobenzidine	0.	10	5.94	59.4	10	0.69	6.90	158.37	40	60-140	J1
MS	1608151.02	4,6-Dinitro-2-methylphenol	0.	20	27.7	138	20	23.2	116	17.61	40	60-140	
MS	1608151.02	4-Bromophenyl phenyl ether	0.	10	20.1	201	10	19.3	193	4.21	40	60-140	J1
MS	1608151.02	4-Chloro-3-methylphenol	0.	20	40.8	204	20	59.9	300	38.05	40	60-140	J1
MS	1608151.02	4-Chlorophenyl phenyl ether	0.	10	13.2	132	10	12.5	125	5.37	40	60-140	
MS	1608151.02	4-Methylphenol	0.	20	30.5	153	20	45.3	227	39.05	40	60-140	J1
MS	1608151.02	4-Nitrophenol	0.	20	21.1	105	20	45.3	227	73.01	40	60-140	J1
MS	1608151.02	Acenaphthene	0.	10	10.4	104	10	9.91	99.1	4.54	40	60-140	
MS	1608151.02	Acenaphthylene	0.	10	11.7	117	10	11.5	115	1.81	40	60-140	
MS	1608151.02	Anthracene	0.	10	13.3	133	10	12.4	124	6.54	40	60-140	
MS	1608151.02	Benzo(a)anthracene	0.	10	11.7	117	10	11.6	116	0.51	40	60-140	
MS	1608151.02	Benzo(a)pyrene	0.	10	11.2	112	10	10.8	108	3.91	40	60-140	
MS	1608151.02	Benzo(b)fluoranthene	0.	10	40.4	404	10	90.8	908	76.83	40	60-140	J1
MS	1608151.02	Benzo(g,h,i)perylene	0.	10	10.9	109	10	10.2	102	7.39	40	60-140	
MS	1608151.02	Benzo(k)fluoranthene	0.	10	11.6	116	10	95.1	951	156.68	40	60-140	J1
MS	1608151.02	Benzoic acid	0.	10	5.70	57	10	5.68	56.8	0.35	40	60-140	J1
MS	1608151.02	Benzyl alcohol	0.	10	4.22	42.2	10	3.73	37.3	12.33	40	60-140	J1
MS	1608151.02	Bis(2-chloroethoxy) methane	0.	10	11.3	113	10	6.41	64.1	55.47	40	60-140	J1
MS	1608151.02	Bis(2-chloroethyl) ether	0.	10	12.6	126	10	13.5	135	6.73	40	60-140	
MS	1608151.02	Bis(2-chloroisopropyl) ether	0.	10	7.26	72.6	10	8.88	88.8	20.07	40	60-140	
MS	1608151.02	Bis(2-ethylhexyl)phthalate	0.	10	14.7	147	10	15.2	152	3.28	40	60-140	J1
MS	1608151.02	Butyl benzyl phthalate	0.	10	20.1	201	10	15.4	154	26.87	40	60-140	J1
MS	1608151.02	Chrysene	0.	10	12.7	127	10	11.8	118	7.17	40	60-140	
MS	1608151.02	Dibenzo(a,h)anthracene	0.	10	11.7	117	10	10.5	105	11.27	40	60-140	
MS	1608151.02	Dibenzofuran	0.	10	12.2	122	10	11.6	116	4.79	40	60-140	
MS	1608151.02	Diethyl phthalate	0.	10	13.8	138	10	13.1	131	4.90	40	60-140	
MS	1608151.02	Dimethyl phthalate	0.	10	13.2	130	10	12.6	126	5.12	40	60-140	

RP16090102

JobID :

1608151

8725 Fawn Trail - The Woodlands, TX 77385 - www.NWDLS.com - (936) 321-6060

Analysis : Semivolatile Organic Compounds	Method : SW846 8270D	Units : ug/L
QC Batch ID : Qb16081826		
Samples in This QC Batch : 1608151.02,03,04,05,06,07,08		

QC Тур	e: MS/MSD												
	QC Sample ID	Parameter	Sample Result	MS Spk Amt	MS Result	MS % Rec	MSD Spk Amt	MSD Result	MSD % Rec	RPD	RPD CtrlLimit	%Rec CtrlLimit	Qual
MS	1608151.02	Di-n-butyl phthalate	0.	10	14.6	146	10	13.6	137	6.45	40	60-140	J1
MS	1608151.02	Di-n-octyl Phthalate	0.	10	15.3	153	10	14.8	148	3.31	40	60-140	J1
MS	1608151.02	Fluoranthene	0.	10	18.7	187	10	14.7	147	24.00	40	60-140	J1
MS	1608151.02	Fluorene	0.	10	11.5	115	10	10.9	109	5.45	40	60-140	
MS	1608151.02	Hexachlorobenzene	0.	10	10.7	107	10	10.4	104	3.42	40	60-140	
MS	1608151.02	Hexachlorobutadiene	0.	10	10.4	104	10	11.5	115	10.03	40	60-140	
MS	1608151.02	Hexachlorocyclopentadiene	0.	10	2.22	22.2	10	3.05	30.5	31.50	40	60-140	J1
MS	1608151.02	Hexachloroethane	0.	10	8.35	83.5	10	9.07	90.7	8.27	40	60-140	
MS	1608151.02	Indeno(1,2,3-cd)pyrene	0.	10	9.69	96.9	10	9.02	90.2	7.16	40	60-140	
MS	1608151.02	Isophorone	0.	10	8.36	83.6	10	7.38	73.8	12.45	40	60-140	
MS	1608151.02	Naphthalene	0.	10	13.7	137	10	12.8	128	6.94	40	60-140	
MS	1608151.02	Nitrobenzene	0.	10	16.4	164	10	14.0	140	15.98	40	60-140	J1
MS	1608151.02	n-Nitrosodimethylamine	0.	10	3.88	38.8	10	6.46	64.6	49.90	40	60-140	J1
MS	1608151.02	n-nitroso-di-n-propylamine	0.	10	9.83	98.3	10	12.5	125	24.15	40	60-140	
MS	1608151.02	n-Nitrosodiphenylamine	0.	10	11.6	116	10	11.3	113	2.70	40	60-140	
MS	1608151.02	Pentachlorophenol	0.	20	53.7	269	20	49.1	246	8.96	40	60-140	J1
MS	1608151.02	Phenanthrene	0.	10	11.5	115	10	10.9	109	5.37	40	60-140	
MS	1608151.02	Phenol	0.	20	24.1	121	20	23.8	119	1.50	40	60-140	
MS	1608151.02	Pyrene	0.	10	13.5	135	10	11.8	118	13.78	40	60-140	
MS	1608151.02	2-Fluorophenol (Surr)		20	23.1	116	20	35.7	179			60-140	S
MS	1608151.02	Phenol-d5 (Surr)		20	22.4	112	20	21.2	106			60-140	
MS	1608151.02	Nitrobenzene-d5 (Surr)		10	14.2	142	10	12.8	128			60-140	S
MS	1608151.02	2-Fluorobiphenyl (Surr)		10	10.5	105	10	9.93	99.3			60-140	
MS	1608151.02	2,4,6-Tribromophenol (Surr)		20	23.9	119	20	27.6	138			60-140	
MS	1608151.02	Terphenyl-d14 (Surr)		10	10.4	104	10	9.49	94.9			60-140	

RP16090102

JobID :

1608151

Analysi	s : Semivolatile Organic Compounds	Method : SW84	46 8270D		Units : ug/L			
QC Bat	ch ID : Qb16081827							
Sample	s in This QC Batch : 1608151.09,10,11,12,13,14,15							
Sample	Preparation PB16081813 Prep Method: SW846 3511	Prep Date:	By: Jlanham					
QC Тур	e: Method Blank							
	Parameter	CAS #	Result	DF	LRL	SDL	Qual	
МВ	1,2,4-Trichlorobenzene	120-82-1	< 0.562	1	0.562	0.281		
MB	1,2-Dichlorobenzene	95-50-1	< 0.562	1	0.562	0.281		
MB	1,2-Diphenylhydrazine as Azobenzene	122-66-7	< 0.562	1	0.562	0.281		
МВ	1,3-Dichlorobenzene	541-73-1	< 0.562	1	0.562	0.281		
MB	1,4-Dichlorobenzene	106-46-7	< 0.562	1	0.562	0.281		
MB	2,4,6-Trichlorophenol	88-06-2	< 1.12	1	1.12	0.56		
MB	2,4-Dichlorophenol	120-83-2	< 1.12	1	1.12	0.56		
MB	2,4-Dimethylphenol	105-67-9	< 1.12	1	1.12	0.56		
MB	2,4-Dinitrophenol	51-28-5	< 18.0	1	18.0	9.00		
MB	2,4-Dinitrotoluene	121-14-2	< 0.562	1	0.562	0.281		
MB	2,6-Dinitrotoluene	606-20-2	< 0.562	1	0.562	0.281		
MB	2-Chloronaphthalene	91-58-7	< 0.562	1	0.562	0.281		
MB	2-Chlorophenol	95-57-8	< 1.12	1	1.12	0.56		
MB	2-Methylnaphthalene	91-57-6	< 0.562	1	0.562	0.281		
МВ	2-Methylphenol	95-48-7	< 1.12	1	1.12	0.56		
МВ	2-Nitrophenol	88-75-5	< 1.12	1	1.12	0.56		
МВ	3,3-Dichlorobenzidine	91-94-1	< 0.562	1	0.562	0.281		
МВ	4,6-Dinitro-2-methylphenol	534-52-1	< 1.12	1	1.12	0.56		
МВ	4-Bromophenyl phenyl ether	101-55-3	< 0.562	1	0.562	0.281		
MB	4-Chloro-3-methylphenol	59-50-7	< 1.12	1	1.12	0.56		
МВ	4-Chlorophenyl phenyl ether	7005-72-3	< 0.562	1	0.562	0.281		
мв	4-Methylphenol	106-44-5	< 1.12	1	1.12	0.56		
мв	4-Nitrophenol	100-02-7	< 1.12	1	1.12	0.56		
МВ	Acenaphthene	83-32-9	< 0.562	1	0.562	0.281		
MB	Acenaphthylene	208-96-8	< 0.562	1	0.562	0.281		
мв	Anthracene	120-12-7	< 0.562	1	0.562	0.281		
МВ	Benzidine	92-87-5	< 0.562	1	0.562	0.281		
МВ	Benzo(a)anthracene	56-55-3	< 0.562	1	0.562	0.281		
МВ	Benzo(a)pyrene	50-32-8	< 0.562	1	0.562	0.281		
мв	Benzo(b)fluoranthene	205-99-2	< 0.562	1	0.562	0.281		

RP16090102

JobID :

1608151

Analysis : Semivolatile Organic Compounds	Method : SW846 8270D	Units : ug/L
QC Batch ID : Qb16081827		
Samples in This QC Batch : 1608151.09,10,11,12,13,14,15		

QC Тур	e: Method Blank							
	Parameter	C	AS #	Result	DF	LRL	SDL	Qual
MB	Benzo(g,h,i)perylene	19	1-24-2	< 0.562	1	0.562	0.281	
MB	Benzo(k)fluoranthene	20	7-08-9	< 0.562	1	0.562	0.281	
MB	Benzoic acid	65	-85-0	< 0.562	1	0.562	0.281	
MB	Benzyl alcohol	10	0-51-6	< 0.562	1	0.562	0.281	
MB	Bis(2-chloroethoxy) methane	11	1-91-1	< 0.562	1	0.562	0.281	
MB	Bis(2-chloroethyl) ether	11	1-44-4	< 0.562	1	0.562	0.281	
MB	Bis(2-chloroisopropyl) ether	10	8-60-1	< 0.562	1	0.562	0.281	
MB	Bis(2-ethylhexyl)phthalate	11	7-81-7	< 0.562	1	0.562	0.281	
MB	Butyl benzyl phthalate	85	-68-7	< 0.562	1	0.562	0.281	
MB	Chrysene	21	8-01-9	< 0.562	1	0.562	0.281	
MB	Dibenzo(a,h)anthracene	53	-70-3	< 0.562	1	0.562	0.281	
МΒ	Dibenzofuran	13	2-64-9	< 0.562	1	0.562	0.281	
ΜВ	Diethyl phthalate	84	-66-2	< 0.562	1	0.562	0.281	
ИΒ	Dimethyl phthalate	13	1-11-3	< 0.562	1	0.562	0.281	
ΜВ	Di-n-butyl phthalate	84	-74-2	< 0.562	1	0.562	0.281	
ΜВ	Di-n-octyl Phthalate	11	7-84-0	< 0.562	1	0.562	0.281	
ΜВ	Fluoranthene	20	6-44-0	< 0.562	1	0.562	0.281	
ΜВ	Fluorene	86	-73-7	< 0.562	1	0.562	0.281	
ИΒ	Hexachlorobenzene	11	8-74-1	< 0.562	1	0.562	0.281	
ИΒ	Hexachlorobutadiene	87	'-68-3	< 0.562	1	0.562	0.281	
ΜВ	Hexachlorocyclopentadiene	77	'-47-4	< 0.562	1	0.562	0.281	
ΜВ	Hexachloroethane	67	'-72-1	< 0.562	1	0.562	0.281	
МΒ	Indeno(1,2,3-cd)pyrene	19	3-39-5	< 0.562	1	0.562	0.281	
ΜВ	Isophorone	78	8-59-1	< 0.562	1	0.562	0.281	
ИΒ	Naphthalene	91	-20-3	< 0.562	1	0.562	0.281	
МΒ	Nitrobenzene	98	8-95-3	< 0.562	1	0.562	0.281	
ΜВ	n-Nitrosodimethylamine	62	-75-9	< 0.562	1	0.562	0.281	
ΜВ	n-nitroso-di-n-propylamine	62	1-64-7	< 0.562	1	0.562	0.281	
ΜВ	n-Nitrosodiphenylamine	86	-30-6	< 0.562	1	0.562	0.281	
ΜВ	Pentachlorophenol		'-86-5	< 1.12	1	1.12	0.56	
ΜВ	Phenanthrene	85	-01-8	< 0.562	1	0.562	0.281	
MB	Phenol	10	8-95-2	< 1.12	1	1.12	0.56	

JobID :

1608151

Analysis : Semivolatile Organic Compounds Method : SW846 8270D QC Batch ID : Qb16081827 Samples in This QC Batch : 1608151.09,10,11,12,13,14,15	Units : ug/L	
QC Batch ID : Qb16081827		
Samples in This QC Batch : 1608151.09,10,11,12,13,14,15		
OC Type: Method Blank		

QC Typ	e: Method Blank						
	Parameter	CAS #	Result	DF	LRL	SDL	Qual
MB	Pyrene	129-00-0	< 0.562	1	0.562	0.281	
МВ	2-Fluorophenol (Surr)	367-12-4	39.9	1			S
MB	Phenol-d5 (Surr)		27.5	1			
MB	Nitrobenzene-d5 (Surr)	4165-60-0	15.4	1			S
MB	2-Fluorobiphenyl (Surr)	132-60-8	9.11	1			
MB	2,4,6-Tribromophenol (Surr)	118-79-6	46.6	1			S
MB	Terphenyl-d14 (Surr)		10.0	1			

QC Type	e: LCS/LCSD										
	Parameter	LCS Spk Amt	LCS Result	LCS % Rec	LCSD Spk Amt	LCSD Result	LCSD % Rec	RPD	RPD CtrlLimit	%Recovery CtrlLimit	Qual
LCSD	1,2,4-Trichlorobenzene	10	11.8	118	10	11.5	115	2.74	40	60-140	
LCSD	1,2-Dichlorobenzene	10	9.29	92.9	10	5.72	57.2	47.57	40	60-140	J1
LCSD	1,2-Diphenylhydrazine as Azobenzene	10	24.0	240	10	24.2	242	0.77	40	60-140	J1
LCSD	1,3-Dichlorobenzene	10	8.12	81.2	10	5.59	55.9	36.91	40	60-140	J1
LCSD	1,4-Dichlorobenzene	10	7.50	75.0	10	5.92	59.2	23.55	40	60-140	J1
LCSD	2,4,6-Trichlorophenol	20	6.26	31.3	20	6.03	30.2	3.74	40	60-140	J1
LCSD	2,4-Dichlorophenol	20	29.8	149	20	31.6	158	5.70	40	60-140	J1
LCSD	2,4-Dimethylphenol	20	36.9	184	20	36.4	182	1.26	40	60-140	J1
LCSD	2,4-Dinitrophenol	20	33.6	168	20	59.4	297	55.40	40	60-140	J1
LCSD	2,4-Dinitrotoluene	10	10.1	101	10	10.3	103	1.96	40	60-140	
LCSD	2,6-Dinitrotoluene	10	5.97	59.7	10	6.40	64	6.95	40	60-140	J1
LCSD	2-Chloronaphthalene	10	12.3	123	10	13.5	135	9.46	40	60-140	
LCSD	2-Chlorophenol	20	22.9	114	20	19.9	99.6	13.98	40	60-140	
LCSD	2-Methylnaphthalene	10	11.6	117	10	11.5	115	1.28	40	60-140	
LCSD	2-Methylphenol	20	47.4	237	20	51.9	260	9.11	40	60-140	J1
LCSD	2-Nitrophenol	20	17.9	89.3	20	19.5	97.7	8.78	40	60-140	
LCSD	3,3-Dichlorobenzidine	10	5.59	55.9	10	5.61	56.1	0.36	40	60-140	J1
LCSD	4,6-Dinitro-2-methylphenol	20	5.98	29.9	20	3.88	19.4	42.60	40	60-140	J1
LCSD	4-Bromophenyl phenyl ether	10	17.6	176	10	16.9	169	3.77	40	60-140	J1
LCSD	4-Chloro-3-methylphenol	20	54.3	272	20	32.4	162	50.52	40	60-140	J1

RP16090102

JobID :

1608151

Analysis	nalysis : Semivolatile Organic Compounds			Me	thod : SW846	6 8270D	Units : ug/L				
QC Batc	h ID : Qb16081827										
Samples	s in This QC Batch : 1608151.09,10,11,12,13,14,15										
QC Type	e: LCS/LCSD										
	Parameter	LCS Spk Amt	LCS Result	LCS % Rec	LCSD Spk Amt	LCSD Result	LCSD % Rec	RPD	RPD CtrlLimit	%Recovery CtrlLimit	Qual
LCSD	4-Chlorophenyl phenyl ether	10	11.8	118	10	11.9	119	1.27	40	60-140	
LCSD	4-Methylphenol	20	21.2	106	20	26.1	131	20.53	40	60-140	
LCSD	4-Nitrophenol	20	54.0	270	20	30.1	151	56.84	40	60-140	J1
LCSD	Acenaphthene	10	8.13	81.3	10	8.21	82.1	0.98	40	60-140	
LCSD	Acenaphthylene	10	9.52	95.2	10	9.76	97.6	2.49	40	60-140	
LCSD	Anthracene	10	10.7	107	10	10.2	102	4.60	40	60-140	
LCSD	Benzo(a)anthracene	10	10.1	101	10	10.1	101	0.00	40	60-140	
LCSD	Benzo(a)pyrene	10	9.32	93.2	10	9.61	96.1	3.06	40	60-140	
LCSD	Benzo(b)fluoranthene	10	10.4	104	10	9.65	96.5	7.29	40	60-140	
LCSD	Benzo(g,h,i)perylene	10	8.73	87.3	10	8.80	88	0.80	40	60-140	
LCSD	Benzo(k)fluoranthene	10	10.4	104	10	10.8	108	3.87	40	60-140	
LCSD	Benzoic acid	10	5.36	53.6	10	4.83	48.3	10.40	40	60-140	J1
LCSD	Benzyl alcohol	10	4.46	44.6	10	4.26	42.6	4.59	40	60-140	J1
LCSD	Bis(2-chloroethoxy) methane	10	10.3	103	10	12.1	121	16.46	40	60-140	
LCSD	Bis(2-chloroethyl) ether	10	15.6	156	10	12.7	127	20.68	40	60-140	J1
LCSD	Bis(2-chloroisopropyl) ether	10	8.32	83.2	10	6.76	67.6	20.69	40	60-140	
LCSD	Bis(2-ethylhexyl)phthalate	10	12.2	122	10	12.6	126	3.23	40	60-140	
LCSD	Butyl benzyl phthalate	10	17.0	170	10	17.5	175	3.02	40	60-140	J1
LCSD	Chrysene	10	10.8	108	10	10.7	107	1.12	40	60-140	
LCSD	, Dibenzo(a,h)anthracene	10	9.61	96.1	10	9.53	95.3	0.84	40	60-140	
LCSD	Dibenzofuran	10	9.85	98.5	10	10.3	103	4.47	40	60-140	
LCSD	Diethyl phthalate	10	12.2	122	10	12.7	127	4.34	40	60-140	
LCSD	Dimethyl phthalate	10	11.3	113	10	11.6	116	2.44	40	60-140	
LCSD	Di-n-butyl phthalate	10	11.7	117	10	11.8	118	0.59	40	60-140	
LCSD	Di-n-octyl Phthalate	10	13.0	130	10	13.6	136	4.51	40	60-140	
LCSD	Fluoranthene	10	14.7	147	10	15.5	155	5.50	40	60-140	J1
LCSD	Fluorene	10	10.0	100	10	10.2	102	2.48	40	60-140	
LCSD	Hexachlorobenzene	10	8.80	88.0	10	8.43	84.3	4.29	40	60-140	
LCSD	Hexachlorobutadiene	10	11.2	112	10	11.0	111	2.16	40	60-140	
LCSD	Hexachlorocyclopentadiene	10	1.28	12.8	10	4.07	40.7	104.30	40	60-140	J1
LCSD	Hexachloroethane	10	10.9	109	10	8.80	88	21.50	40	60-140	-
LCSD	Indeno(1,2,3-cd)pyrene	10	7.80	78.0	10	7.86	78.6	0.77	40	60-140	

RP16090102

JobID :

1608151

8725 Fawn Trail - The Woodlands, TX 77385 - www.NWDLS.com - (936) 321-6060

Analysis	Analysis : Semivolatile Organic Compounds				Method : SW846 8270D					Units : ug/L				
QC Bato	h ID : Qb16081827													
Samples	s in This QC Batch : 1608151.09,10,11,12,13,14,15													
QC Type	e: LCS/LCSD													
	Parameter	LCS Spk Amt	LCS Result	LCS % Rec	LCSD Spk Amt	LCSD Result	LCSD % Rec	RPD	RPD CtrlLimit	%Recovery CtrlLimit	Qual			
LCSD	Isophorone	10	8.53	85.3	10	9.46	94.6	10.34	40	60-140				
LCSD	Naphthalene	10	11.3	113	10	11.8	118	4.33	40	60-140				
LCSD	Nitrobenzene	10	10.2	102	10	12.9	129	22.99	40	60-140				
LCSD	n-Nitrosodimethylamine	10	1.37	13.7	10	5.22	52.2	116.84	40	60-140	J1			
LCSD	n-nitroso-di-n-propylamine	10	11.9	119	10	20.8	208	54.51	40	60-140	J1			
LCSD	n-Nitrosodiphenylamine	10	9.72	97.2	10	9.12	91.2	6.37	40	60-140				
LCSD	Pentachlorophenol	20	58.8	294	20	67.4	337	13.68	40	60-140	J1			
LCSD	Phenanthrene	10	9.19	91.9	10	8.98	89.8	2.31	40	60-140				
LCSD	Phenol	20	25.2	126	20	29.4	147	15.50	40	60-140	J1			
LCSD	Pyrene	10	10.3	103	10	9.64	96.4	6.62	40	60-140				
LCS	2-Fluorophenol (Surr)	20	19.2	95.9	20	18.4	92			60-140				
LCS	Phenol-d5 (Surr)	20	22.3	111	20	27.5	138			60-140				
LCS	Nitrobenzene-d5 (Surr)	10	12.7	127	10	13.9	139			60-140				
LCS	2-Fluorobiphenyl (Surr)	10	8.15	81.5	10	8.22	82.2			60-140				
LCS	2,4,6-Tribromophenol (Surr)	20	26.0	130	20	38.9	195			60-140	S			
LCS	Terphenyl-d14 (Surr)	10	8.12	81.2	10	8.27	82.7			60-140				

QC Typ	e: MS/MSD												
	QC Sample ID	Parameter	Sample Result	MS Spk Amt	MS Result	MS % Rec	MSD Spk Amt	MSD Result	MSD % Rec	RPD	RPD CtrlLimit	%Rec CtrlLimit	Qual
MS	1608151.09	1,2,4-Trichlorobenzene	< 0.281	10	11.5	115	10	12.3	123	6.82	40	60-140	
MS	1608151.09	1,2-Dichlorobenzene	< 0.281	10	6.14	61.4	10	6.28	62.8	2.25	40	60-140	
MS	1608151.09	1,2-Diphenylhydrazine as Azobenzene	< 0.281	10	25.9	259	10	7.89	78.9	106.54	40	60-140	J1
MS	1608151.09	1,3-Dichlorobenzene	< 0.281	10	8.56	85.6	10	7.63	76.3	11.49	40	60-140	
MS	1608151.09	1,4-Dichlorobenzene	< 0.281	10	7.74	77.4	10	7.34	73.4	5.31	40	60-140	
MS	1608151.09	2,4,6-Trichlorophenol	< 0.56	20	5.66	28.3	20	5.35	26.8	5.63	40	60-140	J1
MS	1608151.09	2,4-Dichlorophenol	< 0.56	20	31.8	159	20	31.5	158	0.73	40	60-140	J1
MS	1608151.09	2,4-Dimethylphenol	< 0.56	20	33.3	166	20	41.1	205	20.97	40	60-140	J1
MS	1608151.09	2,4-Dinitrophenol	< 9.00	20	60.0	300	20	51.3	256	15.68	40	60-140	J1
MS	1608151.09	2,4-Dinitrotoluene	< 0.281	10	10.9	109	10	9.56	95.6	12.73	40	60-140	
MS	1608151.09	2,6-Dinitrotoluene	< 0.281	10	6.59	65.9	10	5.58	55.8	16.60	40	60-140	J1
MS	1608151.09	2-Chloronaphthalene	< 0.281	10	13.7	137	10	12.8	128	6.41	40	60-140	

Page 203 of 249

RP16090102

JobID :

1608151

Analysi	Analysis : Semivolatile Organic Compounds			Method : SW846 8270D					Units : ug/L				
QC Batch ID : Qb16081827													
Sample	es in This QC Batch	: 1608151.09,10,11,12,13,14,15											
QC Тур	e: MS/MSD												
	QC Sample ID	Parameter	Sample Result	MS Spk Amt	MS Result	MS % Rec	MSD Spk Amt	MSD Result	MSD % Rec	RPD	RPD CtrlLimit	%Rec CtrlLimit	Qual
MS	1608151.09	2-Chlorophenol	< 0.56	10	20.8	208	20	23.5	118	12.50	40	60-140	J1
MS	1608151 09	2-Methylnanhthalene	< 0.281	10	11 3	113	10	117	117	2 8 2	40	60-140	

MS	1608151.09	2-Chlorophenol	< 0.56	10	20.8	208	20	23.5	118	12.50	40	60-140	J1
MS	1608151.09	2-Methylnaphthalene	< 0.281	10	11.3	113	10	11.7	117	3.83	40	60-140	
MS	1608151.09	2-Methylphenol	< 0.56	20	64.6	323	20	43.8	219	38.45	40	60-140	J1
MS	1608151.09	2-Nitrophenol	< 0.56	20	23.2	116	20	24.2	121	4.23	40	60-140	
MS	1608151.09	3,3-Dichlorobenzidine	< 0.281	10	3.64	36.4	10	2.52	25.2	36.36	40	60-140	J1
MS	1608151.09	4,6-Dinitro-2-methylphenol	< 0.56	20	24.6	123	20	24.6	123	0.00	40	60-140	
MS	1608151.09	4-Bromophenyl phenyl ether	< 0.281	10	16.6	166	10	15.5	155	6.78	40	60-140	J1
MS	1608151.09	4-Chloro-3-methylphenol	< 0.56	20	32.8	164	20	28.9	145	12.58	40	60-140	J1
MS	1608151.09	4-Chlorophenyl phenyl ether	< 0.281	10	16.6	166	10	15.5	155	6.78	40	60-140	J1
MS	1608151.09	4-Methylphenol	< 0.56	20	23.2	116	20	25.2	126	8.14	40	60-140	
MS	1608151.09	4-Nitrophenol	< 0.56	20	31.0	155	20	28.8	144	7.55	40	60-140	J1
MS	1608151.09	Acenaphthene	< 0.281	10	8.04	80.4	10	8.17	81.7	1.60	40	60-140	
MS	1608151.09	Acenaphthylene	< 0.281	10	10.1	101	10	9.31	93.1	8.24	40	60-140	
MS	1608151.09	Anthracene	< 0.281	10	9.87	98.7	10	10.1	101	2.30	40	60-140	
MS	1608151.09	Benzo(a)anthracene	< 0.281	10	10.5	105	10	9.89	98.9	6.17	40	60-140	
MS	1608151.09	Benzo(a)pyrene	< 0.281	10	9.62	96.2	10	9.28	92.8	3.60	40	60-140	
MS	1608151.09	Benzo(b)fluoranthene	< 0.281	10	9.45	94.5	10	8.57	85.7	9.77	40	60-140	
MS	1608151.09	Benzo(g,h,i)perylene	< 0.281	10	9.19	91.9	10	8.33	83.3	9.82	40	60-140	
MS	1608151.09	Benzo(k)fluoranthene	< 0.281	10	10.7	107	10	10.0	100	6.88	40	60-140	
MS	1608151.09	Benzoic acid	< 0.281	10	5.58	55.8	10	4.04	40.4	32.02	40	60-140	J1
MS	1608151.09	Benzyl alcohol	< 0.281	10	3.83	38.3	10	4.11	41.1	7.05	40	60-140	J1
MS	1608151.09	Bis(2-chloroethoxy) methane	< 0.281	10	12.4	124	10	11.1	111	11.09	40	60-140	
MS	1608151.09	Bis(2-chloroethyl) ether	< 0.281	10	17.0	170	10	14.7	147	14.32	40	60-140	J1
MS	1608151.09	Bis(2-chloroisopropyl) ether	< 0.281	10	8.15	81.5	10	8.40	84	3.02	40	60-140	
MS	1608151.09	Bis(2-ethylhexyl)phthalate	< 0.281	10	13.0	130	10	11.7	117	9.89	40	60-140	
MS	1608151.09	Butyl benzyl phthalate	< 0.281	10	17.2	172	10	16.6	166	3.91	40	60-140	J1
MS	1608151.09	Chrysene	< 0.281	10	10.6	106	10	10.8	108	2.34	40	60-140	
MS	1608151.09	Dibenzo(a,h)anthracene	< 0.281	10	9.88	98.8	10	9.17	91.7	7.45	40	60-140	
MS	1608151.09	Dibenzofuran	< 0.281	10	10.6	106	10	9.84	98.4	7.15	40	60-140	
MS	1608151.09	Diethyl phthalate	< 0.281	10	13.3	133	10	11.4	115	15.17	40	60-140	
MS	1608151.09	Dimethyl phthalate	< 0.281	10	12.2	123	10	10.4	104	16.53	40	60-140	
MS	1608151.09	Di-n-butyl phthalate	< 0.281	10	12.1	121	10	10.7	107	12.61	40	60-140	

RP16090102

JobID :

1608151

Analysis : Semivolatile Organic Compounds	Method : SW846 8270D	Units : ug/L
QC Batch ID : Qb16081827		
Samples in This QC Batch : 1608151.09,10,11,12,13,14,15		
L		
QC Type: MS/MSD		

QC 1 9F	e: MS/MSD		Sample	MS	MS	MS	MSD	MSD	MSD		RPD	%Rec	
	QC Sample ID	Parameter	Result	Spk Amt	Result	% Rec	Spk Amt	Result	% Rec	RPD	CtrlLimit	CtrlLimit	Qua
MS	1608151.09	Di-n-octyl Phthalate	< 0.281	10	13.1	131	10	12.5	125	4.84	40	60-140	
MS	1608151.09	Fluoranthene	< 0.281	10	14.8	149	10	14.4	144	3.08	40	60-140	J1
MS	1608151.09	Fluorene	< 0.281	10	10.7	107	10	9.37	93.7	13.53	40	60-140	
٩S	1608151.09	Hexachlorobenzene	< 0.281	10	8.34	83.4	10	8.02	80.2	3.91	40	60-140	
1S	1608151.09	Hexachlorobutadiene	< 0.281	10	10.7	107	10	11.2	112	4.12	40	60-140	
1S	1608151.09	Hexachlorocyclopentadiene	< 0.281	10	6.48	64.8	10	4.48	44.8	36.50	40	60-140	J
1S	1608151.09	Hexachloroethane	< 0.281	10	11.3	113	10	9.41	94.1	18.08	40	60-140	
1S	1608151.09	Indeno(1,2,3-cd)pyrene	< 0.281	10	8.19	81.9	10	7.45	74.5	9.46	40	60-140	
1S	1608151.09	Isophorone	< 0.281	10	9.52	95.2	10	8.15	81.5	15.51	40	60-140	
1S	1608151.09	Naphthalene	< 0.281	10	10.6	106	10	11.6	116	9.56	40	60-140	
1S	1608151.09	Nitrobenzene	< 0.281	10	11.9	119	10	12.1	121	1.59	40	60-140	
1S	1608151.09	n-Nitrosodimethylamine	< 0.281	10	2.68	26.8	10	1.72	17.2	43.64	40	60-140	
1S	1608151.09	n-nitroso-di-n-propylamine	< 0.281	10	18.1	181	10	23.6	236	26.22	40	60-140	
1S	1608151.09	n-Nitrosodiphenylamine	11.5	10	8.68	-28.1	10	9.20	-22.9	5.82	40	60-140	
1S	1608151.09	Pentachlorophenol	< 0.56	20	61.8	309	20	54.5	273	12.57	40	60-140	
1S	1608151.09	Phenanthrene	< 0.281	10	9.27	92.7	10	8.57	85.7	7.85	40	60-140	
1S	1608151.09	Phenol	< 0.56	20	33.6	168	20	28.1	141	17.82	40	60-140	
1S	1608151.09	Pyrene	< 0.281	10	9.51	95.1	10	9.67	96.7	1.67	40	60-140	
1S	1608151.09	2-Fluorophenol (Surr)		20	26.8	134	20	22.3	112			60-140	
1S	1608151.09	Phenol-d5 (Surr)		20	25.3	127	20	21.0	105			60-140	
1S	1608151.09	Nitrobenzene-d5 (Surr)		10	15.5	155	10	12.9	129			60-140	
1S	1608151.09	2-Fluorobiphenyl (Surr)		10	8.34	83.4	10	8.19	81.9			60-140	
1S	1608151.09	2,4,6-Tribromophenol (Surr)		20	40.7	203	20	29.2	146			60-140	
٩S	1608151.09	Terphenyl-d14 (Surr)		10	8.19	81.9	10	7.13	71.3			60-140	

DUP

1608151.16

% Solids

JobID :

1608151

40.0

0.10

30

8725 Fawn Trail - The Woodlands, TX 77385 - www.NWDLS.com - (936) 321-6060

Analysis : Solids, Total	Method : SM 2540 G	Units : %
QC Batch ID : Qb16081828		
Samples in This QC Batch : 1608151.16,17,18,19,20,21,22		

QC Typ	pe: Method Blank								
	Parameter			CAS #	Result	DF	LRL	SDL	Qual
MB	% Solids				< 1.00	1	1.00	0.010	
QC Typ	pe: Duplicate								
	QC Sample ID	Parameter	Result	QC Sample	Result	RPD	RPD Ctrl I	imits	Qual

40.1

RP16090102

JobID :

1608151

8725 Fawn Trail - The Woodlands, TX 77385 - www.NWDLS.com - (936) 321-6060

Analysis : Volatile Solids, Total	Method : EPA 160.4	Units : %
QC Batch ID : Qb16081829		
Samples in This QC Batch : 1608151.16,17,18,19,20,21,22		

QC Тур	e: Method Blank								
	Parameter			CAS #	Result	DF	LRL	SDL	Qual
MB	Volatile Solids				< 1.00	1	1.00	0.010	
	e: Duplicate								
QCTYP									
	QC Sample ID	Parameter	Result	QC Sample	Result	RPD	RPD Ctrl	Limits	Qual
DUP	1608151.16	Volatile Solids	9.30	7.97	,	15.40	30		

RP16090102

JobID :

1608151

8725 Fawn Trail - The Woodlands, TX 77385 - www.NWDLS.com - (936) 321-6060

Analysis : Total Organic Carbon	Method : SW846 9060A	Units : %
QC Batch ID : Qb16081831		
Samples in This QC Batch : 1608151.16,17,18,19,20,21,22		

QC Type:	Method Blank						
	Parameter	CAS #	Result	DF	LRL	SDL	Qual
MB	Total Organic Carbon		< 0.050	1	0.050	0.025	
MB2	Total Organic Carbon		< 0.050	1	0.050	0.025	

QC Туре	QC Type: MS/MSD												
			Sample	MS	MS	MS	MSD	MSD	MSD		RPD	%Rec	
	QC Sample ID	Parameter	Result	Spk Amt	Result	% Rec	Spk Amt	Result	% Rec	RPD	CtrlLimit	CtrlLimit	Qual
MS	1608151.16	Total Organic Carbon	0.80	2.77	3.45	95.7	2.81	3.69	103	6.72	20	80-120	

RP16090102

JobID :

1608151

8725 Fawn Trail - The Woodlands, TX 77385 - www.NWDLS.com - (936) 321-6060

Analysis : Ammonia	Method : EPA 350.2	Units : mg/kg dw
QC Batch ID : Qb16081833		
Samples in This QC Batch : 1608151.16,17,18,19,20,21,22		

QC Type:	Method Blank						
	Parameter	CAS #	Result	DF	LRL	SDL	Qual
МВ	Ammonia as N		< 100	1	100	20.0	

QC Type: Duplicate										
QC Sample ID	Parameter	Result	QC Sample Result	RPD	RPD Ctrl Limits	Qual				
1608151.16	Ammonia as N	50.0	56.0	11.30	10	J1				
	QC Sample ID	QC Sample ID Parameter	QC Sample ID Parameter Result	QC Sample ID Parameter Result QC Sample Result	QC Sample ID Parameter Result QC Sample Result RPD	QC Sample ID Parameter Result QC Sample Result RPD RPD Ctrl Limits				

QC Type	e: LCS/LCSD										
		LCS Spk	LCS	LCS	LCSD Spk	LCSD	LCSD		RPD	%Recovery	
	Parameter	Amt	Result	% Rec	Amt	Result	% Rec	RPD	CtrlLimit	CtrlLimit	Qual
LCS	Ammonia as N	5000	478	95.6						90-110	

QC T	ype: MS/MSD												
			Sample	MS	MS	MS	MSD	MSD	MSD		RPD	%Rec	
	QC Sample ID	Parameter	Result	Spk Amt	Result	% Rec	Spk Amt	Result	% Rec	RPD	CtrlLimit	CtrlLimit	Qual
MS	1608151.16	Ammonia as N	56.0	5000	469	92.7		469				90-110	

RP16090102

JobID :

1608151

8725 Fawn Trail - The Woodlands, TX 77385 - www.NWDLS.com - (936) 321-6060

Analysis : Chromium, Hexavalent	Method : SW846 7196A	Units : mg/kg
QC Batch ID : Qb16081835		
Samples in This QC Batch : 1608151.16,17,18,19,20,21,22		

QC Type:	Method Blank						
	Parameter	CAS #	Result	DF	LRL	SDL	Qual
MB	Chromium, Hexavalent		< 1.00	1	1.00	0.500	

QC Type: Duplicate										
C Sample ID Parameter F	QC Sample Result RPD	RPD Ctrl Limits Qual								
08151.16 Chromium, Hexavalent <	0 < 1.25 NaN	20								
08151.16 Chromium, Hexavalent <	0 < 1.25 NaN	20								

QC Type:	LCS/LCSD										
		LCS Spk	LCS	LCS	LCSD Spk	LCSD	LCSD		RPD	%Recovery	
	Parameter	Amt	Result	% Rec	Amt	Result	% Rec	RPD	CtrlLimit	CtrlLimit	Qual
LCS	Chromium, Hexavalent	12.5	11.8	94.4						85-115	

QC Type:	QC Type: MS/MSD												
	OC Sample ID	Devementer	Sample	MS Spli Amt	MS	MS % Rec	MSD Spk Amt	MSD	MSD	RPD	RPD CtrlLimit	%Rec CtrlLimit	Qual
	QC Sample ID	Parameter	Result	Spk Amt	Result	% Rec	эрк Аш	Result	% Rec	RPD	CUILIIIII	CUILIIIII	Qual
MS	1608151.16	Chromium, Hexavalent	< 1.25	12.5	11.4	91.2		11.4				75-125	
PDMS	1608151.16	Chromium, Hexavalent	< 1.25	12.5	12.2	97.6		12.2				85-115	

RP16090102

JobID :

1608151

8725 Fawn Trail - The Woodlands, TX 77385 - www.NWDLS.com - (936) 321-6060

Analys	sis : Cyanide, Total					Met	hod : SW84	46 9014					U	nits : mg/	kg dw	
QC Bat	tch ID : Qb16081837	,														
Sample	es in This QC Batch	: 1608151.1	.6,17,18,19,20,21	.,22												
Sample	e Preparation PB16	081815	Prep Method:	SW846 9010C	Prep	Date:		By:	Arazo							
QC Ty	pe: Method Blank															
	Parameter						CAS #	Res	sult		DF	LRL	SE	DL		Qual
MB	Cyanide, Total							< 0.	500		1	0.500	0.2	50		
QC Typ	pe: Duplicate															
	QC Sample ID	Parameter				Result	QC Sample	e Result			RPD	RPD C	trl Limits		Q	ual
DUP	1608151.16	Cyanide, To	otal			< 0.250	< 0.6	52			NaN		20			
QC Ty	pe: LCS/LCSD															
	Parameter			LCS Spk Amt	LCS Result	LCS % Rec	LCSD Spk Amt	LCSD Resul		CSD 6 Rec	RPD		RPD CtrlLimit	%Recov CtrlLin		Qual
LCS	Cyanide, Total			1.00	0.987	98.7								90-11	0	
QC Typ	pe: MS/MSD					Sample	MS	MS	MS	MSD	MSD	MSD		RPD	%Rec	
	QC Sample ID	Parameter				Result	Spk Amt	Result	% Rec	Spk Amt	Result	% Rec	RPD	CtrlLimit	CtrlLimi	
MS	1608151.16	Cyanide, To	otal			< 0.62	1.00	0.913	91.3		0.913				80-120	

RP16090102

JobID :

1608151

Analysis	s : Mercury, Total					Me	thod : EPA	245.1					U	nits : ug/l	L	
QC Bato	ch ID : Qb16081901															
Sample	s in This QC Batch	: 1608151.0)1,02,03,04,06,09,10,11	,12,13,14,1	5											
Sample	Preparation PB160	081901	Prep Method: EPA 24	5.1	Pre	p Date:		By:	Mwilson							
QC Тур	e: Method Blank															
	Parameter						CAS #	Re	sult		DF	LRL	SE	DL	(Qual
MB	Mercury						7439-97-6	< 0	.200		1	0.200	0.1	.50		
QC Тур	e: Duplicate															
	QC Sample ID	Parameter				Result	QC Sample	e Result			RPD	RPD C	trl Limits		Qı	ual
DUP	1608151.01	Mercury				< 0.150	< 0.1	50			NaN	:	30			
DUP2	1608151.14	Mercury				< 0.150	< 0.1	50			NaN		30			
QC Тур	e: LCS/LCSD															
	Parameter			LCS Spk Amt	LCS Result	LCS % Rec	LCSD Spk Amt	LCSE Resu		LCSD 6 Rec	RPD		RPD CtrlLimit	%Recov CtrlLin		Qual
LCS	Mercury			5.00	4.94	98.8	7 4110	Resu					Certeinne	90-11	-	quu.
QC Тур	e: MS/MSD															
	QC Sample ID	Parameter				Sample Result		MS Result	MS % Rec	MSD Spk Amt	MSD Result	MSD % Rec	RPD	RPD CtrlLimit	%Rec CtrlLimit	Qual
MS	1608151.01	Mercury				< 0.150) 5.00	5.05	101		5.05				70-130	
MS2	1608151.14	Mercury				< 0.150) 5.00	5.02	100		5.02				70-130	

RP16090102

JobID :

1608151

Analys	is : Mercury, Total					Me	thod : EPA 2	245.1					Ui	nits : ug/l	-	
QC Bat	tch ID : Qb16081902	<u>.</u>														
Sample	es in This QC Batch	: 1608151.0)5,07,08													
Sample	e Preparation PB16	081902	Prep Method: E	PA 245.1	Prep	Date:		By:	Mwilson							
QC Typ	pe: Method Blank															
	Parameter						CAS #	Res	ult		DF	LRL	SD	L		Qual
MB	Mercury						7439-97-6	< 0.	200		1	0.200	0.1	50		
QC Тур	pe: Duplicate															
	QC Sample ID	Parameter				Result	QC Sample	e Result			RPD	RPD C	trl Limits		Ç	Qual
DUP	1608151.08	Mercury				< 0.150	< 0.1	50			NaN		30			
QC Typ	pe: LCS/LCSD															
	Parameter			LCS Spk Amt	LCS Result	LCS % Rec	LCSD Spk Amt	LCSD Result		CSD Rec	RPD		RPD CtrlLimit	%Recov CtrlLin		Qual
LCS	Mercury			5.00	4.80	96.1								90-11	0	
QC Typ	pe: MS/MSD					Comula	MC	МС	МС	MCD	MCD	MCD		DDD	0/ D	
	QC Sample ID	Parameter				Sample Result	MS Spk Amt	MS Result	MS % Rec	MSD Spk Amt	MSD Result	MSD % Rec	RPD	RPD CtrlLimit	%Rec CtrlLim	
MS	1608151.08	Mercury				< 0.150) 5.00	4.80	95.9		4.80				70-130	

RP16090102

JobID :

1608151

8725 Fawn Trail - The Woodlands, TX 77385 - www.NWDLS.com - (936) 321-6060

Analysi	is : Mercury, Total					Me	ethod : SW8	46 7471B					U	nits : mg/	kg dw	
QC Bat	t ch ID: Qb16081903	}														
Sample	es in This QC Batch	: 1608151.1	16,17,18,19,20,2	1,22												
Sample	e Preparation PB16	081903	Prep Method:	SW846 7471B	Prep	Date:		By: 1	Mwilson							
QC Тур	pe: Method Blank															
	Parameter						CAS #	Res	ult		DF	LRL	SE	DL		Qual
MB	Mercury						7439-97-6	< 0.	020		1	0.020	0.0)10		
QC Тур	pe: Duplicate															
	QC Sample ID	Parameter				Result	QC Sample	e Result			RPD	RPD C	trl Limits		Q)ual
DUP	1608151.16	Mercury				< 0.025	< 0.0	25			NaN		30			
QC Typ	pe: LCS/LCSD															
	Parameter			LCS Spk Amt	LCS Result	LCS % Rec	LCSD Spk Amt	LCSD Result		CSD Rec	RPD	1	RPD CtrlLimit	%Reco CtrlLir		Qual
LCS	Mercury			0.250	0.246	98.4								80-12	20	
QC Тур	pe: MS/MSD															
	QC Sample ID	Parameter				Sample Result		MS Result	MS % Rec	MSD Spk Amt	MSD Result	MSD % Rec	RPD	RPD CtrlLimit	%Rec CtrlLimi	
MS	1608151.16	Mercury				< 0.025		0.113	104		0.113				80-120	-

RP16090102

JobID :

1608151

Analysis : Metals, Total		Method	EPA 200.8	Units : mg/kg
QC Batch ID : Qb16083002				
Samples in This QC Batch : 160815	51.16,17,18,19,20,21,22			
Sample Preparation PB16083002	Prep Method: EPA 200.2	Prep Date:	By: Cliles	

QC Тур	e: Method Blank						
	Parameter	CAS	# Result	DF	LRL	SDL	Qual
МВ	Antimony	7440-3	6-0 < 0.100) 1	0.100	0.010	
MB	Arsenic	7440-3	8-2 < 0.050) 1	0.050	0.0025	
MB	Beryllium	7440-4	1-7 < 0.004	ł 1	0.004	0.004	
MB	Cadmium	7440-4	3-9 < 0.100) 1	0.100	0.005	
MB	Chromium	7440-4	7-3 < 0.300) 1	0.300	0.015	
MB	Copper	7440-5	0-8 < 0.100) 1	0.100	0.017	
MB	Lead	7439-9	2-1 < 0.050) 1	0.050	0.0025	
MB	Nickel	7440-0	2-0 < 0.100) 1	0.100	0.005	
MB	Selenium	7782-4	9-2 0.046	1	0.040	0.040	
MB	Silver	7440-2	2-4 < 0.050) 1	0.050	0.0025	
МВ	Thallium	7440-2	8-0 < 0.010) 1	0.010	0.002	
MB	Zinc	7440-6	6-6 < 0.200) 1	0.200	0.010	

QC Тур	e: Duplicate						
	QC Sample ID	Parameter	Result	QC Sample Result	RPD	RPD Ctrl Limits	Qual
DUP	1608151.16	Antimony	< 0.020	< 0.020	NaN	30	
DUP	1608151.16	Arsenic	2.48	2.57	3.56	30	
DUP	1608151.16	Beryllium	0.338	0.351	3.77	30	
DUP	1608151.16	Cadmium	0.049	0.052	5.94	30	
DUP	1608151.16	Chromium	5.47	5.82	6.20	30	
DUP	1608151.16	Copper	5.11	5.31	3.84	30	
DUP	1608151.16	Lead	4.89	5.05	3.22	30	
DUP	1608151.16	Nickel	6.48	6.82	5.11	30	
DUP	1608151.16	Selenium	1.00	1.08	7.69	30	
DUP	1608151.16	Silver	0.018	0.019	5.41	30	
DUP	1608151.16	Thallium	0.040	0.042	4.88	30	
DUP	1608151.16	Zinc	17.6	18.4	4.40	30	

RP16090102

JobID :

1608151

8725 Fawn Trail - The Woodlands, TX 77385 - www.NWDLS.com - (936) 321-6060

Analysis : Metals, Total	Method : EPA 200.8	Units : mg/kg
QC Batch ID : Qb16083002		

Samples in This QC Batch : 1608151.16,17,18,19,20,21,22

QC Тур	e: LCS/LCSD										
	Parameter	LCS Spk Amt	LCS Result	LCS % Rec	LCSD Spk Amt	LCSD Result	LCSD % Rec	RPD	RPD CtrlLimit	%Recovery CtrlLimit	Qual
LCS	Antimony	10	10.2	102						85-115	
LCS	Arsenic	5	5.06	101						85-115	
LCS	Beryllium	2	1.98	99.0						85-115	
LCS	Cadmium	10	10.1	101						85-115	
LCS	Chromium	30	30.1	100						85-115	
LCS	Copper	10	10.2	102						85-115	
LCS	Lead	5	5.10	102						85-115	
LCS	Nickel	10	10.2	102						85-115	
LCS	Selenium	20	20.2	101						85-115	
LCS	Silver	5	5.03	101						85-115	
LCS	Thallium	5	5.06	101						85-115	
LCS	Zinc	20	20.6	103						85-115	

QC Typ	e: MS/MSD												
	QC Sample ID	Parameter	Sample Result	MS Spk Amt	MS Result	MS % Rec	MSD Spk Amt	MSD Result	MSD % Rec	RPD	RPD CtrlLimit	%Rec CtrlLimit	Qual
MS	1608151.16	Antimony	< 0.020	3.45	0.313	9.07		0.313				70-130	J1
MS	1608151.16	Arsenic	2.57	1.72	4.17	93		4.17				70-130	
MS	1608151.16	Beryllium	0.351	0.69	0.876	76.1		0.876				70-130	
MS	1608151.16	Cadmium	0.052	3.45	3.24	92.4		3.24				70-130	
MS	1608151.16	Chromium	5.82	10.34	14.9	87.8		14.9				70-130	
MS	1608151.16	Copper	5.31	3.45	8.20	83.8		8.20				70-130	
MS	1608151.16	Lead	5.05	1.72	6.65	93		6.65				70-130	
MS	1608151.16	Nickel	6.82	3.45	9.93	90.1		9.93				70-130	
MS	1608151.16	Selenium	1.08	6.90	5.50	64.1		5.50				70-130	J1
MS	1608151.16	Silver	0.019	1.72	1.57	90.2		1.57				70-130	
MS	1608151.16	Thallium	0.042	1.72	1.37	77.2		1.37				70-130	
MS	1608151.16	Zinc	18.4	6.90	24.5	88.4		24.5				70-130	

Affiliation	5	Print	2	16 Samo	15	4	13	12	11	10	9	00	7	Ø	U	4	ω	N	-	#		>@.
	Marisa Weber	Print Name	Man W	16 Sampler (Signature)														1147-7983	1147-7982	Sample ID	North Water District 8 Laboratory Services, Inc. (936) Site: 3472 Quintana Term. Dock1 Maint. Dredge	Ne
M	Sa W		Full															QI-16-EQUI P	P P	Point	North Water District Laboratory Services, Inc. 3472 tana Term. Dock1 Ma	IUMN
	cher		3															17/8 In	17/2 In	n Date	s, Inc.	5
				-														1300	1300	Time	872 (936) 32 Dredge	
Relinquis		Relinquis	VV-															GRAB	GRAB	Sample Type	8725 Fawn Trail - The Woodlands, TX 77385 (936) 321-6060 - fax (936) 321-6061 - Iab@nwdls.com Customer: LLD edge Lloyd Engineering, Inc. 6565 West Loop, Suite 708 Bellaire, TX 77401	Nor
Relinquished Td Laboratory By (Sigpature)		Relinquished By (Signature)						_				_	_	_				_		T	Fawn Trail - The Woodlands, TX 6060 - fax (936) 321-6061 - 1ab@ fustomer: LLD loyd Engineering, Inc. 565 West Loop, Suite 708 ellaire, TX 77401	North Water District
pratory By (S	0	nature)			-	-		-	-	-	-	-		-	-		-	250mL HDPE	250mL HDPE	Container Size Type	Voodlands 21-6061 - 21-6061 - 21-6061 - 21-6061 - 221-6061 - 221-6	er Distri
igpature)		1						_	9		-		-	_			-	PE Liquid		ainer De Conte	1mc, , TX 7738 Iab@nwdl	et
								-										d HNO3	d 4°C	nt Presen	s.com	
Date: 8/4/16	Time	0041	Date 8/4/14															180D	180D	ve Hold	3472	2
1530 Re			6															-	180D DisMet	Content Preserve Hold Requested Analysis & Remarks	3472 - Quintana Term.	CHAIN OF CLISTONY RECORD
Received For Laboratory By (Signature)		Received By (Signature)	Received By (Signature															Preser	Filtereck	Analysis	ntana	P
aboratory B		ignature)	igriature)	1														Vod u	nt, how	& Remark	Term	SIIS
(Signatute																		F	LPN	0		TOD
																			preservad		C1 Ma	< R
Tin Da	Time	1	D															TR	vedu		int. D	
0.08/4/1	6	1400	0115/4/16															OF Broth	WHND3		Dock1 Maint. Dredge	
	_	1					_		-		_	_	-	-	T	H7		K	L.	NOT		
Time	O Meter	11110	pH N												Her	203	tt po	1411	Tomo	ES:	1 80	
Temp °C	DO Meter 100% Air Calibration	olobe	pH Meter Calibration											2	Filler, ro1 - 104 29-3	HND3 : 646-17052-336	per .		Tom: 40	1003	1608 151.01	
	ir Calibr		libration											10 10	642	1000	Chr-1	0	0		-	
D.O.	ation	1 7 10													2-2	12 -	- LI A	10-2				

Tarte Temp C D.O.	222 Law 1220	330 July 1) w								LET	
feter 100% Air Calibr	Time	5	n Ta	ure)	atory By (Signature)		Relinquished To L		te bar	SALA	in mol	Affiliation
4 7 10	State	 Received By (Signature) 	Date		3	armeuõie)	(autorition) Ag beusinning		*		N.	5
pH Meter Calibration Time Slope Buffers	20141 m	100	Sumo S		4	WU	man			hale	Mart	L Mar
	us of receipt.	1800 Total Met PRESERVED W/ HNG	HNO3 1	Liquid	HDPE	250mL (Signature	GRAB 250ml Relinquished By (Signatur			QI-16-01-W	Sampler (Signature)	Samp
		14D TPH(T) ISLO 1920	HCI ~8°C 14D	Liquid	VIAL	40ml	GRAB	K	1	QI-16-01-W		5
		14D TPH(D) vcb 192	HCI <s"c 1<="" td=""><td>Liquid</td><td>VIAL</td><td>40mL</td><td>GRAB</td><td>-</td><td>+</td><td>QI-16-01-W</td><td></td><td></td></s"c>	Liquid	VIAL	40mL	GRAB	-	+	QI-16-01-W		
			HQ <5°C 14D	Liquid	VIAL	40mL	GRAB		-	QI-16-01-W	1147-7996	3
		7D OCP 8081(T)	H2SO4	Liquid	VIAL	Somt	GRAB	-	-	QI-16-01-W	1147-7995	12
		70 OCP 8081(D)		Liquid	VIAL	50mL	GRAB	-		QI-16-01-W	1147-7994 QI-16-01-W	
		7D 0CP 6081	HZSO4	Liquid	VIAL	60mL	GRAB	L	1	QI-16-01-W	1147-7983	10
		PCB 8082(T)	4°C	Liquid	VIAL	60mL	GRAB		T	QI-16-01-W		ω
		PCB 8082(0)	4°C	Liquid	VIAL	SomL	GRAB		1	QI-16-01-W		-
		PCB 8082	4°C	Liquid	VIAL	60mL	GRAB	-	1	QI-16-01-W	147-7990	
		7D SVOA(T)	4°C	Liquid	VIAL	60mL	GRAE	-	\int	QI-16-01-W	and an other	-
In Provident Prose - 2		7D SVOA(D)	4°C	Liquid	VIAL	60mL	GRAB	-		QI-16-01-W	1147-7988 QI-16-01-W	-
off Denor: no 17052-33		7D SVOA	4°C	Liquid	VIAL	60mL	GRAB	1	-	QI-16-01-W	1147-7987	
HND -: CAL-18881-4		14D VOA-8260(T)	HCI <6°C	Liquid	VIAL	40mf	GRAB		1	QI-16-01-W	_	-
FTIC03		140 VOA-8260(D)	HCI <©°C	Liquid	VIAL	40mL	GRAB	3	h	QI-18-01-W	1147-7985	
1°0°t		14D VOA-8260	Liquid HCI <8°C 14D	Liquid		40mL	GRAB	12:43	h/3	QI-16-01-W	and the second second	-
NOTES:	2	Hold Requested Analysis & Remarks	Content Preserve Hold	r Content	1.05	Size	Sample Type	Time	Date	Point	Sample ID	#
1608151.02					708	pring, Inc op, Suit 7401	Customer, LLD Lloyd Engineering, Inc. 6565 West Loop, Suite 708 Bellaire, TX 77401		Maint Dr	Quintana Term. Dock1 Maint. Dredge	Quintana Te	00
	RECORD aint. Dredge	CHAIN OF CUSTODY RECORD 3472 - Quintana Term. Dock1 Maint. Dredge		c. (77385 @mwdls.c	istrict ices, In flands, T. 061 - lab	Vater I y Serv he Wood 6) 321-6	North Water District Laboratory Services, Inc. 8725 Fawn Trail - The Woodlands, TX 77385 (936) 321-6060 - fax (936) 321-6061 - lab@nwdls.com	8725 I (936) 321-0		NWDLS North Water District Laboratory Services, Inc.	North Wat Laboratory S	
CSN-1782010 Page 1 of 2										L.	Cham ID. 5302053	Class

0

NUMULY Interview low or interview low of interview low of	Time Temp °C D.O.	5/4/10 Received For Laborations By (Signature) and 1/10 me /530	Date: 8	ature)	fry By (Signa	o Laborato	Relinquisted To Laboratory By (Signature)			(1) H		Affiliation
CHAIN OF CUSTODY RECORD Summer Scribes, Inc. Size Function: 120 Claimer: 1	DO Meter 100% Air Calibration		Date: Time:		1				ober		Maris	
CHAIN OF CUSTOPY RECORD Laboratory Services, Inc. Summer	pH Meter Calibratio	0H1 mm 0ch mm 0ch	Time:		X	W	Mile			Junk	Name	Print (
MULLS North Water District CHAIN OF CUSTODY RECORD Ster 372 Gatomer: (13) 321.660 - tal@wdls.com 3472 - Quintana Term. Dock1 Maint. Dredge Ster 372 Gatomer: (12) Gatomer: (12) 3472 - Quintana Term. Dock1 Maint. Dredge Ster 372 Gatomer: (12) Gatomer: (12) 3472 - Quintana Term. Dock1 Maint. Dredge Ster 372 Gatomer: (12) Gatomer: (12) Gatomer: (12) Outrana Term. Dock1 Maint. Dredge Upd Engineering, Inc. Store Engineering, Inc. Sample ID Obtention Sample Tree Samp		1. 1 Received By Simoline			0	By (Signatur	Relinquished E			-	pler (Signature	32 Sam
Multiple North Water District Laboratory Services, Inc. CHAIN OF CUSTODY RECORD STATUS CHAIN OF CUSTODY RECORD STATUS Star 372 Outome: (13) 321466 - lab@medi.com 3472 - Quintana Term. Dock1 Maint. Dredge Star 372 Outome: (13) Upd Engineering, Inc. BESS West Loop, Sule 708 3472 - Quintana Term. Dock1 Maint. Dredge Starting I Contineer BESS West Loop, Sule 708 Upd Engineering, Inc. BEBIE: (177401 Starting Inc. BEBIE: (177401 Starting Inc. BEBIE: (177401 Same ID Collection Pattri Non Time Same ID Contineer BEBIE: (177401 Non Same ID Collection Pattri Inter Same IDPE Inter Non Non Same ID Collection Pattri Inter Same IDPE Inter Non Non Same ID Collection Pattri Inter Same IDPE Inter Non Non Same ID Collection Pattri Inter Same IDPE Inter Non Non Same ID Collection Pattri Inter Same IDPE Inter Non Non Same ID Collection Pattri Inter Same IDPE Inter Non Non Same ID Collection Pattri Inter Same IDPE Inter Non Non												31
Avenue buter A												30
Aventy Service, Inc.			_									29
Number Chain												28
Number State North Water District Laboratory Services, Inc. CHAIN OF CUSTODY RECORD 3472 - Quintana Term. Dock1 Maint. Dredge Ste: 3472 Customer: Ltr (93) 321-600 - fac (93) 320 - fac (_									27
MUDUS North Water District Laboratory Services, Inc. CHAIN OF CUSTODY RECORD ST25 Faw Trail - The Woodlads, TX 77385 3472 - Quintana Term. Dock1 Maint. Dredge Ster 3472 Customer tu 0950 321-600 - fax (930) 320 - f	t1-200											26
MULLS North Water District CHAIN OF CUSTODY RECORD State starts CHAIN OF CUSTODY RECORD State starts Ster 3472 Customer: LLD Customer: LD Duintana Term. Dock1 Maint. Dredge Customer: LLD Customer: LD EGS West Loop, Suite 708 Bellaire, TX 77401 3472 - Quintana Term. Dock1 Maint. Dredge Sample ID Collection Paint Time Sample Type Container Type Preserve Hold Requested Analysis & Remarks Not Hull Analysis & Remarks 1147-8002 OI-te-o1-W GRAB 250mL HDPE Liquid 4*C 1900 Dawless, T.; HATCe, I, T.HCh, STCHULL, U.J. HaSO, J, A.H. (Requested Analysis & Remarks) Not Hull Analysis & Remarks Not Hull Analysis & Remarks Not 1147-8002 OI-te-o1-W GRAB 250mL HDPE Liquid 4*C 1900 Dawless, T.; HATCe, J, T.HCh, STCHULL, U.J. HaSO, J, A.H. (Requested Analysis & Remarks) Not 1147-8002 OI-te-o1-W GRAB 250mL HDPE Liquid 4*C 1900 Dawless, T.; HATCe, J, T.HCh, STCHULL, U.J. HaSO, J, A.H. (Requested Analysis & Remarks) Not 1147-8002 OI-te-o1-W GRAB 250mL HDPE Liquid 4*C 1900 Dawless, T.; HATCe, J, T.HCh, STCHULL, U.J. (J, J, A) D.H. AL, (Requested Analysis & Remarks) Not 1147-8002 OI-te-o1-W GRAB 250mL <td< td=""><td>pt paper-cal-IT</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>25</td></td<>	pt paper-cal-IT											25
MUDUS North Water District Laboratory Services, Inc. CHAIN OF CUSTODY RECORD Stre 3472 Stan Trail - The Woodlands, TX 77383 (936) 321-6660 - fax (936) 321-6661 - lab@mwdls.com 3472 - Quintana Term. Dock1 Maint. Dredge Customer LUD Ouintana Term. Dock1 Maint. Dredge Customer LUD Customer LUD Guintana Term. Dock1 Maint. Dredge Logit Engineering, Inc. 665 West Loop, Sulte 708 3472 - Quintana Term. Dock1 Maint. Dredge Isometring, Inc. 665 West Loop, Sulte 708 Sample ID Collection Date Time Sample Type Container Type Preserve Hod Requested Analysis & Remarks NOT 1147-8000 GI-LE-01-W GIRAB 250mL HDPE Liquid 4°C 1800 Disease F. H. AFCe J. H. H. M. GFCK-GYLLID WJ. H. AG. J. A. J. RCL QLID. NOT 1147-8000 GI-LE-01-W GIRAB 250mL HDPE Liquid 4°C 1800 Disease F. H. AFCe J. H. H. M. GFCK-GYLLID. NOT 1147-8000 GI-LE-01-W GIRAB 250mL HDPE Liquid 4°C 1800 Disease F. H. GCE G. J. J. J. A. O. H. J. A. J. A. J. A. C. L. J. J. A. O. H. J. A. G. H. J. C. L. J. J. A. O. H. J. A. G. H. J. C. L. J. J. A. G. H	LANUS: CAL-1800											24
North Water District Laboratory Services, Inc. CHAIN OF CUSTODY RECORD Stress Trail North Water District (36) 321-666 - fax (936) 321-666 - fax	NOUT : WWW- INC											23
Image: ID Collection point Date Time Sample ID Container Somu Container Trype Container Somu Pessave Hold Requested Analysis & Remarks NOT North Water District NOT Ster: 3472 Customer: LtD Customer: LtD Customer: LtD 3472 - Quintana Term. Dock1 Maint. Dredge Lloyd Engineering. Inc. 6565 West Loop, Suite 708 3472 - Quintana Term. Dock1 Maint. Dredge See Soft West Loop, Suite 708 Sample ID Collection Date Time Sample Type Container Pessave Hold Requested Analysis & Remarks NOT 1147-8002 Di-16-01-W A GRAB 250mL HDPE Liquid 4°C 1920 District NOT 1147-8002 Di-16-01-W A GRAB 250mL HDPE Liquid 4°C 1920 District NOT 1147-8002 Di-16-01-W A GRAB 250mL HDPE Liquid 4°C 1920 District NOT 1147-8002 Di-16-01-W A GRAB 250mL HDPE Liquid 4°C 1920 Dirty A/A Chart Art Art Art Art Art A	HzJug - UL - 1800		_									22
North Water District Laboratory Services, Inc. CHAIN OF CUSTODY RECORD Ster. CHAIN OF CUSTODY RECORD Site: 3472 Customer: LLD Customer: LLD 3472 - Quintana Term. Dock1 Maint. Dredge Loyd Engineering, Inc. 665 West Loop, Suite 708 Bellarie, TX 77401 3472 - Quintana Term. Dock1 Maint. Dredge Loyd Engineering, Inc. 665 West Loop, Suite 708 Bellarie, TX 77401 Sample ID Collection Point Date Time Sample Type Container Type Preserve Hold Requested Analysis & Remarks NOT 1147-8001 Cu-te-o1-W GRAB 250mL HDPE Liquid 4*C 1800 Diskter, F.; Here J. HAC AC NOT 1147-8001 Cu-te-o1-W GRAB 250mL HDPE Liquid 4*C 1800 Diskter, F.; Here J. HAC AC AC NOT 1147-8003 Cu-te-o1-W GRAB 250mL HDPE Liquid 4*C 1800 Diskter, F.; Here J. HAC AC AC <t< td=""><td>F. HEL: CHL-184</td><td>ERANST TELEDEIVIUN WI HEUU</td><td></td><td>-</td><td></td><td></td><td></td><td>K</td><td>10</td><td></td><td></td><td>21</td></t<>	F. HEL: CHL-184	ERANST TELEDEIVIUN WI HEUU		-				K	10			21
WWDLS North Water District Laboratory Services, Inc. North Water District (936) 321-6060 - Itab (931) 21-6061 - Itab (930) 321-6061 - Ita	Fillor, so	TOC-415 DECOVIED IN THE TOCAL	-	-		250m	GRAB	~	50	2I-16-01-W		20
WWDLS North Water District Laboratory Services, Inc. CHAIN OF CUSTODY RECORD North Water District Laboratory Services, Inc. 8725 Fawn Trail - The Woodlands, TX 77385 (936) 321-6061 - Tax (936) 321-6061 - Lab@nwdls.com 3472 - Quintana Term. Dock1 Maint. Dredge Customer. LLD Site: 3472 Customer. LLD Customer. LLD Eloyd Engineering, Inc. 5655 West Loop, Suite 708 Bellaire, TX 77401 Step 1000 Gite Content Container. Time Sample Type Container. Size Time Sample Type Container. Type Preserve Hold Requested Analysis & Remarks NOTE 1147-8000 GI-LE-01-W I I 12, 'LJ GRAB 250mL HDPE Liquid 4°C 1800 Disket F.' Harfe J. Holf, Inthe Control, Inthe Contro, Inthe Control, Inthe Control, Inthe Control, Inthe Con		CN Provential and Man 11		-		250m	GRAB	/	~	QI-16-01-W		19
NUDLS North Water District Laboratory Services, Inc. CHAIN OF CUSTODY RECORD Water District ory Services, Inc. 8725 Fawn Trail - The Woodlands, TX 77385 (936) 321-660 - fax (936) 321-660 - lab@nwdls.com 3472 - Quintana Term. Dock1 Maint. Dredge Customer: LLD erm. Dock1 Maint. Dredge Loyd Engineering, Inc. 6565 West Loop, Suite 708 Bellaire, TX 77401 6555 West Loop, Suite 708 Bellaire, TX 77401 Collection Date Time Sample Type Container Type Preserve Hold Requested Analysis & Remarks NOTE: Ol-16-01-W8/Lu/n 1/2, '4/3 GRAB 250mL HDPE Liquid 4°C 1800 DistMet, F. TArcol, T. TACOL, A. A. M. M. M. NOTE:		Descential 101 H-SOL At 1011	-	-		250m		1		QI-16-01-W	1147-8001	18
Image: WWDLS North Water District Laboratory Services, Inc. North Water District Laboratory Services, Inc. CHAIN OF CUSTODY RECORD North Water District Laboratory Services, Inc. 8725 Fawn Trail - The Woodlands, TX 77385 (936) 321-6061 - tak@nwdls.com 3472 - Quintana Term. Dock1 Maint. Dredge 3472 - Quintana Term. Dock1 Maint. Dredge Site: 3472 Customer: LLD Loyd Engineering, Inc. 6565 West Loop, Suite 708 1000 Engineering, Inc. 6565 West Loop, Suite 708 1000 Engineering, Inc. 6565 West Loop, Suite 708 Sample ID Collection Date Time Sample Type Container Size Preserve Hold Requested Analysis & Remarks NOTE-		Filtered then precovered with		Liquid	HDPE	250m		12,43		QI-16-01-W	1147-8000	.17
North Water District Laboratory Services, Inc.CHAIN OF CUSTODY RECORD725 Fawn Trail - The Woodlands, TX 77385 321-6061 - lab@nwdls.com3472 - Quintana Term. Dock1 Maint. DredgeCustomer: LLD Lloyd Engineering, Inc. 6565 West Loop, Suite 708 Bellaire, TX 77401Bellaire, TX 77401			Preserve Hold	Content	Containe		Sample Typ	Time	Date	Point		-
WDLSNorth Water District Laboratory Services, Inc.CHAIN OF CUSTWater District8725 Fawn Trail - The Woodlands, TX 77385 8725 Fawn Trail - The Woodlands, TX 77385 321-6060 - fax (936) 321-6061 - lab@nwdls.com3472 - Quintana Term.	1608151.02				nc. Ite 708	LLD eering, Ir _oop, Su 77401	Customer: 1 Lloyd Engine 5565 West I Bellaire, TX		Maint. D	m. Dock1	2uintana Te	
			ω	c. X 77385 @nwdls.co	vices, In odlands, T 6061 - lab	Water I ry Serv The Woo 36) 321-0	North Laborato Fawn Trail - 6060 - fax (9	8725 (936) 321		VDL Water Districery ry Services, L	North Laborate	

	C II I Down at Carl and a construction of the	2	nature)	cry By (Sign	Retinquished To Leboratory By (Signature)	Raing		1	- TI
nms/4/16 pH Meter Calibratio nms/4/16 Time nms/1400 Time nms 1400		3		1			5	v Weber	IN ACLE ISA
Tank 1400 Time Slope	see Roceived By (Signature)	B		(art	Reinquished By (Signature)	Roing			A
the X/U/16	1 COAL MAN	24		X	Kank	2		Ser	UNDAN.
5	conved By (Septence)			(a)	Relinquished By (Signatur	Relinq		-	Sampler (Signature)
nt cordint.	1800	HNO3	Liquid	IL HOPE	GRAB 250mL	G	4	1.1	16 1147-8019 QI-16-02-W
	C 14D TPH(T)	HCI ~6"C 14D	Liquid	L VOA	GRAB 40ml	0	-	QI-16-02-W	15 1147-8018
	C 14D TPH(D)	HQI <6"C 14D	Liquid	-	GRAB 40ml	G		QI-16-02-W	14 \$147-8017
	C 14D TPH 1020-0095	HCI ~6"C	Liquid	-	GRAB 40mL	6		QI-16-02-W	3147-8016
	YD OCP 8081(T)	H2SO4	Liquid	-	GRAB 50mL	9		QI-16-02-W	12 1147-8015
	7D 0CP 8081(D)		Liquid	6	GRAB SOML	6	-	QI-16-02-W	1147-8014
	D OCP 8081	-	Liquid	-	GRAB 50mL	6		QI-16-02-W	
	PCB 8082(T)	-	Liquid		GRAB Bomil	6		QI-16-02-W	1147-8012
	PCB 8082(D)	4°C	Liquid		GRAB 50mL	6		QI-16-02-W	1147-8011 QI-16-02-W
	PCB 8082	4°C	Liquid	-	GRAB SOML	6		QI-16-02-W	1147-8010
	7D SVOA(T)	4°C	Liquid	-	GRAB 50mL	6	-	01-16-02-W	1147-8009
pH paper: elc-17052-33	70 SVOA(D)	4°C	Liquid	-	GRAB BOML	6		0 -16-02-W	1147-8008
HNO3: 04-18881-4	7D SVOA	4°C	Liquid	-	GRAB 60mL	6	1	QI-16-02-W	
	C 14D VOA-8260(T)	HCI ~6"C 14D	Liquid	-	GRAB 40mL			QI-16-02-W	1147-8006
ETTOOS	C 14D VOA-8260(D)	HCI ~6°C 14D	Liquid		GRAB 40mL	6	2.	QI-16-02-W	1147-8005
4,0°c	C 14D VOA-8260	HCI ~8°C 14D	Liquid		GRAB 40mL	12:13 0	-	" DI-16-02-W 8/4/10	1147-8004
NOTES:	Content Preserve Hold Requested Analysis & Remarks	Preserve	Conter	e Type (Sample Type Size	Time Sam		Point	Sample ID
1608151.03		-		nc. uite 708	Customer, LLD Lloyd Engineering, Inc. 6565 West Loop, Suite 708 Bellaire, TX 77401		aint. Dredg	Quintana Term. Dock1 Maint. Dredge	Quintana Te
L Dock1 Maint. Dredge	CHAIN OF CUSTODY RECORD 3472 - Quintana Term. Dock1 Maint. Dredg		t nc. IX 77385 b@nwdis	Distric vices, I odlands, 7 -6061 - 18	North Water District Laboratory Services, Inc. 8725 Fawn Trail - The Woodlands, TX 77385 (936) 321-6060 - fax (936) 321-6061 - lab@nwdls.com	Nd Lab 8725 Fawn 5) 321-6060		North Water District Laboratory Services, Inc.	North Water Laboratory Ser

Altikation	2	Print	(Samp	32	34	30	29	28	27	26	25	24	23	R	N	20	2 0	8	78	#		(D)
m s	Dins	Name	Ward	Sampler (Signature)													1147-8023	1147-8022	1147-802	1147-802	Sample ID	Quintana T	Nor Labor
(,	NOMS& Wel		land in the	19													1147-8023 QI-16-02-W	QI-16-02-W	1147-8021 QI-16-02-W	1147-8020 QI-18-02-W 8/4	Point	0	North Water District Laboratory Services, Inc.
	261															16	5	-		8/11/18	Date	Maint D	ind Co
																100	~	-	1	10	Time	redge	872 (936) 32
Relinquished To Laboratory By (Signature)		Relinquished By (Signature	mili	Reinquished By (Signature)													GRAB	GRAB	GRAB	GRAB	Sample Type	Customer: LLD Lloyd Engineering, Inc. 6565 West Loop, Suite 708 Bellaire, TX 77401	North Water District Laboratory Services, Inc. 8725 Fawn Trail - The Woodlands, TX 77385 (936) 321-6060 - fax (936) 321-6061 - lab@mwdis.com
Laboratory		(Signature)	J.	(Sinnahare)													250mL	250mL	250mL	250ml	Size	LD sering, In oop, Suit 77401	Water L ry Serv The Wood 36) 321-6
By (Signat		-															HOPE	HDPE	HDPE		Container Type	c. te 708)istrict ices, In dlands, T. 061 - Jab
(au																mahun	Liouid	Liquid	Liquid	Liquid	ontainer Type Content Preserve Hold Requested Analysis & Remarks		e. X 77385 @nwdls.o
1 9	Time	2	3 0													4°C	H2S04	NaOH	H2SO4	4ªC	Preserve		
h/8ma		100	m 5/4/14						_							Pot	Cec	140	280	180D [Hold		CH 3472
1			-													54 451 10	00-445	N. Stevenso	HS-N	DisMet	Requester		- Qui
Received For Laborardry By (S		Received By (Signature)	Heceived By (Signature)													in the preserved	TOCASE PLASE VX(A	Door	NH3-N Protocition	1800 Dismet F. Horad	d Analysia		CHAIN OF CUSTODY RECORD 3472 - Quintana Term. Dock1 Maint. Dredg
hydroge		ignature	Printerio													rvach	AVX0	NEV	No al	ant he	& Rema		CU:
By (Signat		(1	2												5	F	E	INTIL I	600	rks		
M)		/													WI HESDY out receipt	NIN	MINITED PARTIN	K.N.	nrofu			TODY RECORD
	,				000000000000000000000000000000000000000											ort	00	CTT	~L VEL	oroperizad			RE
ans Stylic	1	K	and S													Rece	UT D	414	30				Dre
silte		400	4/16	÷ /											1.1.1	Cpt.	ecert.	IVT.	THEVE	14N 0-			dge
Time	3	Marine 1	T								pH	- T.	17	5	#		WINING IN OF RECEIPT. SHING				NOTES:		
etern		-	pH Meter Calibration								pt payer: CAL-17032-3	H:1785: 020-18407-3	203	NOUH : MUB-16828-1	H2SO4: CAL- 18887-3		61		17	0,4	1	5	
Temp *C		adrice	er Calit								CPL	CRL	CH-	: Wh	CRU				200	Ô		1608151.03	
Calibr	-		bration								CRL-1432-3	CH81-	18881	8-168	- 1893				W			1.0	
D.O.	4 7 10	Duriers									32-3	73	4-4	18-1	7-3						1	r	

DO Meter 100% Air Calibration	cons/14/12 Received Fort shorehory By (Signature) or Star	ure)	eutics) fig fue	non-structured to Laboratory by (Signature)	No		CT H	-
AL 1 M	1		1	and the second	D	ber	sa Weber	Affiliation
-	Received By (Signature)		(aur	Relenquished By (Signat	Ra			
Time			4	KIMMA &	2		NXX	VVCUV
14/16 pH Meter Calibration	sceived By (Signature)		are)	Aclinquished By (Signat	Re			
10:01	1800 Totaline Draserved withing at Dra	Liquid HNO3	HDPE	GRAB 250mL	4	6	QI-16-03-W	16 1147-8039 Sampler (Signature
	C 14D TPH(T)	Liquid HCI-6°C 14D	L VIAL	GRAB 40mL		1	1147-8038 Qi-16-03-W	
	C 14D TPH(D)	Liquid HCI <6°C	-	GRAB 40mL	-		QI-16-03-W	
		Liquid HCI <6°C 14D		GRAB 40mL	/		QI-16-03-W	
	70	Liquid H2SO4 4°C	-	GRAB 60mL	-	t		
	4 7D 0CP 8081(D)	Liquid H2SO4		GRAB 60mL			Q1-16-03-W	11 1147-8034
	4 7D 0CP 8081	Liquid H2SO4	L VIAL	GRAB 60mL	-	+		
	PCB 8082(T)	Liquid 4°C		GRAB 60mL	-	-		
	PCB 8082(D) FPA data	Liquid 4°C		GRAB 50mL	/	-		-
	PCB 8082	Liquid 4°C		GRAB 60mL		-	Qt-16-03-W	
8141w	7D SVOA(T)	Liquid 4°C	-	GRAB 60mL		T	-	
PH paper: ch-the	7D SVOA(D)	Liquid 4°C	-	GRAB 60mL	1		- hunse	
HIVS. CH 1802-3	7D SVOA	Liquid 4°C	-	GRAB 50mL		-		
11/10 100-1000-1-0	HCI -6"C 14D VOA-8260(T)	Liquid HCl <6		GRAB 40mL				
F11003	HCI <6°C 14D VOA-8260(D)	Liquid HCI <6		GRAB 40mL		Γ		
4.0	HCI ~6°C 14D VOA-8260	Liquid HCI ~6		GRAB 40mL	11.13	SILING	QI-16-03-W 8/4	
NOTES:	Content Preserve Hold Requested Analysis & Remarks	Content Preser	Type	Sample Type Size	Time S.	Date		# Sample ID
1608151.04		-	708	Customer: LLD Lloyd Engineering, Inc. 6565 West Loop, Suite 708 Bellaire, TX 77401		Maint. Dre	Quintana Term, Dock1 Maint, Dredge	Quintana T
RD	CHAIN OF CUSTODY RECORD 3472 - Quintana Term. Dock1 Maint. Dredge	c. X 77385 Ønwdls.com	District vices, In oodlands, T -6061 - lab	North Water District Laboratory Services, Inc. 8725 Fawn Trail - The Woodlands, TX 77385 (936) 321-6060 - fax (936) 321-6061 - lab@nwdls.com	L: 8725 Fax (936) 321-60		WDL h Water Distri tory Services,	Non Labor

AT	P.F.	-	Prin	Sa	32	3	30	29	28	27	26	25	24	23	22	21	N	=	18	1-1	#		1.
LE	INAU	hA	-VVVQ	Sampler (Signature)									-	w	N	-	20 1147-8043	9 1147-8042	8 1147-8041	17 1147-8040	# Sample ID	Site: 3472 Quintana T	North Water Di Laboratory Service
Н	SX M	-	Print Name	те) (-													QI-16-03-W	19 1147-8042 OI-16-03-W	Q1-16-03-W 8/4/14		Point	0	North Water District Laboratory Services, Inc.
	Jeba.	F -	9																	8416	Date	1 Maint. D	
																			11:13	El:1]	Time		8725 I (936) 321-
Relinquished Tot		Kelinquished By (Signature)	W/a/W	Relinquished By (Signature													GRAB	GRAB	GRAB	GRAB	Sample Type	Customer: LLD Lloyd Engineering, Inc. 6565 West Loop, Suite 708 Bellaire, TX 77401	North Water District Laboratory Services, Inc. 8725 Fawn Trail - The Woodlands, TX 77385 (936) 321-6060 - fax (936) 321-6061 - lab@nwdls.com
To-Caboratory By (Signature)	1	(Signature)	F.F.	(Signature)													250mL HDPE	250mL 1	250mL H	-	Size	_D ering, Inc. oop, Suite 7401	Vater Dis y Service he Woodla 6) 321-606
(Signature)				-	-	_	-	-			-	_	-	-	-		10PE Liquid	HDPE Lic	HDPE Lic	HDPE Lic	Container Preserve Hold Requested Analysis & Remarks	708	strict es, Inc. nds, TX 77 1 - lab@nv
				+	-			-	_		-	-	-	-	-	4.0	1-1-	Liquid NaOH	Liquid H2SO4	Liquid 4°C	ntent Press		385 vdls.com
14/1×	Time:	Date	Time 1400	Date 8 4													28D	140	28D	C 180D	arve Hold		CF 3472
			č	10							1.41	il u	2			EPA 415.1	TOC-415	CN	NH3-N Property of	180D DisMet	Requested		CHAIN OF CUST 3472 - Quintana Term.
Received For Laboratory By (Signature		Received By (Signature)	No	Received By (Signature)							1 0 4 7	114 - Solo - thin	the court	0 21		Tresci	tica	1001	Proper	F. Hered	Analysis 8		OF (
oratory By (S		nature)	1	nature)							LII	1114	in i c			ILEGELV LOS	L	X-VI V			Remarks		
Signature									C	8/4	t-sout	5 10	5			CH IN	1001	1.11	H H	hon			
										9/10	RC.	LOW	JALX	000		204	PLC ELL	144	0	NOOF DVID IN			/ RE
213	Time:	Dates	1	Date S/												atre	10011		at noral	_			CHAIN OF CUSTODY RECORD 472 - Quintana Term. Dock1 Maint. Dredge
ile	-		400	ulic												PLEIPK.		1111	10:01	ILLAND	7		D
Time	DO Met		Time	모				N	r		7	3	-1	Hr CS	<i>K</i>	~	X	Y	1	,	NOTES:		
Temp °C	DO Meter 100% Air Calibration		Slope	pH Meter Calibration		\langle	Z	2	, '	2/9	~	X	y Nu	, c	~ ~	0.	~ ~	C II	1	4.000		1608151.01	001-102012
°C allo	Air Calibr		e	libration			531	X					58	X		1-1NO3-042-18811-4	NAOH : CAL- 16828	H2304:022-18987-3	T-165-1813-3	1003		S . D	
D.O.	ation	4 7 10	Buffers													H-1881-	Pt-16824	1-1844-	120				rage 2 of 2

Date Time Sample Type Scenario Province Content Province Content Province HMC Represented Analysis & Remarks NOTES: HMC3 B14/L (D, 5, 5) GRAB 40ml VAL Liquid HC1 e4°C 140 VQA.228007 HMC3	Container Preserve Hode Requested Analysis & Remarks NO Type Content Preserve Hod Requested Analysis & Remarks NO VAA Liquid HCI <4°C 14D VOA.8280(P) NO VAA Liquid 4°C 7D SNOA(D) NO VAA Liquid 4°C PCB 8082(P) NO NO VAA Liquid 4°C PCB 8081(D) NO NO NO PCB 8081 PCP 8081(P) NO PCP 8081(P) NO PCP 8081(P) NO PCP 8081(P)		6/11/	1	- 11-1
D Freed Free Sample Type Source Type Content Preserve Hold Requested Analysis & Remands Hold Requested Analysis & Remands Hold Requested Analysis & Remands Hold Requested Analysis & Remands Hold Requested Analysis & Remands Hold Requested Analysis & Remands Hold Requested Analysis & Remands Hold Requested Analysis & Remands Hold Recent Press Hold Ho	Containter Preserve Hold Requested Analysis & Remarks NO VVA Liquid HCI <c*c< td=""> 14D VQA, 8280 VVA VVA VVA Liquid HCI <c*c< td=""> 14D VQA, 8280 VVA VVA VVA Liquid HCI <c*c< td=""> 14D VVA, 8280 VVA VVA VVA Liquid HCI <c*c< td=""> 14D VVA, 8280 VVA VVA VVA Liquid HCI <c*c< td=""> 14D VVA, 8280 VVA VVA VVA Liquid HCI <c*c< td=""> 14D VVA, 8280 VVA VVA VVA Liquid HCI <c*c< td=""> 17D SVA, 8280 VVA VVA VVA Liquid HCI <c*c< td=""> 14D SVA, 8280 VVA VVA VVA Liquid HCI <c< td=""> 17D SVA, 8280 VVA VVA VVA Liquid HCI <c< td=""> 17D SVA, 8280 VVA VVA VVA Liquid HCI <c< td=""> 17D SVA, 8280 VVA VVA VVA VVA VVA VVA VVA</c<></c<></c<></c*c<></c*c<></c*c<></c*c<></c*c<></c*c<></c*c<></c*c<>	lint	a Laboratory By (Sinnat	Relinguished T	WARISA NUESES
D Proprint Date Time Sample Type Some Type Content Preserve Hod Requested Avalysis & Remands No 4 4 0-16-0-4-W ³ /L [D], 5_5 GRAB 40ml WA Liquid HCI -stor 14D WOA WO	Container Preserve Hold Requested Analysis & Remarks NO VQA Liquid HCI <\$C	1	(A stream Ruch 4		
Semple ID Point Date Time Sample Type Size Type Content Preserve Hold Requested Avalyais & Remands No 1147-3044 01-16-04-W/X [D], 5, 5 GRAB 40ml WA Liquid HCI -4°C 140 WOA.82300(D) 1147-3045 01-16-04-W/X GRAB 40ml WA Liquid HCI -4°C 140 WOA.82300(D) 1147-3045 01-16-04-W/X GRAB 60ml WA Liquid HCI -4°C 140 WOA.82300(D) 1147-3045 01-16-04-W/X GRAB 60ml WA Liquid HCI -4°C 140 WOA.82300(D) 1147-3045 1147-3045 01-16-04-W/X GRAB 60ml WA Liquid HCI -4°C 140 WOA.82300(D) 1147-3045 01-16-04-W/X GRAB 60ml WA Liquid HCI -4°C 140 WOA.82300(D) 1147-3045 01-16-04-W/X GRAB 60ml WA Liquid HCI -4°C 140 WOA.82300(D) 1147-3045 01-16-04-W/X GRAB 60ml	Container Preserve Hold Requested Analysis & Remarks NO VPA Liquid HCI <6°C		WIXI	Reinoustra	and VUCAN
Semple ID Form Date Time Sample Type Stare Type Content Presserve Hold Requested Analysis & Remarks No 1147-3044 01-16-04-W GRAB 40ml VVA Liquid HCI <6*°C	Container Preserve Hold Requested Analysis & Remarks NO VAL Liquid HCI <6°C	ant 8/4/16 Reco	y (Signature)	1 1 J	
Sample ID Time Sample Type Type Content Preserve Hold Requested Analysis & Remarks NO 1147-8044 QI-16-Q4-WV L/L U.SS GRAB 4/ml VAL Liquid HCI <etc< td=""> 140 VQA.e220 VQA.e220</etc<>	Container Preserve Hold Requested Analysis & Remarks NO VAL Liquid HCI <6°C	HNO3	24		47-8059 QI-16-04-W
Sample ID Date Time Sample Type Size Type Content Preserve Hod Requested Analysis & Remarks NO 1147-3044 QI-16-Q4-W GRAB 40ml VAA Liquid HCI <s*c< td=""> 14D WOA WOA Liquid HCI <s*c< td=""> 14D WOA WOA</s*c<></s*c<></s*c<></s*c<></s*c<></s*c<></s*c<></s*c<></s*c<></s*c<></s*c<></s*c<></s*c<></s*c<></s*c<></s*c<></s*c<>	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	HCI <6°C 14D	-		
Semple ID Permit Date Time Sample Type Size Type Content Preserve Hod Requested Analysis & Remarks No 1147-8044 0L16-G4-W ³ / ₂ / ₄ / ₄ / ₄ / ₆ (D, 5) GRAB 40ml VAL Liquid HCL <e*c< td=""> 14D VOA.82800 VOA.8280 VOA.</e*c<>	Container Preserve Hold Requested Analysis & Remarks No VAA Liquid HCI <6°C	HCI <6°C 14D		GRAB	and second
Destripe ID Time Sample Type Sample Type Content Preserve Hold Requested Analysis & Remarks NO 1147-8045 01-16-04-W V/L (D, S, S) GRAB 40mt V/A Liquid HCI <e'c< td=""> 14D VOA. 8280 VOA. 8280 VOA. 1044 HCI <e'c< td=""> 14D VOA. 8280 VOA. 1044 HCI <e'c< td=""> 14D VOA. 8280 VOA. 1044 HCI <e'c< td=""> 14D VOA. 8280 VVA. VOA. 8280 VVA. VVA. VVA. VVA. VVA. VVA. VVA. VVA.</e'c<></e'c<></e'c<></e'c<>	Container Preserve Hold Requested Analysis & Remarks No VAA Liquid HCI -6°C 14D VOA.8260(D) VAA Liquid 4°C 7D SVOA(D) VAA Liquid 4°C 7D SVOA(D) VAA Liquid 4°C PCB 8082(D) VAA Liquid 4°C PCB 8081(D) VAA Liquid 4°C 7D VAA Liquid 4°C 7D VAA Liquid 4°C<	HCI <6°C 14D TPH	+	GRAB	112
Sample ID Point Date Time Sample Type Size Proteint Preserve Hold Requested Analysis & Remarks NO 1147-8045 0I-16-04-W K K Size Type Content Preserve Hold Requested Analysis & Remarks NO 1147-8045 0I-16-04-W K GRAB 40ml VAL Liquid HCI-6*C 14D VQA-8260(D) 1147-8045 0I-16-04-W GRAB 40ml VAL Liquid HCI-6*C 14D VQA-8260(D) 1147-8045 0I-16-04-W GRAB 60ml VAL Liquid HCI-6*C 14D VQA-8260(D) 1147-8045 0I-16-04-W GRAB 60ml VAL Liquid 4*C 7D SVQA(D) 1147-8045 0I-16-04-W GRAB 60ml VAL Liquid 4*C 7D SVQA(T) 1147-8055 0I-16-04-W GRAB 60ml VAL Liquid 4*C PCB 8082(D) 1147-8055	Container Preserve Hold Requested Analysis & Remarks NO VQA Liquid HCI <6°C	H2SO4 4°C 7D	-	GRAB	
Sample ID Polnt Date Time Sample Type Content Preserve Hold Requested Analysis & Remarks NO 1147-3044 Q1-16-oq-W ^S / ₄ / ₄ / ₆ / ₅ / ₅ / ₅ / ₆ GRAB 40ml VAL Liquid HCI-6°C 14D VQA_82800 14D	Container Preserve Hold Requested Analysis & Remarks No VAL Liquid HCI -6°C 14D VQA-8260(D) VAL VAL Liquid 4°C 7D SVQA-8260(D) VAL VAL Liquid 4°C 7D SVQA-9260(D) VAL VAL Liquid 4°C 7D SVQA-9260(D) VAL VAL Liquid 4°C 7D SVQA-9260(D) VAL VAL VAL Liquid 4°C 7D SVQA-9260(D) VAL VAL Liquid 4°C 7D SVQA-9260(D) VAL VAL VAL 4°C PCB 8082(D) VAL VAL VAL VAL	H2SO4 4°C 70		GRAB	
Sample ID Point Date Time Sample Type Content Preserve Hold Requested Analysis & Remarks NO 1147-8044 QI-16-Q4-W ^S / ₄ / ₄ / ₄ (D_1, 5) GRAB 40ml VQA Liquid HCI <6°C	Container Preserve Hold Requested Analysis & Remarks NO VAL Liquid HCI <6°C	H2SO4 4°C 70		GRAB	
Sample ID Politit Date Time Sample Type Size Type Content Preserve Hold Requested Analysis & Remarks NO 1147-8044 QI-16-04-W $J_{+}J_{+}J_{+}J_{+}J_{+}J_{+}J_{+}J_{+}$	Container Preserve Hold Requested Analysis & Remarks NO VAL Liquid HCI <6°C	4°C	-	GRAB	
Sample ID Point Date Time Sample Type Size Type Content Preserve Hold Requested Analysis & Remarks No 1147-8044 QI-16-04-W V/L (D), 5V GRAB 40mL VAL Liquid HCI -6*C 14D VOA. 3260 1147-8045 QI-16-04-W GRAB 40mL VAL Liquid HCI -6*C 14D VOA. 3260(D) 1147-8046 QI-16-04-W GRAB 40mL VAL Liquid HCI -6*C 14D VOA. 3260(D) 1147-8047 QI-16-04-W GRAB 60mL VAL Liquid HCI -6*C 14D VOA. 3260(D) 1147-8047 QI-16-04-W GRAB 60mL VAL Liquid 4*C 7D SWOA 1147-8049 QI-16-04-W GRAB 60mL VAL Liquid 4*C 7D SWOA 1147-8049 QI-16-04-W GRAB 60mL VAL Liquid 4*C 7D SWOA(D) 1147-8049 QI-16-04-W GRAB 60mL VAL Liquid 4*C 7D SWOA(D) 1147-8049 QI-16-04-W GRAB 60mL VAL Liquid 4*C 7D SWOA(D) <td>Container Preserve Hold Requested Analysis & Remarks NO VAL Liquid HCI <6°C</td> 14D VOA.8260(D) VOA.8260(D) VAL Liquid HCI <6°C	Container Preserve Hold Requested Analysis & Remarks NO VAL Liquid HCI <6°C	4°C	-	GRAB	
Sample ID Point Date Time Sample Type Content Preserve Hold Requested Analysis & Remarks No 1147-8044 0I-16-04-W H Image GRAB 40mL VAL Liquid HCI <6°C	Container Preserve Hold Requested Analysis & Remarks NO VVA Liquid HCI <6°C	4°C		GRAB	
Sample ID Point Date Time Sample Type Content Preserve Hold Requested Analysis & Remarks No 1147-8044 QI-16-04-W X X GRAB 40mL VQA Liquid HCI <6°C	Container Preserve Hold Requested Analysis & Remarks NO VPA Liquid HCI <6°C	4°C 70	-	GRAB	
Sample ID Point Date Time Sample Type Content Preserve Hold Requested Analysis & Remarks No 1147-8044 QI-16-04-W ^S /A/W ////////////////////////////////////	Container Preserve Hold Requested Analysis & Remarks NO VAL Liquid HCI <6°C	4°C 70	-	GRAB	47-8048 QI-16-04-W
Sample ID Point Date Time Sample Type Content Preserve Hold Requested Analysis & Remarks No 1147-8044 0I-16-04-W ////////////////////////////////////	Container Preserve Hold Requested Analysis & Remarks NO VOA Liquid HCI <6°C	4ºC 7D		GRAB	47-8047 QI-18-04-W
Sample ID Point Date Time Sample Type Content Preserve Hold Requested Analysis & Remarks No 1147-8044 QI-16-04-W ^B /H/L D; 5% GRAB 40mL VOA Liquid HCI <6°C	Containcr Preserve Hold Requested Analysis & Remarks NO VDA Liquid HCI <6°C	HCI <6°C 14D	-	GRAB	47-8046 QI-16-04-W
Sample ID Point Date Time Sample Type Content Preserve Hold Requested Analysis & Remarks NO 1147-8044 QI-16-04-WS/A/UC D_155 GRAB 40mL VOA Liquid HCI <6°C	Container Preserve Hold Requested Analysis & Remarks NO VOA Liquid HCI <6°C	HCI <6°C 14D	-	GRAB	QI-16-04-W
Sample ID Point Date Time Sample Type Size Type Content Preserve Hold Requested Analysis & Remarks NO	Container Preserve Hold Requested Analysis & Remarks NO		-	06)	01-16-04-WS/H
		Content Preserve Hold Requested	Size Type	_	Point Date
	North Water District Laboratory Services, Inc. 8725 Fawn Trail - The Woodlands, TX 77385 (936) 321-6060 - fax (936) 321-6061 - lab@nwdis.com 3472 - Quintana Term. Dock1 Maint. Dredge		North Water District Laboratory Services, Inc. Fawn Trail - The Woodlands, TX 6060 - fax (936) 321-6061 - Iah@	North Water District Laboratory Services, Inc. 8725 Fawn Trail - The Woodlands, TX 77385 16) 321-6060 - fax (936) 321-6061 - lab@nwdls	North Water District Laboratory Services, Inc. (9)

CHAIN OF CLUSTOPY RECORD CAIN OF CLUSTOPY RECORD CAIN OF CLUSTOPY RECORD CAIN OF CLUSTOPY RECORD Same in the transmer in the transmer in the transmer in the transmer interview of transmer interview of the transmer interview of the transmer interview of the transmer interview of transmer interview of transmer interview of the transmer interview of transmer inter	A	P		Sa 32	3	30	29	28	27	26	25	24	3 2	21	20	19	18	17	#	T	-	
Diversion Laboratory Services, Inc. CHAIN OF CUSTOPY RECORD strate remained 8723 From Tail - The Woolding, TX 77430 3472 - Quintana Term. Dockf Maint. Dredge Good Begineering, Inc. Begine, TX 77401 Immodel Maint. Dredge Begine, TX 77401 Commerce Commerce Begine, TX 77401 Immodel Maint. Dredge Begine, TX 77401 Single Type Single Type Single Single Type Begine, TX 77401 Immodel Maint. Dredge Begine, TX 77401 Single Type Single Single Type Single Single Type Begine, TX 77401 Immodel Maint. Dredge Begine, TX 77401 Single Type Single Single Type Single Single Type Single Single Single Type Single Single Si	Attiliation	int Name	War	mpler (Signati														1147-8060		Quintana	North Labora	
Norma water unstruct CHAIN OF CUSTODY RECORD 2014/00-1ar (26) 1-lang)method 3472 - Quintana Term. Dock1 Maint. Dredge Customer: LUD Love Engineering, In- Belaine, 1X 77401 3472 - Quintana Term. Dock1 Maint. Dredge © Sample Type Type © Sample Type Sample Type © Sample Type Type © Sample Type Type © Sample Type Sample Type © Sample Type Sample Type © Sample Type Type © Sample Type Type © Sampl	1 sal		211C														QI-16-04-V	QI-16-04-V		Ferm. Dock	WDL h Water Distr tory Services	
Norma Water Unitary 2014/00-1ar (26) 1-langinvels.rom CHAIN OF CUSTODY RECORD 3472 - Quintana Term. Dock1 Maint. Dredge Customer: LID Leve Engineering, Inc. Belaine, 1X 77401 a Sample Type Tops Freevol (10) Month (10) Month	Neber	4		-											Z	2	N 8/4/11	N 8/4/10	1	(1 Maint. C	niet S	
CHAIN OF CUSTODY RECORD 3472 - Quintana Term. Dock1 Maint. Dredge 3472 - Quintana Term. Dock1 Maint. Dredge Serve Hod Reuested Analysis & Remarks NTES. PC 210 NTES. PC 20 PC	/			F													85.0				8725 (936) 321	
CHAIN OF CUSTODY RECORD 3472 - Quintana Term. Dock1 Maint. Dredge 3472 - Quintana Term. Dock1 Maint. Dredge Serve Hod Reuested Analysis & Remarks NTES: Preserved Analysis & Remarks Received Analysis & Remarks NTES: Preserved Analysis & Remarks NTES: NTES: NTES: NTES: NTES: NTES: NTES: NTES: NTES: <td colsp<="" td=""><td>Relinquished To</td><td>Relinquished By</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>GRAB</td><td>GRAB</td><td>GRAB</td><td></td><td>Sample Type</td><td>Customer: LL Lloyd Enginee 6565 West Lo Bellaire, TX 7</td><td>North W Laborator Fawn Trail - T -6060 - fax (93</td></td>	<td>Relinquished To</td> <td>Relinquished By</td> <td></td> <td>GRAB</td> <td>GRAB</td> <td>GRAB</td> <td></td> <td>Sample Type</td> <td>Customer: LL Lloyd Enginee 6565 West Lo Bellaire, TX 7</td> <td>North W Laborator Fawn Trail - T -6060 - fax (93</td>	Relinquished To	Relinquished By													GRAB	GRAB	GRAB		Sample Type	Customer: LL Lloyd Enginee 6565 West Lo Bellaire, TX 7	North W Laborator Fawn Trail - T -6060 - fax (93
CHAIN OF CUSTODY RECORD 3472 - Quintana Term. Dock1 Maint. Dredge 3472 - Quintana Term. Dock1 Maint. Dredge Not Requested Analysis & Remarks word With Word Word Not Requested Analysis & Remarks Not	Laboratory E	(Signature)	(ogname)	(Rinnatura)											Z50mL	250mL	250mL			.D aring, Inc. oop, Suite 7401	ater Dis y Service he Woodlan 6) 321-606	
CHAIN OF CUSTODY RECORD 3472 - Quintana Term. Dock1 Maint. Dredge 3472 - Quintana Term. Dock1 Maint. Dredge Note: Figher Analysis & Remarks Note: Figher Analysis & Remarks <td c<="" td=""><td>y (Signature</td><td></td><td></td><td>-</td><td></td><td></td><td></td><td>_</td><td>_</td><td></td><td>_</td><td>_</td><td>-</td><td></td><td></td><td></td><td></td><td>HDPE L</td><td>ontainer Type Co</td><td>708</td><td>trict es, Inc. nds, TX 7 1 - lab@n</td></td>	<td>y (Signature</td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td>_</td> <td>_</td> <td></td> <td>_</td> <td>_</td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td>HDPE L</td> <td>ontainer Type Co</td> <td>708</td> <td>trict es, Inc. nds, TX 7 1 - lab@n</td>	y (Signature			-				_	_		_	_	-					HDPE L	ontainer Type Co	708	trict es, Inc. nds, TX 7 1 - lab@n
POCK1 Maint. Dredge Notes PARC 8/4/16 PARC	9)			-		_	_	-		-	-		-	-		-	-	iquid	ontent Pre		7385 wdls.com	
POCK1 Maint. Dredge Pock1 Maint. Dredge PARC 8/1/1/2 ARC 8/1/1/2 ARC 8/1/1/2 MULHZSOL AH TRICED ARC 8/1/1/2 MILLSOL AH TRICED MILLSOL AH T	There:	Date	Time				_	_	_	_	_	_	-		_		-	t°C 180	serve Ho		34.0	
POCK1 Maint. Dredge Pock1 Maint. Dredge PARC 8/1/1/2 ARC 8/1/1/2 ARC 8/1/1/2 MULHZSOL AH TRICED ARC 8/1/1/2 MILLSOL AH TRICED MILLSOL AH T	styling	100	4/16	-				-								-		D DisMer	Id Reque		:HAI 72 - Q	
POCK1 Maint. Dredge Pock1 Maint. Dredge Ph. proterved with log With Solg at receipt. Arc 814/16 Arc	Received	Received f	Received									(N)			210 51	NE PRES	-	FIL	sted Analy		N OF	
POCK1 Maint. Dredge Pock1 Maint. Dredge WIHZSOLI CHINOS WIHZSOLI CHINOS	optaborati	3y (Signatur	sy (signatur	2											VALA D	erved		ered	sis & Ren		= CU	
DO I TIME	ory By (Sign	e)	14								1 00	7-FN				Tot I		then	larks			
Time Notes	átulre)									1.1	Pt				+++	Vao	0	1.0			DY bck1 N	
DO I TIME										0	200	Sups				H a		larved			REC Maint.	
DO I TIME	2		Time) (A II	4/16	Plants			11	116	atr	HIW			Dred	
Time DO THES	the	C	116									A	-	ł	2019		0(4)0	Noz.	7		ge	
HMeter Calibration HMeter Calibration HMeter Calibration HMeter Calibration HMeter Calibration HMeter Calibration HMeter Calibration CRL-17032- CRL-1702- CRL-1702- CRL-1702- CRL-1702- CRL-1702- CRL	DO Mo Time		Time										0 .	E7	U	7	.'		IOTES:			
SISI.05 SISI.05 SISI.05 CAL-18439- CAL-18439- CAL-1887- CAL-1887- CAL-1887- CAL-1887- CAL-1887- CAL-1887- CAL-1887- CAL-18697- CAL-18697- CAL-1	ter 100°		H Meter S										4 pape	NICH.	Tasad.	Here	Ţ	1 L		1000		
ion Buff bratio	% Air Ca		Calibrat									CRL-1	1: 024-10	wilb-1	CALI	CR-18	1003			5151		
	D.O.	4 7 10	Buffers									2-2502	17052-	6828-1	587-3	439-3				50.		

Image: Second Market State: Substate State: Second Se		1111	2			1	1.1				1	-
Number Number District CHAIN OF CUSTODY RECORD Bits: 3272 Outnoting Services Inc. 3272-Outnating Term. Dock1 Maint. Directing Bits: 3272 Custome: Inc. 3272-Outnating Term. Dock1 Maint. Directing Bits: 3272 Custome: Inc. 3272-Outnating Term. Dock1 Maint. Directing Bits: 3272 Custome: Inc. Supplement Term. Dock1 Maint. Directing 1000-1000 Services Bits: 3272 Custome: Inc. Custome: Inc. 1000-1000 Services 1000-1000 Services Supplement Term. Dock1 Maint. Directing Custome: Inc. Custome: Inc. 1000-1000 Services 1000-1000 Services Supplement Term. Dock1 Maint. Directing Custome: Inc. Custome: Inc. 1000-1000 Services 1000-1000 Services Supplement Term. Dock1 Maint. Directing Custome: Inc. Custome: Inc. 1000-1000 Services 1000-1000 Services 1000-1000 Services Supplement Term. Dock1 Maint. Directing Custome: Inc. Custome: Inc. Custome: Inc. 1000-1000 Services 10000-1000 Services 1000-1000	Time Temp °C D.O.	MIN	16	Stee	ature)	bry By (Signa	To Laborato	Relinquished				iliation
Number Substructure (March Water District (March Water District) CHAIN OF CUSTODY RECORD (March Water District) CHAIN OF CUSTODY RECORD (March Water District) Strater Strate	DO Meter 100% Air Calibration	Thme:		Time:		1			1	Weber	154	Ma
Number Number Number CHAN OF CUSTOPY RECORD (2013) CHAN OF CUSTOPY RECORD (2013) CHAN OF CUSTOPY RECORD (2013) Image: Normality (2013) (2013	7	Date:	-			re)	By (Signatu	Relinquished				nt Name
Netw Vaer Darier Interversens. Ströf Fiver Tal.: The Wordhack, TX 7783 3472 - Quintana Term. Dockf Maint. Dredge Big 21400 - facgoon (100) Bre: 3472 Dudomer: LUD Darbard Term. Dockf Maint. Dredge Big Weld Cog, Suite 76 Big Weld Cog, Suite 76 Big Weld Cog, Suite 77 Harbard Link Vordank, TX 77401 3472 - Quintana Term. Dockf Maint. Dredge Big Weld Cog, Suite 76 Big Weld Cog, Suite 76 Big Weld Cog, Suite 77 Big Weld Cog, Suite 76 Big Weld Cog, Suite 77 Harbard Link Vordank, TX 77401 3472 - Quintana Term. Dockf Maint. Dredge Big Weld Cog, Suite 76 Big Weld Cog, Suite 76 Big Weld Cog, Suite 77 Big Weld Cog, Suite 77 Harbard Link-Sost Harbard Link-Sost Harb	Slope		Has Du	Time		×	W	JULA		July a	im V	VVK
Number Number Same Nuter District (39) 21-040-16. (20) 231-040 - 1ak@jawda.com 3472 - Quintana Term. Dockt Maint. Dredge 3472 - Quintana Term. Dockt Maint. Dredge Bre: 3472 Customer: LUD Customer: LUD 3472 - Quintana Term. Dockt Maint. Dredge 3472 - Quintana Term. Dockt Maint. Dredge SameLo Customer: LUD Customer: LUD 3472 - Quintana Term. Dockt Maint. Dredge 3472 - Quintana Term. Dockt Maint. Dredge SameLo Customer: LUD LUD Customer: LUD 3472 - Quintana Term. Dockt Maint. Dredge SameLo Customer: LUD LUD Customer: LUD 3472 - Quintana Term. Dockt Maint. Dredge SameLo Customer: LUD LUD Customer: LUD 3472 - Quintana Term. Dockt Maint. Dredge SameLo Customer: LUD Customer: LUD Customer: LUD 3472 - Quintana Term. Dockt Maint. Dredge SameLo Customer: LUD Customer: LUD Customer: LUD Customer: LUD 3472 - Quintana Term. Dockt Maint. Dredge SameLo Customer: LUD Customer: LUD Customer: LUD Customer: LUD Customer: LUD SameLo SameLo SameLo SameLo Customer: LUD Custom	pH Meter Calibration	4.	(b Received By (Signature)	S-mag		5	By (Signatu	Relinquished		-	nature)	J) /
MULLS Insert Interanty Services, Inc. CHAIN OF CUSTODY RECORD Services, Inc. CHAIN OF CUSTODY RECORD 3472 - Quintana Term. Dock1 Maint. Dredge Geb West Loop. Suite 718 Bit: 3472 Builtana Term. Dock1 Maint. Dredge Geb West Loop. Suite 718 Catsome: Lu Und Engineering. Inc. Geb West Loop. Suite 718 3472 - Quintana Term. Dock1 Maint. Dredge Geb West Loop. Suite 718 Sample ID Pentin Date Tme Sample Type Container Geb West Loop. Suite 718 Sample ID Pentin Date Tme Sample Type Container Geb West Loop. Suite 718 Sample ID Pentin Cate Anni Pentin Tme Sample Type Container Geb West Loop. Suite 718 Sample ID Pentin Cate Anni Pentin Tme Sample Type Container Geb West Loop. Suite 717 1147-2005 Cate Anni Pentin Tme Geb Anni WA Anni WA Wa Houd HC 4FC 140 WA WA <t< td=""><td></td><td>at pereint.</td><td>otalMet Preservick w</td><td>HNO3 18(</td><td>Liquid</td><td></td><td>250m</td><td>GRAB</td><td>0</td><td>)5-W</td><td>079 QI-16-</td><td>1147-8</td></t<>		at pereint.	otalMet Preservick w	HNO3 18(Liquid		250m	GRAB	0)5-W	079 QI-16-	1147-8
Number Intrans Castoner (1) Preserve (1) Hot (1) Requested Analysis & Remarks Internationer (1) Castoner (1) Castoner (1) Castoner (1) Preserve (1) Hot (1) Requested Analysis & Remarks Internationer (1) Internati				HCI <6°C 14	Liquid		40mL	GRAB)5-W	-	1147-8
Instruction North Water District Laboratory Services, Inc. CHAIN OF CUSTODY RECORD 3472 - Quintana Term. Dock1 Maint. Dredge Bite: 3472 Customer: LUD 3472 - Quintana Term. Dock1 Maint. Dredge 3472 - Quintana Term. Dock1 Maint. Dredge Bite: 3472 Customer: LUD Belaire, 1X7 7431 3472 - Quintana Term. Dock1 Maint. Dredge Building Term. Dock1 Maint. Dredge Loge Engineering, Inc. Belaire, 1X7 7401 3472 - Quintana Term. Dock1 Maint. Dredge Sample: ID One Time Sample: Type Contineering Peaceter Hold Requested Analysis & Remarks model 1147-806 One-of-Regional GRAB Ann. Vold Vold <t< td=""><td></td><td></td><td></td><td></td><td>Liquid</td><td>-</td><td>40mL</td><td>GRAB</td><td>/</td><td>)5-W</td><td>-</td><td>1147-8</td></t<>					Liquid	-	40mL	GRAB	/)5-W	-	1147-8
Image: Service, Inc. Sorth Water District Laboratory Services, Inc. CHAIN OF CUSTODY RECORD 321:4060 - Tax (95) 321:4060 - Tax (95) 321:406 -			1	10000	Liquid		40mL	GRAB)5-W		
North Water District Laboratory Services, Inc. Str25 Favm Trail - The Woodlands, TX 77385 S472 - Quintana Term. Dock1 Maint. Dredge S472 - Quintana Term. Dock1 Maint. Dredge Site: 3472 Customer (LD Duitana Term. Dock1 Maint. Dredge Log Engineering, Inc. 6655 West Loop, Suite 708 Belaite, TX 77401 3472 - Quintana Term. Dock1 Maint. Dredge Sime 10 Coldotor Date Time Sample Type Container 6655 West Loop, Suite 708 Belaite, TX 77401 Peerve He equested Analysis & Remarks He 11/7-2005 Or1-80-5/W Customer (LD Container, TX 77401 Container, Void Void, Liquid Hord Cr 140 Void, Aca2000 Hirt 7401					Liquid	-	60mL	GRAB	-	05-W	-	
Numburs North Water District CHAIN OF CUSTODY RECORD 325 Fawn Trail - The Woodlands, TX 77385 3472 - Quintana Term. Dock1 Maint. Dredge State Tup of Engineering, Inc. See S472 Site: 3472 Customer: Luc Upd Engineering, Inc. See S472 Customer: Luc Upd Engineering, Inc. See S472 3472 - Quintana Term. Dock1 Maint. Dredge 3472 - Quintana Term. Dock1 Maint. Dredge Site: 3472 Customer: Luc Upd Engineering, Inc. See S474 Contanter Featre Hold Requested Analysis & Remarks Int 2000 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)			-	1	Liquid	-	60mL	GRAB	-	05-W	-	
MULLS Interatory Services, Inc. North Water District (93) 321-600 - fax (93) 321-6061 - Jab@avd8.com CHAIN OF CUSTODY RECORD 3472 - Quintana Term. Dock1 Maint. Dredge Ustorer: Ster 3472 Custome: Custome: See Vest Loop, Suite 708 Belaire, TX 77401 Sumple ID Onlection Date Time Sample Type Container Ster 3472 A72 - Quintana Term. Dock1 Maint. Dredge Ustorer: Ster 3472 A72 - Quintana Term. Dock1 Maint. Dredge Sample ID Onlection Date Time Sample Type Container Ster 3472 A72 - Quintana Term. Dock1 Maint. Dredge Sample ID Date Time Sample Type Container Ster 3473 ViA Liquid 1147-8066 01-6-05-W GRAB 40ml ViA Liquid HCl 4*C 10 1147-8066 01-6-05-W GRAB 60ml ViA Liquid 4*C 70 SVQA 1147-8069 01-6-05-W GRAB 60ml ViA Liquid 4*C 70 SVQA 1147-8069 01-6-05-W GRAB 60ml ViA Liquid 4*C 70 SVQA 1147-8069 01-6-05-W GRAB 60ml ViA Liquid 4*C 70 SVQA 1147-8069 01-6-05-W GRAB 60ml ViA Liquid 4*C 70			100		Liquid		60mL	GRAB	1	05-W		_
North Water District Laboratory Services, Inc. CHAIN OF CUSTODY RECORD Ster. 5472 Ster. 3472 Customer: LID Cuintana Term. Dock1 Maint. Dredge Loyd Engineering. In: 656 West Loop, Suite 708 Belaire, TX 77401 Sample ID Collection Ponn Date T147-8066 OL-16-05-W T147-8066 OL-16-05-W T147-8066 OL-16-05-W T147-8066 OL-16-05-W T147-8066 OL-16-05-W T147-8067 OL-16-05-W T147-8066 OL-16-05-W T147-8067 GRAB 60ml. VAA Liquid T147-8066 OL-16-05-W T147-8067 OL-16-05-W T147-8067 OL-16-05-W T147-8067 OL-16-05-W T147-8067 OL-16-05-W T147-8067 OL-16-05-W T147-8068 GRAB 60ml. WAA Liquid HCI <ct' t10<="" td=""> WAA GRAB 60ml. WAA Liquid 4CC 70 SwgA(D) GRAB 60ml. WAA Liquid 4CC 70 SwgA(D) GRAB 60ml. WAA U147-8070 OL-16-05-W GRAB 60ml. WAA GRAB</ct'>			PCB 8082(T)	4°C	Liquid	-	60mL	GRAB		05-W		1147-8
Image: North Water District Laboratory Services, Inc. CHAIN OF CUSTODY RECORD 321-6060 - fax (936) 321-6061 - fax/gmwdls.com 3472 - Quintana Term. Dock1 Maint. Dredge Usyd Engineering, Inc. 6655 West Loop, Suite 708 Belaire, TX 77401 Site: 3472 Customer: LLD Loyd Engineering, Inc. 6655 West Loop, Suite 708 Belaire, TX 77401 Container Maint. Dredge Loyd Engineering, Inc. 6655 West Loop, Suite 708 Belaire, TX 77401 A72 - Quintana Term. Dock1 Maint. Dredge Loyd Engineering, Inc. 6655 West Loop, Suite 708 Belaire, TX 77401 Sample ID Collection Point Date Time Sample Type Container VAL Preserve Hod Requested Analysis & Remarks maint. Dredge maint. Dredge 1147-8064 O1-16-05-W ULU (V: C) GRAB 40mL VAL Liquid Hod Requested Analysis & Remarks maint. 1147-8065 01-16-05-W GRAB 40mL VAL Liquid Hod Requested Analysis & Remarks maint. 1147-8066 01-16-05-W GRAB 60mL VAL Liquid Hod Requested Analysis & Remarks maint. 1147-8069 01-16-05-W GRAB 60mL VAL Liquid Hod Requested Analysis & Remarks maint. 1147-8069 01-16-05-W GRAB 60mL VAL Liquid Hod Ref 10 1147-8069 01-16-05-W GRAB 6			PCB 8082(D)	4°C	Liquid	-	60mL	GRAB		05-W	-	1147-8
Image: North Water District Chain OF CUSTODY RECORD North Water District 8725 Fawn Trail - The Woodlands, TX 77385 3472 - Quintana Term. Dock1 Maint. Dredge Site: 3472 Customer: LLD Quintana Term. Dock1 Maint. Dredge Lioyd Engineering, Inc. 6565 West Loop, Suite 708 Sample ID Dollection Tir47-8064 Orthe Sample Type Size: 3472 Container Tir47-8064 Orthe Sample Type Size: 3472 Container Tir47-8066 Orthe Sample Type Size: 3472 Container Tir47-8066 Orthe-GRAB 1147-8066 Orthe-GRAB 1147-8066 Orthe-GRAB 1147-8068 Orthe-GRAB 1147-8068 Orthe-GRAB 1147-8068 GRAB 001-16-05-W GRAB 1147-8068 GRAB 01-16-05-W GRAB 01-16-05-W <			PCB 8082	4°C	Liquid		60mL	GRAB		05-W	-	1147-8
Image: Model of the state o				-	Liquid	-	60mL	GRAB	-	05-W	-	1147-8
Image: North Water District Laboratory Services, Inc. Chain OF CUSTODY RECORD ST25 Fawn Trail - The Woodlands, TX 77385 (936) 321-6060 - fax (936) 321-6061 - Jab@mvdls.com 3472 - Quintana Term. Dock1 Maint. Dredge S472 - Quintana Term. Dock1 Maint. Dredge Loyd Engineering, Inc. 5655 West Loop, Suite 708 Bellaire, TX 77401 3472 - Quintana Term. Dock1 Maint. Dredge S655 West Loop, Suite 708 Bellaire, TX 77401 Sample ID Collection Point Date Time Sample Type Container Type Preserve Hold Requested Analysis & Remarks r 1147-8066 01-16-05-W GRAB 40mL VAL Liquid HCI -6*C 140 VOA-8280(D) r 1147-8066 01-16-05-W GRAB 40mL VAL Liquid HCI -6*C 140 VOA-8280(D) r 1147-8067 01-16-05-W GRAB 40mL VAL Liquid HCI -6*C 140 VOA-8280(D) 1147-8067 01-16-05-W GRAB 60mL VAL Liquid HCI -6*C 140 VOA-8280(D)	H paper: cal-17052-33	Q	-	-	Liquid	-	60mL	GRAB	-)5-W	-	1147-8
Image: North Water District Laboratory Services, Inc. CHAIN OF CUSTODY RECORD North Water District Laboratory Services, Inc. 8725 Fawn Trail - The Woodlands, TX 77385 (936) 321-6060 - fax (936) 321-6061 - lab@mwdls.com 3472 - Quintana Term. Dock1 Maint. Dredge Customer: LLD Site: 3472 Customer: LLD Customer: LLD E656 WestLoop, Suite 708 3472 - Quintana Term. Dock1 Maint. Dredge Loyd Engineering, Inc. 6565 WestLoop, Suite 708 5656 WestLoop, Suite 708 Sample ID Collection Point Date Time Sample Type Container Vya Vya Container Vya Preserve Hold Requested Analysis & Remarks Intainest 1147-8066 Q1-16-05-W GRAB 40mt VyA Liquid HCI-45*C 14D VAA Liquid HCI-45*C 14D VAA. State 3260(D) 1147-8066 Q1-16-05-W GRAB 40mt VyA Liquid HCI-45*C 14D VAA. VAA. State 3260(D)	HNOS: 021-18981-4	-	- X.	-	Liquid		60mL	GRAB	-	05-W	1	1147-8
Image: North Water District Laboratory Services, Inc. CHAIN OF CUSTODY RECORD North Water District Laboratory Services, Inc. 8725 Fawn Trail - The Woodlands, TX 77385 (936) 321-6061 - Iab@nwdls.com 3472 - Quintana Term. Dock1 Maint. Dredge Customer: LLD Site: 3472 Customer: LLD Euglineering, Inc. 6566 West Loop, Suite 708 Bellaire, TX 77401 Sample Type Container Type Container Type Container Sample ID Collection Point Date Time Sample Type Container Type Preserve Hold Requested Analysis & Remarks NOTES: 1147-8065 01-16-05-W GRAB 40mL VAA Liquid HCI-45°C 14D VOA-82800 NOTES:				HCI <6°C 14		-	40mL	GRAB	-	05-W	-	1147-8
Image: North Water District Laboratory Services, Inc. North Water District (936) 321-606 - fax (936) 321-606 - lab@mvdls.com CHAIN OF CUSTODY RECORD Site: 3472 Customer: LLD Customer: LLD 3472 - Quintana Term. Dock1 Maint. Dredge Loyd Engineering. Inc. 6565 West Loop, Suite 708 Bellaire, TX 77401 6565 West Loop, Suite 708 Bellaire, TX 77401 3472 - Quintana Term. Dock1 Maint. Dredge North Water District Lloyd Engineering. Inc. 6565 West Loop, Suite 708 Bellaire, TX 77401 North Water District Container North Water District Container North Water District Customer: LLD North Water District Customer: LLD North Water District Customer: LD North Water District Customer: LD North Water District Customer: LD 3472 - Quintana Term. Dock1 Maint. Dredge North Water District Customer: LD Sample ID Collection Date Time Sample Type Container Preserve Hold Requested Analysis & Remarks NoTES: 1147-3064 OI-16-05-W Julu July VOA Liquid HCI <6*C	1=12003				1. 5.	-	40mL	GRAB	1	05-W	-	1147-8
Image: North Water District Laboratory Services, Inc. North Water District Laboratory Services, Inc. CHAIN OF CUSTODY RECORD North Water District Laboratory Services, Inc. 8725 Fawn Trail - The Woodlands, TX 77385 (936) 321-6060 - fax (936) 321-6061 - lab@nwdls.com 3472 - Quintana Term. Dock1 Maint. Dredge Site: 3472 Customer: LLD Customer: LLD 3472 - Quintana Term. Dock1 Maint. Dredge Duintana Term. Dock1 Maint. Dredge Lloyd Engineering, Inc. 6565 West Loop, Suite 708 Bellaire, TX 77401 5565 West Loop, Suite 708 Bellaire, TX 77401 Sample ID Collection Date Time Sample Type Container Sample ID Collection Date Time Sample Type Container	4.0		-		Liquid		40mL	GRAB		15-W 8/4/11	064 QI-16-	1147-8
North Water District Laboratory Services, Inc. CHAIN OF CUSTODY RECORD 725 Fawn Trail - The Woodlands, TX 77385 3472 - Quintana Term. Dock1 Maint. Dredge S21-6060 - fax (936) 321-6061 - lab@nwdls.com 3472 - Quintana Term. Dock1 Maint. Dredge Loyd Engineering, Inc. 6565 West Loop, Suite 708 Bellaire, TX 77401 565	TES:	NO	id Requested Analysis & Remarks	Preserve Ho	Content		1	Sample Ty	1	nt Date	D Colleg	Sampl
WDLSNorth Water District Laboratory Services, Inc.CHAIN OF CUSh Water District tory Services, Inc.8725 Fawn Trail - The Woodlands, TX 77385 (936) 321-6060 - fax (936) 321-6061 - lab@nwdls.com3472 - Quintana Term	1408151.04					c. te 708	LLD ceering, In Loop, Sui 77401	Justomer: Joyd Engin 565 West Bellaire, TX		ock1 Maint. D	a Term. Do	Quintar
		ECORD nt. Dredge	HAIN OF CUSTODY RE 72 - Quintana Term. Dock1 Mai	ω	c. X 77385 @nwdls.c	District vices, In dlands, T 6061 - lab	Water I ory Serv - The Woo 936) 321-0	North Laborat Fawn Trail -6060 - fax (8725 (936) 321-	District ices, Inc.	orth Water	

72 - Quintana Term. Dock1 Maint. C D Diskersen F. Hered, Hered, Hered, Well H. Sugar D NH3.N F. Hered, Hered, Well H. Sugar D S. Stasson Procenced By Signature) D C. A. D. TOCCAT F. Hered, Well H. Sugar D C. S. Stasson Procenced By Signature) Hull Received By Signature)
3472 - Quintana Term. Dock1 Maint. C serve Hold Requested Analysis & Remarks sec 1800 DisMet. F. H-C.e.d. HACA WIGSONAL pec 280 NH3.N. F. H-C.e.d. HACA W

Multical Control Contro Control Control <t< th=""><th>DO Meter 100% Air Calibration Time Temp*C D.0.</th><th>Received By (Signature) Don:</th><th>Marisa Weber Rein</th></t<>	DO Meter 100% Air Calibration Time Temp*C D.0.	Received By (Signature) Don:	Marisa Weber Rein
Intra-ande On-the Yand State Type Context Preside Hold Requestion Analysis & Remarks 1147-2005 OH-S-OE-W V_1 GRAB 4mt VAL Uquid Hold VOA Uquid Hold VOA VOA Uquid Hold VOA VOA <th>pH Meter Call</th> <th>and Start Received by Stightweet and Start A</th> <th>N.L.</th>	pH Meter Call	and Start Received by Stightweet and Start A	N.L.
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	0,0,0	CAB 250ML HOPE Liquid HNO3 1800 Total Met PRESONAN WI HNOZ AT REPORT	01-16-06-W/8/2 01-16-16-10-10-10-10-10-10-10-10-10-10-10-10-10-
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	al'	40mL VIAL UQUR HCI-GE'G 14D TPH(T)	1147-8098 QI-16-06-W
vow Image Sample Type Same Type Content Preservel Hold Requested Analysis & Remarks N_{H} $f; \mathcal{U}_{I}$ GRAB 40ml VA Liquid HCI <6°C	03 20	40mL VOA Liquid HCT-642C-14D TEH(D)	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	~, ⁶ , ⁶	40mL VOA Liquid HCI <6°C 14D TPH VIAL VIAL Liquid HCI <6°C 14D TPH	8/4 9:41
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$) 4	60mL VOA Liquid H2SO4 7D OCP 8081(7)	1147-8095 QI-18-06-W
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1. N	Edent VUA Liquid H2SO4 7D OCE 8081(D)	CI-16-16-W
Point vov Initial Samityer type Size Type Content Preserve Hold Requested Analysis & Remarks 1147-8084 QI-16-06-W $\heartsuit H$ \uparrow, QI GRAB 40mL $\vee QA$ Liquid HCI-6*C 140 $\vee QA_{AS260}$ 1147-8085 QI-16-06-W $\heartsuit H$ $GRAB$ 46mt $\vee QA$ Liquid HCI-6*C 140 $\vee QA_{AS260}$ 1147-8086 QI-16-06-W $\heartsuit H$ $GRAB$ 46mt $\vee VAI$ Liquid HCI-6*C 140 $\vee QA_{AS260}(D)$ 1147-8087 OI-16-06-W $\heartsuit H$ $GRAB$ 60mL $\vee VAI$ Liquid 4*C 7D SVQA 1147-8088 OI-16-06-W $\And H$ $\mathring H$ GRAB 60mL $\vee VAI$ Liquid 4*C 7D SVQA 1147-8088 OI-16-06-W $\And H$ $\mathring H$ GRAB 60mL $\vee VAI$ Liquid 4*C 7D SVQA 1147-8088 OI-16-06-W $ e H AB GRAB $	8	60mL VUA Liquid H2SO4 7D OCP 8081	(1); 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
Point run online run online run start run run online run run online run run run run run run online run run <thrun< th=""> run <thrun< td="" th<=""><td>6</td><td>50mr VUA Liquid 4°C PCB 8082(1)</td><td>114/-8092-01-18-06-W</td></thrun<></thrun<>	6	50mr VUA Liquid 4°C PCB 8082(1)	114/-8092-01-18-06-W
Point Found Found Found Size Type Content Preserve Hold Requested Analysis & Remarks 1147-8084 QI-16-06-W $& Y_{L}I$ GRAB 40mL V/A Liquid HCl <6°C	1	SDmit VIAL Liquid 4°C PCB 8082(D)	1147-0091 QI-16 QSJW
PointYowIniteSample I ypeSizeTypeContentPreserveHoldRequested Analysis & Remarks1147-8084QI-16-06-W \checkmark/H $\uparrow'.Q $ GRAB40mL $VIAL$ UquidHCI <6°C	×.	SOML VIAL Liquid 4°C PCB 8062	1147-8000 01-18-08-W S/4/ 21.4/
Point Yow Time Sample Type Size Type Content Preserve Hold Requested Analysis & Remarks 1147-8084 QI-16-06-W $\checkmark H$ $\uparrow : H$ GRAB 40mL VQA Liquid HCl <6*C	10	COML VIAL Liquid 4°C 7D EVOA(T)	
PointPointPointPointPreserveHoldRequested Analysis & Remarks1147-8084QI-16-06-W $\checkmark H$ $\uparrow : \langle I \rangle$ GRAB40mL $\vee VOA$ LiquidHCI <6°C		66mL VIAL Liquid 4°G 70-SVOA(D)	
Point Com Time Sample Type Size Type Content Preserve Hold Requested Analysis & Remarks 1147-8084 QI-16-06-W V/H Q', U GRAB 40mL V/AL Liquid HCl <6°C	Cer- FOSEXES X	SOML VIAL Liquid 4°C 7D SVOA	* 1147-802/ 01-16-06-W 8/4 4/4/
Point Yow Time Sample Type Size Type Content Preserve Hold Requested Analysis & Remarks 1147-8084 QI-16-06-W V/H CRAB 40mL VOA Liquid HCI <6*C	HING: CILLIES T	40mL VIAL LIQUID HEL-GOC 14D VOA-8260(T)	1147-8088 QI-16-06-W-84
Point Complete type Strat Type Content Preservel Hold Requested Analysis & Remarks 1147-8084 QI-16-06-W V/J GRAB 40mt VOA Liquid HCl <6*C	IIIIA TITOL	40mt VIAL Liquid HOL-66*G 14D VOA-8260(D)	1147-5088-Q1-16-06-W
Point vow mile sample type Size Type Content Preserve Hold Requested Analysis & Remarks	H.O.	40mL VOA Liquid HCI <6°C 14D VOA-8260	1147-8084 QI-16-06-W &H 91.41
Sample D Container	NOTES: 1 ~ N	Size Type Content Preserve Hold Requested Analysis & Remarks	Sample ID Point Date Time
		North Water District Laboratory Services, Inc. 8725 Fawn Trail - The Woodlands, TX 77385 (936) 321-6660 - Fax (936) 321-6661 - Iab@nwdls.com 3472 - Quintana Term. Dock1 Maint. Dredge	North Water District 8725 Faw Laboratory Services, Inc. (936) 321-606

Dem S/I Y/I Comment pH Meter Calibration Time: Image: VII Comment Down Time: DO Meter 100% Air Calibration	Dear & 414 Received By Signature) Time: 14:00 Received By (Signature) Date: Received By (Signature)	(americo) da		IVVarisa Weber	AREAS UNIT
1400	306	(amaine)			IVVAGISA
1460	30	. / Cimmati wal	Relinquished By	-	
	6	Lill I	7 Vin Will	X	Mindury
		y (Signature)	Relinquished By (Signafüre)	0	Sampler (Signature)
					32
					31
					30
					29
					28
					27
CI42-14036-3					26
pH paper: Lec. 17052-33					25
H2SO4: CRL-18887-3					24
Na04: W-5-10528-1		_			23
F: HAC: CRL-18439-3					22
HNO3: CAL-18881-Y	PNC21 DISTATION TO HEST				21
me aval		250mL HDPE Liquid	GRAB	QI-16-06-W	20 1147-8103 QI
Vant at receipt	pueserved	250mL HDPE Liquid	GRAB	-16-06-W	19 1147-8102 QI-16-06-W
	280 NH3-N PROSPAND	250mL HDPE Liquid	9:41 GRAB	Q1-16-06-W 8/4 0	18 1147-8101 QI
after Filtration. FILLIES	4°C 1800 Dismet Preserved WIND, N	250mL HDPE Liquid	9:41 GRAB	QI-16-06-WY	17 1147-8100 QI
NOTES: USA"C	Type Content Preserve Hold Requested Analysis & Remarks	Size	Time Sample Type	Date	# Sample ID C
[608151.07		Customer: LLD Lloyd Engineering, Inc. 6565 West Loop, Suite 708 Bellaire, TX 77401		Site: 3472 Quintana Term. Dock1 Maint. Dredge	Site: 3472 Quintana Tem
TODY RECORD Dock1 Maint. Dredge	CHAIN OF CUST 3472 - Quintana Term.	North Water District Laboratory Services, Inc. 8725 Fawn Trail - The Woodlands, TX 77385 (936) 321-6060 - fax (936) 321-6061 - lab@nwdls.com	North v Laborator 8725 Fawn Trail - 7 36) 321-6060 - fax (93	District vices, Inc.	North Water Laboratory Ser
CSN-1782015 Page 2 of 2					Chain ID: 68020693

	1111 CS20	the			LET
Neter 100% Air Calibr	nu Received For Laboratory By (Signature)	Relinquished To Laboratory By (Signature)		Weber	Affiliation
4 7 10	Dete: Received By (Signature) Date: Date:	Relinquished By (Signature		14	MART IN
pH Meter Calibration Time Slope Buffers	me 14/0 me 14/0 me 14/0 me 14/0	Man M		N. Un	Wandy L
1	TotalMet Preserved WI HND3 at receipt.	GRAB 250mL Relinquished By (Signature	10:40	H/0 M-20-91	16 1147-8119 QI-16-07-W 0/ 4
Ó	Liquid HCI <6°C 14D TPH(T)	GRAB 40mL		QI-16-07-W	114/-8118 QI-
	VIAL Uiquid HCI <6°C 44D TPH(D)	GRAB 40mL		QI-16-07-W	
X	Liquid HCI <6°C 14D TPH refe 1005	GRAB 40mL	10;40	QI-16-07-W 3/4	
D x d	Liquid H2SO4 7D OCCP 8081(T) 4°C FEA 80815 EFA 80815 C	GRAB 60mL		QI-16-07-W	
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Liquid H2S04 7D 0CP 8081(D)	GRAB 60mL		QI-16-07-W	1147-8114
in'	Liquid H2SO4 7D OCP 8081	GRAB 60mL	15:40	QI-16-07-W 8/4	1147-8113 QI-
5	Liquid 4°C PCB 8082(T)	GRAB 60mL		16-07-W	1147-8112-QI-16-07-W
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Liquid 4°C PCB 8082(D)	GRAB 60mL		QI-16-07-W	1147-8111 QI-
) , x , ~	Liquid 4°C PCB 8082	GRAB 60mL	10:40	QI-16-07-W 8/4	1147-8110 QI-
2.8	Liquid 4°C 7D SVOA(T)	GRAB 60mL			1147-8109 QI 16 07 W
ىرى	Liquid 4°C 7D SVOA(D)	GRAB 60mL		QI-16-07-W	1147-8108 QI-
31	Liquid 4°C 7D SVOA	GRAB 60mL	44	01-16-07-W 17,40	1147-8107 QI-
S Xo secontra	Liquid HCI <6°C 14D VOA-8260(T)	GRAB 40mL	2	QI-16-07-W	
off paper: A C	Liquid HCI~6°C 14D VOA-8260(D)	GRAB 40mL		16-07-W	1147_8105_QL-16-07-W
HND- WIL-Robit	Liquid HCI <6°C 14D VOA-8260	GRAB 40mL	118	Q1-16-07-W 10:4D	1147-8104 QI-
NOTES: 4.0 00 ETTINZ	Type Content Preserve Hold Requested Analysis & Remarks	Sample Type Size	-	Point Date	Sample ID Co
1608/51.08	80	Customer: LLD Lloyd Engineering, Inc. 6565 West Loop, Suite 708 Bellaire, TX 77401		Site: 3472 Quintana Term. Dock1 Maint. Dredge	Site: 3472 Quintana Term.
	trict cs, Inc.CHAIN OF CUSTODY RECORDads, TX 77385 1 - lab@nwdls.com3472 - Quintana Term. Dock1 Maint. Dredge	North Water District Laboratory Services, Inc. 8725 Fawn Trail - The Woodlands, TX 77385 (936) 321-6060 - fax (936) 321-6061 - lab@nwdls.com] 8725 F (936) 321-6	North Water District aboratory Services, Inc.	North Water District Laboratory Services, Inc.
CSN-1782016 Page 1 of 2					Chain ID: 69020693

Affili	-	Print Na	J	32	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	#	0.0	
Affiliation	Marisa Webe	I Name														1147-8123	1147-8122	1147-8121	1147-8120	Sample ID	Site: 3472 Quintana Term. Dock1 Maint. Dredge	Nort
-1	ISA	Aller														QI-16-07-W	Q1-16-07-W	QI-16-07-W 8	QI-16-07-W	Point	Ferm. Doc	NWDLS North Water District Laboratory Services, Inc.
	Neb	X	-	-												-W	-W-	H/8 M-	t/8 m	Date	X1 Maint	strict es, Inc.
	5															T		0:40	(o':40	Time	Dredge	87 (936) 3
Relinqui		Relinqui	Relinqui	2												GR	GR	0 GRAB	() GRAB	Sample Type	Custom Lloyd E Bellaire	North Water District Laboratory Services, Inc. 8725 Fawn Trail - The Woodlands, TX 77385 (936) 321-6060 - fax (936) 321-6061 - lab@nwdls.com
shed Tokat		Relinquished By (Signature	A A A A A A A A A A A A A A A A A A A					_								GRAB 2	GRAB 2				Customer: LLD Lloyd Engineering, Inc. 6565 West Loop, Suite Bellaire, TX 77401	rth Wat ratory S rail - The 1 ax (936) 3
Relinquished To Laboratory By (Signature)	1	mature)	inature	<u>)</u>			-		_	_	_	_				250mL HDPE	250mL HOPE	250mL HDPE		Size Ty	Customer: LLD Lloyd Engineering, Inc. 6565 West Loop, Suite 708 Bellaire, TX 77401	North Water District Laboratory Services, Inc. Fawn Trail - The Woodlands, TX 6060 - fax (936) 321-6061 - lab@
Signature)		P					-		-	-		-	-	-	-	PE Liquid	PE Liquid	PE Liquid		Container Type Conte		ict Inc. s, TX 7738 lab@nwd
																H2SO4	Id NaOH	id H2SO4	id 4°C	Preser		S5 Is.com
21/1/8ma	Time	Time 14	H/8.000													28D	14D	28D	180D	Content Preserve Hold Requested Analysis & Remarks		CH 3472
No.		200 Ree	16													TOC-415	14D CN SM 4500-CN-E	0	180D DisMet	Requested		- Quii
Received For Jaboratory By (Signatur		Received By (Signature)	Received By/Signature)													OCOSA		-	Filtered	Analysis a		CHAIN OF CUSTODY RECORD 3472 - Quintana Term. Dock1 Maint. Dredg
aboratory By)	ignature)	ignature)	1											CLARK V.	Cesoward	POR JASAU	reserved	r po	& Remarks		CUS Term.
(Signature)															VVIII	11/1 A	No	WH.SO.	hen			
X	,														Cont	5	-	- II	aread			ODY RECORD
Dan	Time	Time	Saine												411		of no	at report	henrotoco			ECO nt. Dr
A111/800		1400 (mm	14/10	-											TATTA	nrn ini	foreint	10101	AH (M)			RD
T	DO	lime										2	Ŧ	Ŧ	+	_			NO2	NOTES:		
e	Meter 10	e	pH Met									OH	2804	V03!	Put	4 20		T	Γ		Iw	
Temp °C	0% Air C	Slope	pH Meter Calibration									CAL	Cart.	Car-	Al : Ch	CHC		F17003	4.0 0	100	108151.08	
D.O.	DO Meter 100% Air Calibration	Buffers	ation									No DH : CAL-16828-1	H2SO4: 022-1888+-S	HN03: 04-18031 4	An haber interin	-1702	17.02	U			. 08	
	ă a	ers										1-1	5			-35	4					

	mme/530	1534			4	J			H	LE	-
Time Temp °C D.O.	Time	Mine Received For Cabordony By (Signature)	e)	Relinquished Tel Jaboratory By (Signature)	To Laborator	Relinquished		1 per	SA VI	Affiliation	Affil
4 7 10	Date:			B)	By (Signature	Relinquished		-	12	MA Infl	V
Time Slope Buffers	Time 1400 -	-			UN	When Under		5	with	WOW	. (
pH Meter Calibration	Dete: 814/16	one: 8/4/46 Received By (Stignature)		(3	By (Signature	Relinquished By (Signature)			e)	Sampler (Signature	San
											16
											15
			_								14
			_								13
											12
											=
											10
			-								9
											00
											7
			_								6
			_								5
		CORE H2O	Liquid 4°C	Amber Glass	1000mL	GRAB	5	5	QI-16-02-E	1147-8151	4
		CORE H2O	Liquid 4°C	Amber Glass	1000mL	GRAB			QI-16-02-E	1147-8150	w
< 00214		CORE H2O	Liquid 4°C	Amber Glass	1000mL	GRAB	~	٦.	QI-16-02-E	1147-8149	N
4.0		CORESED	Solid 4°C	Glass	1000mL	GRAB	12:13	R/4/1	QI-16-02-E 4/4	1147-8148	-
NOTES:		Content Preserve Hold Requested Analysis & Remarks	ontent Preser	Container Type Co	e Size	Sample Type	Time	Date	Point	Sample ID	#
1608151.10				1	ering, Inc oop, Suite 77401	Lloyd Engineering, Inc. 6565 West Loop, Suite 708 Bellaire, TX 77401	1	Maint. D	rm. Dock1	Quintana Term. Dock1 Maint. Dredge	0
	Dock1 Maint. Dredge	3472 - Quintana Term. Dock1 Mai	wdls.com)61 - lab@n	36) 321-60	(936) 321-6060 - fax (936) 321-6061 - 1ab@nwdls.com	(936) 321	Inc.	Laboratory Services, Inc.	Laborato	0
	ECORD		77005	istrict ces, Inc.	North Water District aboratory Services, In	North Water District Laboratory Services, Inc.	2079	5	VDL	MN	- 65A
CSN-1782021 Page 1 of 1	-								ω	Chain ID: 72020693	Chai

| 2 | Affilia | Print | 1 | > an | 16 | 15 | 14

 | 13 | 12 | 11 | 10
 | ω | 00 | 7 | o | UN | 4 | ω | N
 | - | #
 | 00 | 1 · m . | Chai |
|-----------------|--|---|---|---|---|--
--
--
---|--|--|---|--|---|---|---|--|---
---|--|--
--|---|---|---|
| | Kans | A Name | Kanl | V (Signatur | | |

 | | | |
 | | | | | | 1147-8155 | | 1.000
 | | Sample ID
 | uintana Te | North | Chain ID: 73020693 |
| H | ANC | | NYY | e) | > | |

 | | | |
 | | | | | | QI-16-03-E | QI-16-03-E | QI-16-03-E
 | QI-16-03-E | Point
 | rm. Dock1 | WDL
Water Distri | 3 |
| | Pag | | | | | |

 | | | |
 | | | | | | 6 | |
 | 00 | Date
 | Maint. D | | |
| | | | | | | |

 | | | |
 | | | | | | | |
 | 11:13 | Time
 | | 8725
(936) 321 | |
| Kelinquished Ig | Dollarista | Relinquished By | M/an | Relinquished By | | |

 | | | |
 | | #(*)) | | | | GRAB | GRAB | GRAB
 | GRAB | Sample Type
 | Customer: LL
Lloyd Enginee
6565 West Loc
Bellaire, TX 77 | North W
Laborator
Fawn Trail - T
-6060 - fax (93) | |
| Laboratory | | (Signature | NA | (Signature | P | |

 | | | |
 | | | | | | 1000mL | 1000mL | 1000mL
 | 1000mL | Size
 | D
ring, Inc.
op, Suite
7401 | ater Di
y Servic
he Woodl
6) 321-60 | |
| / By (Signat | | - | 1 |) | | |

 | | | |
 | | | | | | Amber
Glass | Amber
Glass |
 | WM
Glass | Container
Type
 | | istrict
ces, Inc.
ands, TX
61 - lab@ | |
| ure) | | | | | | |

 | 1 | | |
 | | | | | | Liquid | Liquid | Liquid
 | Solid | Content
 | | 77385
nwdls.co | |
| Dat | Tim | Dat | Tim | Dat | | |

 | | | |
 | | | | | | 4°C | 4°C | 4°C
 | 4°C | reserve
 | | ω | |
| 28 | | | | 8/4 | | |

 | | | _ | -
 | | _ | | _ | | co | co | co
 | co | Hold Rec
 | | CHA
472 - | |
| 0 | | | | | | |

 | | | |
 | | | | | | RE H2O | RE H2O | RE H2O
 | RESED | quested A
 | | Quint | |
| red For Kab | | red By (Sign | 10 | red By/Sigr | | |

 | | | |
 | | | | | | | |
 | | nalysis & F
 | | OF C
ana T | |
| oratory By (| | nature) | Cel | náture) | 1 | |

 | | | |
 | | | | | | | |
 | | Remarks
 | | | |
| Signature) | 7 | | | - | | |

 | | | |
 | | | | | | | |
 | |
 | | FOD'
Dock | |
| 1 | | | | | | |

 | | | |
 | | | | | | | |
 | |
 | | Y RE
1 Mai | |
| Day | Time | Date | Time | Date | | |

 | | | |
 | | | | | | | |
 | |
 | | ECO
nt. Di | |
| TE | 1 10 | | 1400 | | - | |

 | | | |
 | | | | | | | |
 | |
 | | RD | |
| 0 | D | | Т | | | |

 | | | | _
 | | _ | | | | | |
 | | NOTE
 | | | |
| ime | O Meter | | ime | pH N | | |

 | | | |
 | | | | | | | | 17
 | | ŝ
 | 160 | | CSN |
| Temp * | 100% A | | Slope | leter Cal | | |

 | | | |
 | | | | | | | | 400
 | 1.0 | 1 20
 | 1518 | | CSN-1782022 |
| 0 | ir Calibr | 4 | - | ibration | | |

 | | | |
 | | | | | | | | W
 | (| Č
 | . 11 | | |
| D.O. | ation | 7 10 | Buffers | | | |

 | | | |
 | | | | | | | |
 | |
 | | | Page 1 of 1 |
| | Time (530 at 1 Time (530 T | Relinquished To Kaborature) Time: DO Meter 100% Air Calibra
Time: STOP To Kaboratory By (Signature) Time: Too Stop Time: Too | Mc Ser Relinquished By (Signature) Date: Received By (Signature) Date: Mc Ser Relinquished Sociatory By (Signature) Ima: Ima: Ima: Ima: Relinquished Sociatory By (Signature) Date: Mr. Science For Advoratory By (Signature) Ima: Ima: Ima: Ima: Science For Advoratory By (Signature) Date: | Mr. Mr. Mr. Mr. Mr. Received By (Signature) me. Mr. Stope Mr. Relinquished By (Signature) Inne. Received By (Signature) Inne. Inne. | Matrix Relinquished By (Signature) one: $\mathbb{V}[4][4_0$ Received By (Signature) one: $\mathbb{V}[4][4_0$ Received By (Signature) one: $\mathbb{V}[4][4_0$ PH Meter Calibratio MC be C Relinquished By (Signature) Ime: Ime: $\mathbb{V}[4][4_0$ Ime: $\mathbb{V}[4][4_0$ Ime: $\mathbb{V}[4][4_0$ $\mathbb{V}[4][4$ | No.ber Relinquished By (Signature) own F(4/16) Received By (Signature) own S/4/16 pH Meter Calibratio Mo.ber Relinquished By (Signature) Imme 140 0 Imme 140 0 Imme 140 0 Imme 140 0 No.ber Relinquished By (Signature) Imme 140 0 Imme 140 0 Imme 140 0 Imme 140 0 No.ber Relinquished By (Signature) Imme 140 0 Imme 140 0 Imme 140 0 Imme 140 0 No.ber Relinquished By (Signature) Imme 140 0 Imme 140 0 Imme 100% Air Calili No.ber Relinquished ToLaboratory By (Signature) Imme 1300 Imme 1300 Imme 1300 Imme 1300 Imme 1300 Imme 1300 | Melinquished By (Signature) one: $\nabla / 4 / l_{ch}$ Received By (Signature) one: $\Sigma / 4 / l_{ch}$ Received By (Signature) one: $\Sigma / 4 / l_{ch}$ PH Meter Calibration Melinquished By (Signature) me: 1000 me: 1400 <td>Relinquished By (Signature) Descrived By (Signature) Descrived By (Signature) Descrived By (Signature) Descrived By (Signature) WC be (Relinquished By (Signature) Imme 140.6 Imme 140.6 Imme 140.6 Imme 140.6 Relinquished By (Signature) Imme 140.6 Imme 140.6 Imme 140.6 Imme 140.6 Imme 140.6 Relinquished By (Signature) Imme 140.6 Imme 140.6 Imme 140.6 Imme 140.6 Imme 140.6 Relinquished By (Signature) Imme 140.6 Imme 140.6 Imme 140.6 Imme 140.6 Imme 140.6 NC be (Relinquished By (Signature) Imme 140.6 Imme 140.6 Imme 140.6 Imme 140.6 NC be (Relinquished Totaboratory By (Signature) Imme 140.6 Imme 140.6 Imme 160.6 Imme 160.6 NC be (Relinquished Totaboratory By (Signature) Imme 140.6 Imme 160.6 Imme 160.6 Imme 160.6 No Metter 100% Air Calili Imme 160.6 Imme 160.6 Imme 160.6 Imme 160.6 Imme 160.6</td> <td>Relinquished By (Signature) Dev FU/L/L/L/L/L/L/L/L/L/L/L/L/L/L/L/L/L/L/L</td> <td>Molinquished By (Signature) Signature) Signature)</td> <td>Model Relinquished By (Signature) Signature) S</td> <td>Model Relinquished By (Signature) res F(4/1/6 Received By (Signature) pH Meter Calibratio Model Relinquished By (Signature) res F(4/1/6 Received By (Signature) res F(4/1/6 Relinquished By (Signature) res F(4/1/6 Received By (Signature) res F(4/1/6 Relinquished By (Signature) res F(4/1/6 Received By (Signature) res F(4/1/6 Relinquished By (Signature) res free (f) (f) (f) (f) (f) (f) (f) (f) (f) (f)</td> <td>Molecularies Converting Provide By (Signature) Provide By (Signature) Provide By (Signature) Molecularies Belinquisted By (Signature) Image: Frid Molecularies Image: Frid Molecularies Image: Frid Molecularies Molecularies Belinquisted By (Signature) Image: Frid Molecularies Image: Frid Molecularies Image: Frid Molecularies Molecularies Image: Frid Molecularies Image: Frid Molecularies Image: Frid Molecularies Image: Frid Molecularies Molecularies Image: Frid Molecularies Image: Frid Molecularies Image: Frid Molecularies Image: Frid Molecularies Molecularies Image: Frid Molecularies Image: Frid Molecularies Image: Frid Molecularies Image: Frid Molecularies Molecularies Image: Frid Molecularies Image: Frid Molecularies Image: Frid Molecularies Image: Frid Molecularies Image: Frid Molecularies Image: Frid Molecularies Image: Frid Molecularies Image: Frid Molecularies Image: Frid Molecularies Image: Frid Molecularies Image: Frid Molecularies Image: Frid Molecularies Image: Frid Molecularies Image: Frid Molecularies Image: Frid Molecularies Image: Frid Molecularies Image: Frid Molecularies Image: Frid Molecularies Image: Frid Molecularies Image: Frid Molecularies Image: Frid Molecularies I</td> <td>MC bec Reinquished By (Signature) Signature) Signature) Signature) Signature) MC bec Reinquished By (Signature) Signature) Sinc Resounded By (Signature) Signature) MC bec Reinquished By (Signature) Signature) Sinc Resounded By (Signature) Signature) MC bec Reinquished By (Signature) Signature) Sinc Resounded By (Signature) Signature) Signature) Sinc Signature) Sinc Signature) Sinc Signature) Sinc Signature) Sinc Signature) Sinc Signature) Sinc Signature) Sinc Sinc Signature) Sinc Signature) Sinc Signature) Sinc Signature) Sinc Signature) Sinc Signature) Sinc Signature) Sinc Signature) Signature) Signature) Sinc Signature) Signature) Signature) Signature) Signature) Sinc Signature) Signature) Signature) Signature) Signature) Sinc Signature) Signature) Signature) Signature) Signature)</td> <td>Mathematical and a second by (Signature) Signature) Signature) Signature) Signature) Nationalised By (Signature) Signature) Sime (V/D) Signature) Sime (V/D) Nationalised By (Signature) Signature) Sime (V/D) Sime (V/D) Sime (V/D) Nationalised By (Signature) Sime (V/D) Sime (V/D) Sime (V/D) Sime (V/D) Sime (V/D) Sime (V/D) Sime (V/D) Sime (V/D) Sime (V/D) Sime (V/D) Sime (V/D) Sime (V/D) Sime (V/D) Sime (V/D) Sime (V/D) Sime (V/D) Sime (V/D) Sime (V/D) Sime (V/D) Sime (V/D) Sime (V/D) Sime (V/D) Sime (V/D) Sime (V/D) Sime (V/D) Sime (V/D) Sime (V/D) Sime (V/D) Sime (V/D)</td> <td>MC bec Reinquined By Gignularia mr Formularia mr Formularia mr Meter Calibration MC bec Reinquined By Gignularia mr Formularia mr Formularia mr Formularia mr MC bec Reinquined By Gignularia mr Formularia mr Formularia mr Formularia mr MC bec Reinquined By Gignularia mr Formularia mr Formularia mr Formularia mr MC bec Reinquined By Gignularia mr Formularia mr Formularia mr Formularia mr MC bec Reinquined By Gignularia mr Formularia mr Formularia mr Formularia mr Formularia MC bec Formularia mr Formularia mr Formularia mr Formularia mr Formularia MC bec Formularia mr Formularia Formularia mr Formularia Formularia Formularia Formularia Formularia formularia formularia formularia Formularia Formularia Formularia Formularia Formularia Formularia formularia formularia for</td> <td>MC bec Reinquisited By (Signalure) mer (V d) Reinquisited By (Signalure) mer (V d) Reinquisited By (Signalure) MC bec Reinquisited By (Signalure) mer (V d) Reinquisited By (Signalure) mer (V d) mer (V d) Reinquisited By (Signalure) mer (V d) Reinquisited By (Signalure) mer (V d) Reinquistree By (Signalure) mer (V d) Reinquistree By (Signalure) mer (V d) Reinquistree By (Signalure) mer (V d) mer (V d) mer (V d) mer (V d) mer (V d)</td> <td>Instance J GRAB Longen Article Longen Instance Instance Instance Instance Instance Instance Instance Instance Instance Instance Instance Instance</td> <td>16-03-E J GRAB 100ml Amber
Amber
Amber Liquid 4°C CORE H2O 16-03-E J GRAB 100ml Amber
Amber Liquid 4°C CORE H2O 16-03-E J GRAB 100ml Grap Liquid 4°C CORE H2O 16-03-E J GRAB 100ml Grap Liquid 4°C CORE H2O 16-03-E Grap India 4°C CORE H2O India India 16-03-E Grap India 4°C CORE H2O India 16-03-E Grap India 4°C CORE H2O India 16-03-E Grap India 4°C India India India 16-03-E Grap India 4°C India India India 16-03-E Grap India India India India India 16-03-E Grap India India India India India India 16-03-E Grap India India India India India India 16-03-E Grap India India India India India India <tr< td=""><td>1-6.03E 1 GRAB 1000m Children Children Concert H20 CONE H20 FTT COS 3 1-6.03E J GRAB 1000m Children 4rc CONE H20 GRAB 1000m Children 4rc GRAB 4rc GRAB 1000m Children 1000m Children 1000m 1000m</td><td>In-trace Billing III-1/3 General Inormal Gass Gas <t< td=""><td>Marchan Date Time Sample Type Container Presame Hold Remarks WOTES H. O.ºC 16-0.3E I III.1 IIII.1 III.1 IIII.1 IIII</td><td>Continue Lub
degreg Engineering, In:
Balla, X, Y7 201
Balla, X, Y7 201
Balla,</td><td>DLS
revenue Chain of Water District.
Stationary Screeks, Inc. CHAIN OF CUSTODY RECORD
3472 - Quintana Term. Dock1 Maint. Dredge Doct Man. Dredge Log Engeneering, Inc.
Balance, TX 77401 Station of Screeks, Inc.
Station of Screeks, Inc. 3472 - Quintana Term. Dock1 Maint. Dredge Doct Maint. Dredge Log Engeneering, Inc.
Balance, TX 77401 Container
Log Engeneering, Inc. Image: Container
Log Engeneering, Inc. Image: Container
Log Engeneering, Inc. Image: Container
Log Engeneering, Inc. Monto
Inc. State Ange: Container
Log Engeneering, Inc. Container
Log Engeneering, Inc. Image: Container
Log Engeneering, Inc. Image: Container
Log Engeneering, Inc. Image: Container
Log Engeneering, Inc. Monto
Inc. State Ange: Container
Log Engeneering, Inc. Container
Log Engeneering, Inc. Image: Container
Log Engeneering, Inc. Image: Container
Log Engeneering, Inc. Image: Container
Log Engeneering, Inc. Monto
Inc. Grade trainering trainering Containering trainering Containering Image: Containering Monto Engeneering Grade trainering Grade trainering Containering Containering Containering Monto Engeneering Grade trainering Grade trainering Containering Containering Containering Monto Engeneering Grade trainering Grade trainering Containering Containering Containering Monto En</td></t<></td></tr<></td> | Relinquished By (Signature) Descrived By (Signature) Descrived By (Signature) Descrived By (Signature) Descrived By (Signature) WC be (Relinquished By (Signature) Imme 140.6 Imme 140.6 Imme 140.6 Imme 140.6 Relinquished By (Signature) Imme 140.6 Imme 140.6 Imme 140.6 Imme 140.6 Imme 140.6 Relinquished By (Signature) Imme 140.6 Imme 140.6 Imme 140.6 Imme 140.6 Imme 140.6 Relinquished By (Signature) Imme 140.6 Imme 140.6 Imme 140.6 Imme 140.6 Imme 140.6 NC be (Relinquished By (Signature) Imme 140.6 Imme 140.6 Imme 140.6 Imme 140.6 NC be (Relinquished Totaboratory By (Signature) Imme 140.6 Imme 140.6 Imme 160.6 Imme 160.6 NC be (Relinquished Totaboratory By (Signature) Imme 140.6 Imme 160.6 Imme 160.6 Imme 160.6 No Metter 100% Air Calili Imme 160.6 Imme 160.6 Imme 160.6 Imme 160.6 Imme 160.6 | Relinquished By (Signature) Dev FU/L/L/L/L/L/L/L/L/L/L/L/L/L/L/L/L/L/L/L | Molinquished By (Signature) Signature) Signature) | Model Relinquished By (Signature) Signature) S | Model Relinquished By (Signature) res F(4/1/6 Received By (Signature) pH Meter Calibratio Model Relinquished By (Signature) res F(4/1/6 Received By (Signature) res F(4/1/6 Relinquished By (Signature) res F(4/1/6 Received By (Signature) res F(4/1/6 Relinquished By (Signature) res F(4/1/6 Received By (Signature) res F(4/1/6 Relinquished By (Signature) res free (f) | Molecularies Converting Provide By (Signature) Provide By (Signature) Provide By (Signature) Molecularies Belinquisted By (Signature) Image: Frid Molecularies Image: Frid Molecularies Image: Frid Molecularies Molecularies Belinquisted By (Signature) Image: Frid Molecularies Image: Frid Molecularies Image: Frid Molecularies Molecularies Image: Frid Molecularies Image: Frid Molecularies Image: Frid Molecularies Image: Frid Molecularies Molecularies Image: Frid Molecularies Image: Frid Molecularies Image: Frid Molecularies Image: Frid Molecularies Molecularies Image: Frid Molecularies Image: Frid Molecularies Image: Frid Molecularies Image: Frid Molecularies Molecularies Image: Frid Molecularies Image: Frid Molecularies Image: Frid Molecularies Image: Frid Molecularies Image: Frid Molecularies Image: Frid Molecularies Image: Frid Molecularies Image: Frid Molecularies Image: Frid Molecularies Image: Frid Molecularies Image: Frid Molecularies Image: Frid Molecularies Image: Frid Molecularies Image: Frid Molecularies Image: Frid Molecularies Image: Frid Molecularies Image: Frid Molecularies Image: Frid Molecularies Image: Frid Molecularies Image: Frid Molecularies Image: Frid Molecularies I | MC bec Reinquished By (Signature) Signature) Signature) Signature) Signature) MC bec Reinquished By (Signature) Signature) Sinc Resounded By (Signature) Signature) MC bec Reinquished By (Signature) Signature) Sinc Resounded By (Signature) Signature) MC bec Reinquished By (Signature) Signature) Sinc Resounded By (Signature) Signature) Signature) Sinc Signature) Sinc Signature) Sinc Signature) Sinc Signature) Sinc Signature) Sinc Signature) Sinc Signature) Sinc Sinc Signature) Sinc Signature) Sinc Signature) Sinc Signature) Sinc Signature) Sinc Signature) Sinc Signature) Sinc Signature) Signature) Signature) Sinc Signature) Signature) Signature) Signature) Signature) Sinc Signature) Signature) Signature) Signature) Signature) Sinc Signature) Signature) Signature) Signature) Signature) | Mathematical and a second by (Signature) Signature) Signature) Signature) Signature) Nationalised By (Signature) Signature) Sime (V/D) Signature) Sime (V/D) Nationalised By (Signature) Signature) Sime (V/D) Sime (V/D) Sime (V/D) Nationalised By (Signature) Sime (V/D) Sime (V/D) Sime (V/D) Sime (V/D) Sime (V/D) Sime (V/D) Sime (V/D) Sime (V/D) Sime (V/D) Sime (V/D) Sime (V/D) Sime (V/D) Sime (V/D) Sime (V/D) Sime (V/D) Sime (V/D) Sime (V/D) Sime (V/D) Sime (V/D) Sime (V/D) Sime (V/D) Sime (V/D) Sime (V/D) Sime (V/D) Sime (V/D) Sime (V/D) Sime (V/D) Sime (V/D) Sime (V/D) | MC bec Reinquined By Gignularia mr Formularia mr Formularia mr Meter Calibration MC bec Reinquined By Gignularia mr Formularia mr Formularia mr Formularia mr MC bec Reinquined By Gignularia mr Formularia mr Formularia mr Formularia mr MC bec Reinquined By Gignularia mr Formularia mr Formularia mr Formularia mr MC bec Reinquined By Gignularia mr Formularia mr Formularia mr Formularia mr MC bec Reinquined By Gignularia mr Formularia mr Formularia mr Formularia mr Formularia MC bec Formularia mr Formularia mr Formularia mr Formularia mr Formularia MC bec Formularia mr Formularia Formularia mr Formularia Formularia Formularia Formularia Formularia formularia formularia formularia Formularia Formularia Formularia Formularia Formularia Formularia formularia formularia for | MC bec Reinquisited By (Signalure) mer (V d) Reinquisited By (Signalure) mer (V d) Reinquisited By (Signalure) MC bec Reinquisited By (Signalure) mer (V d) Reinquisited By (Signalure) mer (V d) mer (V d) Reinquisited By (Signalure) mer (V d) Reinquisited By (Signalure) mer (V d) Reinquistree By (Signalure) mer (V d) Reinquistree By (Signalure) mer (V d) Reinquistree By (Signalure) mer (V d) mer (V d) mer (V d) mer (V d) mer (V d) | Instance J GRAB Longen Article Longen Instance Instance Instance Instance Instance Instance Instance Instance Instance Instance Instance Instance | 16-03-E J GRAB 100ml Amber
Amber
Amber Liquid 4°C CORE H2O 16-03-E J GRAB 100ml Amber
Amber Liquid 4°C CORE H2O 16-03-E J GRAB 100ml Grap Liquid 4°C CORE H2O 16-03-E J GRAB 100ml Grap Liquid 4°C CORE H2O 16-03-E Grap India 4°C CORE H2O India India 16-03-E Grap India 4°C CORE H2O India 16-03-E Grap India 4°C CORE H2O India 16-03-E Grap India 4°C India India India 16-03-E Grap India 4°C India India India 16-03-E Grap India India India India India 16-03-E Grap India India India India India India 16-03-E Grap India India India India India India 16-03-E Grap India India India India India India <tr< td=""><td>1-6.03E 1 GRAB 1000m Children Children Concert H20 CONE H20 FTT COS 3 1-6.03E J GRAB 1000m Children 4rc CONE H20 GRAB 1000m Children 4rc GRAB 4rc GRAB 1000m Children 1000m Children 1000m 1000m</td><td>In-trace Billing III-1/3 General Inormal Gass Gas <t< td=""><td>Marchan Date Time Sample Type Container Presame Hold Remarks WOTES H. O.ºC 16-0.3E I III.1 IIII.1 III.1 IIII.1 IIII</td><td>Continue Lub
degreg Engineering, In:
Balla, X, Y7 201
Balla, X, Y7 201
Balla,</td><td>DLS
revenue Chain of Water District.
Stationary Screeks, Inc. CHAIN OF CUSTODY RECORD
3472 - Quintana Term. Dock1 Maint. Dredge Doct Man. Dredge Log Engeneering, Inc.
Balance, TX 77401 Station of Screeks, Inc.
Station of Screeks, Inc. 3472 - Quintana Term. Dock1 Maint. Dredge Doct Maint. Dredge Log Engeneering, Inc.
Balance, TX 77401 Container
Log Engeneering, Inc. Image: Container
Log Engeneering, Inc. Image: Container
Log Engeneering, Inc. Image: Container
Log Engeneering, Inc. Monto
Inc. State Ange: Container
Log Engeneering, Inc. Container
Log Engeneering, Inc. Image: Container
Log Engeneering, Inc. Image: Container
Log Engeneering, Inc. Image: Container
Log Engeneering, Inc. Monto
Inc. State Ange: Container
Log Engeneering, Inc. Container
Log Engeneering, Inc. Image: Container
Log Engeneering, Inc. Image: Container
Log Engeneering, Inc. Image: Container
Log Engeneering, Inc. Monto
Inc. Grade trainering trainering Containering trainering Containering Image: Containering Monto Engeneering Grade trainering Grade trainering Containering Containering Containering Monto Engeneering Grade trainering Grade trainering Containering Containering Containering Monto Engeneering Grade trainering Grade trainering Containering Containering Containering Monto En</td></t<></td></tr<> | 1-6.03E 1 GRAB 1000m Children Children Concert H20 CONE H20 FTT COS 3 1-6.03E J GRAB 1000m Children 4rc CONE H20 GRAB 1000m Children 4rc GRAB 4rc GRAB 1000m Children 1000m Children 1000m 1000m | In-trace Billing III-1/3 General Inormal Gass Gas <t< td=""><td>Marchan Date Time Sample Type Container Presame Hold Remarks WOTES H. O.ºC 16-0.3E I III.1 IIII.1 III.1 IIII.1 IIII</td><td>Continue Lub
degreg Engineering, In:
Balla, X, Y7 201
Balla, X, Y7 201
Balla,</td><td>DLS
revenue Chain of Water District.
Stationary Screeks, Inc. CHAIN OF CUSTODY RECORD
3472 - Quintana Term. Dock1 Maint. Dredge Doct Man. Dredge Log Engeneering, Inc.
Balance, TX 77401 Station of Screeks, Inc.
Station of Screeks, Inc. 3472 - Quintana Term. Dock1 Maint. Dredge Doct Maint. Dredge Log Engeneering, Inc.
Balance, TX 77401 Container
Log Engeneering, Inc. Image: Container
Log Engeneering, Inc. Image: Container
Log Engeneering, Inc. Image: Container
Log Engeneering, Inc. Monto
Inc. State Ange: Container
Log Engeneering, Inc. Container
Log Engeneering, Inc. Image: Container
Log Engeneering, Inc. Image: Container
Log Engeneering, Inc. Image: Container
Log Engeneering, Inc. Monto
Inc. State Ange: Container
Log Engeneering, Inc. Container
Log Engeneering, Inc. Image: Container
Log Engeneering, Inc. Image: Container
Log Engeneering, Inc. Image: Container
Log Engeneering, Inc. Monto
Inc. Grade trainering trainering Containering trainering Containering Image: Containering Monto Engeneering Grade trainering Grade trainering Containering Containering Containering Monto Engeneering Grade trainering Grade trainering Containering Containering Containering Monto Engeneering Grade trainering Grade trainering Containering Containering Containering Monto En</td></t<> | Marchan Date Time Sample Type Container Presame Hold Remarks WOTES H. O.ºC 16-0.3E I III.1 IIII.1 III.1 IIII.1 IIII | Continue Lub
degreg Engineering, In:
Balla, X, Y7 201
Balla, | DLS
revenue Chain of Water District.
Stationary Screeks, Inc. CHAIN OF CUSTODY RECORD
3472 - Quintana Term. Dock1 Maint. Dredge Doct Man. Dredge Log Engeneering, Inc.
Balance, TX 77401 Station of Screeks, Inc.
Station of Screeks, Inc. 3472 - Quintana Term. Dock1 Maint. Dredge Doct Maint. Dredge Log Engeneering, Inc.
Balance, TX 77401 Container
Log Engeneering, Inc. Image: Container
Log Engeneering, Inc. Image: Container
Log Engeneering, Inc. Image: Container
Log Engeneering, Inc. Monto
Inc. State Ange: Container
Log Engeneering, Inc. Container
Log Engeneering, Inc. Image: Container
Log Engeneering, Inc. Image: Container
Log Engeneering, Inc. Image: Container
Log Engeneering, Inc. Monto
Inc. State Ange: Container
Log Engeneering, Inc. Container
Log Engeneering, Inc. Image: Container
Log Engeneering, Inc. Image: Container
Log Engeneering, Inc. Image: Container
Log Engeneering, Inc. Monto
Inc. Grade trainering trainering Containering trainering Containering Image: Containering Monto Engeneering Grade trainering Grade trainering Containering Containering Containering Monto Engeneering Grade trainering Grade trainering Containering Containering Containering Monto Engeneering Grade trainering Grade trainering Containering Containering Containering Monto En |

n ID: 7302069:

CSN-1782022 Page 1 of 1

Affiliation Affiliation Relinquished Totaboratory By (Signature)	A and Walter	Name Relinquished By (Signature)	Man William Milliam Mi	Sampler (Signature)						1	-	1147-8158 QI-16-04-E GRAB 1000mL Glass	GRAB 1000mL Amber Glass	-	te Time Sample Type Containe	int. Dr	North Water District North Water District Laboratory Services, Inc. Laboratory Services, Inc. (936) 321-6060 - fax (936) 321-6061 - lab@nwdls.com
	Time:	Dwe: Received By (Signature)	Time July You	our 8/4/16 Received By (Signature)							Liquid 4°C CORE H2O	Liquid 4°C CORE H2O	Liquid 4°C CORE H2O	Solid 4°C CORESED	Content Preserve Hold Requested Analysis & Remarks		CHAIN OF CUST 3472 - Quintana Term.
14/10-	Time DO Meter 100% Air Calibration		C Time	Drive 8/4/16 pH Meter Calibration									5 00714	4.0.	NOTES:	1606151.12	TODY RECORD Dock1 Maint. Dredge

Time Temp °C D.O.	11 Time / 530	me (530	nature)	aboratory By (Sig	Relinquished to Paporatory By (Signature)			T-1		2
leter 100% Air Calibr	Time	Time 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					Marisa Nebur	15al	11 lar	
4 7 10	Date:	Date: Received By (Signature)		Signature	Relinquished By (Signature)		-		int Name	(P
Time Slope Buffers	Tmm 1400	Inter 1400		MA	Wan		X	W	When	c
pH Meter Calibration	on.8/4/16	Date: 8 / 4/16 Received By (Signature)		Signature)	Relinquished By (Signature)		0	ature)	Sampler (Signature)	Sa
										16
									0.	15
									-	14
										13
									2	12
							_			11
				_					0	10
										φ
										00
										7
										Ø
							1			UI
		4°C CORE H2O	Liquid	1000mL Amber Glass	GRAB 1	0	5-E	63 Q1-16-05-E	1147-8163	4
		4°C CORE H2O	Liquid	1000mL Amber Glass	GRAB 1		5-E	32 QI-16-05-E	1147-8162	ω
200712		4°C CORE H2O	Liquid	1000mL Amber Glass	GRAB 1	-	-	31 QI-16-05-E	1147-8161	N
4.0.		4°C CORESED	Solid	1000mL Glass	GRAB 1	0.00	5-E 8/4/16	30 QI-16-05-E	1147-8160	-
NOTES:	Z	Preserve Hold Requested Analysis & Remarks	Content	Container Size Type	Sample Type	Time	Date	D Collection Point	Sample ID	#
1608151.13				ig, Inc. , Suite 708 01	Customer: LLD Lloyd Engineering, Inc. 6565 West Loop, Suite 708 Bellaire, TX 77401	1	Site: 3472 Quintana Term. Dock1 Maint. Dredge	2 Term. Doc	Site: 3472 Quintana T	0.0
	TCORD	CHAIN OF CUSTODY RECORD 3472 - Quintana Term. Dock1 Maint. Dredge	i c. X 77385 @nwdls.com	North Water District aboratory Services, In wn Trail - The Woodlands, T 60 - fax (936) 321-6061 - Iab	North Water District Laboratory Services, Inc. 8725 Fawn Trail - The Woodlands, TX 77385 (936) 321-6060 - fax (936) 321-6061 - lab@nwdls.com	J 8725 F (936) 321-6	Istrict Sciences, Inc.	North Water District Laboratory Services, Inc.	Nor Labor	
CSN-1782028 Page 1 of 1								0693	Chain ID: 75020693	Cha

n ID: 750206

Time Temp °C D.O.	530 By (Signature) and SI 4/16	Date	sture)	y By (Signa	Corator	Keinquished to Laboratory By (Signature)			H	E	Annaron
DO Meter 100% Air Calibration		Time:	-					ben	We	IV Grisa Webe	VV V
4 7 10	Received By (Signature) Date:	Data		1	(Signature	Relinquished By (Signature)			~	ame	Print Na
Time Slope Buffers		Time:		fre	3	Wan			and where	Man	5
pH Meter Calibration	5/4/16 Received By (Signaufe) Den: S/4/16	Date 8/41		10	(Signature	Relinquished By (Signature)			1.	Sampler (Signature)	Sample
											16
											15
											14
											13
											12
											=
											10
											0
											00
											7
											6
							-	1			CT
	CORE H2O	4°C	Liquid	Amber Glass	1000mL	GRAB	4	6	QI-16-06-E	1147-8167 QI	4 11
	CORE H2O	4°C	Liquid	Amber Glass	1000mL	GRAB		-	QI-16-06-E	1147-8166 QI	3 11.
5 00714	CORE H2O	4°C	Liquid	Amber Glass	1000mL	GRAB		-	QI-16-06-E	1147-8165 QI	2 11.
te.	CORESED	4°C	Solid	Glass	1000mL	GRAB	(h; b	416	-16-06-E	1147-8164 QI-16-06-E	1 11
NOTES:	Content Preserve Hold Requested Analysis & Remarks	Preserve Hol	r Content	Container	Size	Sample Type	Time	Date	Point	Sample ID C	# Sa
1608 151-14		n y		708	o p, Suite 401	Customer: LLD Lloyd Engineering, Inc. 6565 West Loop, Suite 708 Bellaire, TX 77401	and the second se	aint. Dre	, Dock1 M	Site: 3472 Quintana Term. Dock1 Maint. Dredge	Quir
	CHAIN OF CUSTODY RECORD 3472 - Quintana Term. Dock1 Maint. Dredge	ယ္	2. 277385 20nwdls.co	istrict ces, In lands, T))61 - lab(ater D Servi Wood 321-60	North Water District Laboratory Services, Inc. 8725 Fawn Trail - The Woodlands, TX 77385 (936) 321-6060 - fax (936) 321-6061 - lab@nwdls.com	8725 I 936) 321-		North Water District Laboratory Services, Inc.	North Water L	10.0
CSN-1782029 Page 1 of 1										Chain ID: 76020693	Chain ID

Affiliation	NV	Print Name	-W-	Sampler (Signature	16	15	14	13	12	t	10	9	-00	7	6	5	4 1147-8171	3 1147-8170	2 1147-8169	1 1147-8168	# Sample ID	Site: 3472 Quintana T	
	5154		Wan V	ignature)	_	_	_													-	-	3472 Ina Term	North Water I Laboratory Serv
	Varisa Weber	-	L														QI-16-07-E	QI-16-07-E	QI-16-07-E	QI-16-07-E 8	Point	Site: 3472 Quintana Term. Dock1 Maint. Dredge	Dist
	9.0																*			9/1/16	Date	Maint. Dr	
																	+			ohiol	Time		8725 (936) 321
Relinquished To Aboratory By (Signature)		Relinquished By (Signature)	Man	Relinquished By (Signature)													GRAB	GRAB	GRAB	GRAB	Sample Type	Customer: LLD Lloyd Engineering, Inc. 6565 West Loop, Suite 708 Bellaire, TX 77401	North Water District Laboratory Services, Inc. 8725 Fawn Trail - The Woodlands, TX 77385 (936) 321-6060 - fax (936) 321-6061 - lab@nwdls.com
Laboratory		y (Signature	W	y (Signature													1000mL	1000mL	1000mL	1000mL	Size	.D aring, Inc oop, Suite 7401	Vater D y Servi The Wood 36) 321-60
y By (Signa		1.00	K														Amber Glass			Glass		708	istrict ices, In llands, T) 061 - lab(
ture)																	Liquid	Liquid	Liquid	Solid	Content		C. (77385 @nwdls.o
P	=	2	7 2														4°C	4°C	4°C	4°C	Preserve		
Date: 8/4	Time	Date	11/1/100			_		_	_			_	_	_			c	0	CO	C	Hold Re		CH. 8472 -
Received	_			_													CORE H2O	CORE H2O	CORE H2O	CORESED	Preserve Hold Requested Analysis & Remarks		CHAIN OF CUST 3472 - Quintana Term.
Received For Laboratory By (Signature		Received By (Signature)	J.	Received By (Signature)																	ysis & Ren		F CL na Te
iv By (Sign		(a.	/ .	(a)	4																narks		
attre																							DDY ock11
																							REC
01/4/18 me	Time		Time / C	0																			FODY RECORD Dock1 Maint. Dredge
HINO	-	00	1116	1																			D
Time	DO M		Time																		NOTES:	-	
Te	eter 100	-	H Meter																+	T		1801	
Temp °C	DO Meter 100% Air Calibration		pH Meter Calibration																ELTCO3	4.0°C		1608151.15	
D.O.	alibratio	4 7 10	Buffers																w				
	-	10	S			_		_		~~~			-										

time temp C U.O.	0251 m	and 130 and a Manager of American		(Signaturo)	Cone And	Anticology of the second secon				5 F	Annual Annua
teter 100% Air Calibr	The set of the	Time I I among a man of			1			Jace	Varisa Weber	laris	N
4 7 10	Carr	Dave. Received By (Signature)			gnatureț	Reimpuished By (Signature)				Print Name	Print
Time Slope Buffers	Tray YOU	Ø			N.X	When			Jak	Mandul	2
pH Meter Calibration	31/4/8an	sweld Lu / I C Received By (Signature)			/tameubi	Relinquished By (Signature)			7	Sampler (Signaturo)	Samp
											5
											Ğ
											14
											3
											12
					-						-1 -1
				_							10
											φ
											60
											7
								1			රා
		7D VOA-S(D)	4 4°C	VIAL Solid	40mL V	GRAB	*	4	QI-15-01-S	1347-8180 0	5 1
		7D VOA-S	4 4°C	VOA Solid		GRAB			01-16-01-S	1147-8179 C	4
		14D TPH S&CM	4 4°C	Glass, Solid FP-cap Solid	250mL FP	GRAB 2			QI-16-01-S	1147-8178 0	دی 1
FTILOS		CORESED	4 4°C	Glass, Solid	250mL FP	GRAB 2			Q1-16-01-S	1147-8177 0	N 1
Ч.C		CORESED	4°C	Glass, Solid	250mL FP	GRAB 2	EP. 43	Style	QI-16-01-5	1147-8176 C	+ +
NOTES:	Z	e Hold Requested Analysis & Remarks	Type Content Preserve	tainer /pe Conte	Con Size Ty	Sample Type	Time	Date	Point	Sample ID (₩ 60
1008151.10						Customer: LLD Lloyd Engineering, Inc. 6565 West Loop, Suite 708 Bellaire, TX 77401		laint. Dre	n Dock1 M	3472 tana Ten	Quin
	ODY RECORD	CHAIN OF CUSTODY RECORD 3472 - Quintana Term. Dock1 Maint. Dredg		Inc. s, TX 7738 lab@nwdl	er Distr ervices, Woodland 21-6061 -	North Water District Laboratory Services, Inc. 8725 Fawn Trail - The Woodlands, TX 77385 (936) 321-6060 - fax (936) 321-6061 - lab@nwdls.com	L 8725 Fi 936) 321-6		North Water District Laboratory Services, Inc.	North Wate Laboratory S	Ro E
CSN-1782038 Page 1 of 1										Chain ID: 79020693	Chain

Г	Affiliation	5	Print	(Sam	16	15	14	13	12	1	10	9	00	7	Ø	Un .	4	ω	2 1	-	*	Site: Quini	10 × 10.
5	- tion	Van	Print Name	Manduk	Sampler (Signature)												1147-8185	1147-8184	1147-8183	1147-8182	1147-8181	Sample ID	e: 3472 iintana Te	North Water
H	+	Marisa Weber		JAL V	ire)												QI-16-02-S	QI-16-02-S	QI-16-02-S	QI-16-02-S	Q1-16-02-5 8/4	Collection Point	Site: 3472 Quintana Term. Dock1 Maint. Dredge	Vic Dis
		e50		۶	Ì											t	6	_	-	-	8/4/10	Date	Maint. [s, Inc.
		2														1	4				6.12	Time	Dredge	(936) 3 7
-	Relin		Relin	1	Relin					_		-				1	-	0	0	0		-	Custor Lloyd E 6565 V Bellain	Lab Lab 25 Fawn 21-6060 -
1	Iquished To		quished By	Wan	Relinquished By (Signatur												GRAB	GRAB	GRAB	GRAB	GRAB	Sample Type	Customer: LLD Lloyd Engineering, 6565 West Loop, S Bellaire, TX 77401	oratory Trail - Th fax (936
0	Relinquished To Laboratory By (Signature)		(Signatu	Wir.	(Signatun												40mL	40mL	250mL	250mL	250mL	Size	Customer: LLD Lloyd Engineering, Inc. 6565 West Loop, Suite 708 Bellaire, TX 77401	North Water District Laboratory Services, Inc. 8725 Fawn Trail - The Woodlands, TX 77385 (936) 321-6060 - fax (936) 321-6061 - lab@nwdls.com
	y By (Sign	1	e)	R	-9 -												VIAL	VIAL	Glass, FP-cap	Glass, FP-cap	Glass, FP-cap	Container	708	istrict ces, Inc lands, TX 61 - lab(
	ature)																Solid	Solid	Solid	Solid	Solid	Content		2. (77385 2)nwdls.c
																	4°C	4°C	4°C	4°C	4°C	Preserve Hold		
Time /5	1 Baye	Time	Date	11-1400	1000												70	70	14D 7	-	0			CH 3472
ò	16 Receiv	-	_	06	_												VOA-S(D)	VOA-S EPA 8260	TPH S&CM	CORESED	CORESED	Requested Analysis & Remarks		CHAIN OF CUSTODY RECORD 3472 - Quintana Term. Dock1 Maint. Dredg
	Received For Laboratory/By (Signature)		Received By (Signature)	01	Received By (Signature)																	alysis & R		OF C
2	bratory/By (2	ature)	C	ature)	Y																lemarks	2	
1	Signature)																							Dock
(V																							1 Mai
The	Sino	Ilme	Date	Tan	Samo																			nt. Di
1530	1418			40	2	,																		CODY RECORD
	6	_	-		2					-												NOTES:		
	Time	DO Mete		Time	모															T	1		-	
	Temp °C	DO Meter 100% Air Calibration		Slope	pH Meter Calibration															FTICO3	4.00	0	108151.17	
_	o°C	Air Cali		0e	alibrati															v	C		5.	
	D.O.	brati	4 7 10	Buffers	S																		1	

CSN-1782039 Page 1 of 1

Time Temp °C D.O.	Relinquished To Laboratory By (Signature) 0 Signature) 0	
leter 1	Time: Time:	Marisa Weber
4 7 10	ature) one: Received By (Signature)	Print Name
Time Slope Buffers	100 100 100 100 100 100 100 100 100 100	Wan With
pH Meter Calibration	Relinquished By (Signature)	Sampler (Signature)
		16
		15
		14
		13
		12
		11
		10
		0
		00
		7
		<i>б</i>)
	GRAB 40mL VOA Solid 4°C 7D VOA-S(D)	5 1147-8190 QI-16-03-S
	GRAB 40mL VOA Solid 4°C 7D VOA-S	4 1147-8189 QI-16-03-S
1	GRAB 250mL Glass. Solid 4°C 14D TPH S&CM	3 1147-8188 QI-16-03-S
ETNANZ	GRAB 250mL FP-cap Solid 4°C CORESED	2 1147-8187 QI-16-03-S
Hioac	- FP-cap	1 1147-8186 01-16-03-5 8/4/16 1
NOTES:	Content Preserve Hold Requested Analysis & Remarks	# Sample ID Collection Date
1608151.18	Customer: LLD ge Lloyd Engineering, Inc. 6565 West Loop, Suite 708 Bellaire, TX 77401	Site: 3472 Quintana Term. Dock1 Maint. Dredge
	North Water District Laboratory Services, Inc. 8725 Fawn Trail - The Woodlands, TX 77385 (936) 321-6060 - fax (936) 321-6061 - Iab@nwdls.com 3472 - Quintana Term. Dock1 Maint. Dredge	North Water District Laboratory Services, Inc. (9)
CSN-1/82040 Page 1 of		Chain ID: 81020693

5690C018

CSN-1782040 Page 1 of 1

NDLS more preview. In: CHAIN OF CUSTOPY Receives. In: State of the Worldands, TX 77383 error preview. In: Estimate: The Worldands, TX 77383 3472 - Quintana Term. Dock1 Maint. I State of the Worldands, TX 77383 error border in Dock Maint. Dorder in Costame: Inter Estimate: Under Engineering. Inc. Estimate: Exposure from Estimate: TX 77401 Onter of the Press. Inter Inter Sampe Type Balaie. TX 77401 Sampe Type Type Sampe Type Balaie. TX 77401 Onter of the Interest of the Press. Interest of the Interest of the Inter Inter Interest of the Internet of t	CHAIN OF CUSTOPY RepCord met Dage Maint Dredge Str25 Favn Tail: The Woodands, TX 77835 Str25 Favn Tail: The Woodands, TX 77840 Str25 Favn Tail: The Woodands, TX 77840 Str25 Favn Tail: The Woodands, TX 77401 Str25 Favn Tail: TS 7401 Str25 Favn Tail: The Woodands, TX 77401 Str25 Favn Tail: TS 7401 Str25 Favn Tail: The Woodands, TX 77401 Str25 Favn Tail: TS 7401 Str25 Favn Tai	\subset	Affiliation	Print Name	Man	Sampler (Signature	16	15	14	13	12	11	10	9	8	7	σ	5 1147-8195	4 1147-8194	3 1147-8193	2 1147-8192	1 1147-8191	# Sample ID	Site: 3472 Quintana T	North Laborat
North Water District Laboratory Sprakes, Inc. 23216406-1 Kr (298) 321-0001 - LabGavelis.com 3472 - Quintana Term. Dockf Maint J. Customer: Lu Logd Engineering, Inc. Bediave, TX 77401 rem Sample Type Content Type Content Type Type Content Type Content Type Sample Type Content Type Content Type <td>CHAIN OF CUSTODY RECORD Distance TuD Loge Engineering, Inc. asmpter Tab. The Wordauds, TX 77383 2014/06 far, (930) 301-661 - Jab@wds.com Customer: LUD Loge Engineering, Inc. Besier, YX 77401 Sampter Type Commer GeoMa 200m, Figura, Sade 4°C ORESED GeoMa 200m, Figura, Sade 4°C ORESED GeoMa 200m, Figura, Sade 4°C To Works, Sale GeoMa 200m, VNA, Sade 4°C To Works, Sale GeoMa 200m, VNA, Sade 4°C To Works, Sale GeoMa 4°C To</td> <td>E H</td> <td>sa Me</td> <td></td> <td>We</td> <td>Ire)</td> <td>></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td>-</td> <td>-</td> <td></td> <td></td> <td>Collection Point</td> <td>erm. Dock1 r</td> <td>Water Districtory Services, I</td>	CHAIN OF CUSTODY RECORD Distance TuD Loge Engineering, Inc. asmpter Tab. The Wordauds, TX 77383 2014/06 far, (930) 301-661 - Jab@wds.com Customer: LUD Loge Engineering, Inc. Besier, YX 77401 Sampter Type Commer GeoMa 200m, Figura, Sade 4°C ORESED GeoMa 200m, Figura, Sade 4°C ORESED GeoMa 200m, Figura, Sade 4°C To Works, Sale GeoMa 200m, VNA, Sade 4°C To Works, Sale GeoMa 200m, VNA, Sade 4°C To Works, Sale GeoMa 4°C To	E H	sa Me		We	Ire)	>										1		-	-			Collection Point	erm. Dock1 r	Water Districtory Services, I
North Water District Laboratory Sprakes, Inc. 23216406-1 Kr (298) 321-0001 - LabGavelis.com 3472 - Quintana Term. Dockf Maint J. Customer: Lu Logd Engineering, Inc. Bediave, TX 77401 rem Sample Type Content Type Content Type Type Content Type Content Type Sample Type Content Type Content Type <td>CHAIN OF CUSTODY RECORD Distance TuD Loge Engineering, Inc. asmpter Tab. The Wordauds, TX 77383 2014/06 far, (930) 301-661 - Jab@wds.com Customer: LUD Loge Engineering, Inc. Besier, YX 77401 Sampter Type Commer GeoMa 200m, Figura, Sade 4°C ORESED GeoMa 200m, Figura, Sade 4°C ORESED GeoMa 200m, Figura, Sade 4°C To Works, Sale GeoMa 200m, VNA, Sade 4°C To Works, Sale GeoMa 200m, VNA, Sade 4°C To Works, Sale GeoMa 4°C To</td> <td></td> <td>ber</td> <td></td> <td>ł</td> <td></td> <td>4</td> <td></td> <td></td> <td>-</td> <td></td> <td>Date</td> <td>Maint. Dre</td> <td></td>	CHAIN OF CUSTODY RECORD Distance TuD Loge Engineering, Inc. asmpter Tab. The Wordauds, TX 77383 2014/06 far, (930) 301-661 - Jab@wds.com Customer: LUD Loge Engineering, Inc. Besier, YX 77401 Sampter Type Commer GeoMa 200m, Figura, Sade 4°C ORESED GeoMa 200m, Figura, Sade 4°C ORESED GeoMa 200m, Figura, Sade 4°C To Works, Sale GeoMa 200m, VNA, Sade 4°C To Works, Sale GeoMa 200m, VNA, Sade 4°C To Works, Sale GeoMa 4°C To		ber		ł													4			-		Date	Maint. Dre	
CHAIN OF CUSTODY RECO 3472 - Quintana Term. Dockf Maint. I Arc r coRESED Arc r0 VOAS 4°C 70 VOAS <	OCHAIN OF CUSTODY RECORD 3472 - Quintana Term. Dock1 Maint. Dredge Serve Hold Repuested Analysis & Remarks NO 4°C CORESED CORESED NO 4°C TPH S&COM NO NO 4°C 7/D NOARSS NO NO 4°C 10 THENSCOM NO NO 4°C 7/D NOARSS NO NO 4°C 7/D NOARSS NO NO 4°C 7/D NOARSS NO NO NO 4°C 7/D NOARSS NO NO NO NO 4°C 7/D NOARSS NO NO NO NO 4°C 7/D NOARSS NO NO NO NO NO 4°C 10 NOARSS NO																	5			-	85:0	Time		8725 I 936) 321-
CHAIN OF CUSTODY RECO 3472 - Quintana Term. Dockf Maint. I Arc r coRESED Arc r0 VOAS 4°C 70 VOAS <	OCHAIN OF CUSTODY RECORD 3472 - Quintana Term. Dock1 Maint. Dredge Serve Hold Repuested Analysis & Remarks NO 4°C CORESED CORESED NO 4°C TPH S&COM NO NO 4°C 7/D NOARSS NO NO 4°C 10 THENSCOM NO NO 4°C 7/D NOARSS NO NO 4°C 7/D NOARSS NO NO 4°C 7/D NOARSS NO NO NO 4°C 7/D NOARSS NO NO NO NO 4°C 7/D NOARSS NO NO NO NO 4°C 7/D NOARSS NO NO NO NO NO 4°C 10 NOARSS NO	1	Relinguished To	Relinquished By	Main	Relinquished By												GRAB	GRAB	GRAB	GRAB	GRAB	Sample Type	Lustomer: LLC loyd Engineer 565 West Loo Jellaire, TX 77	North Wa Laboratory Fawn Trail - Th 6060 - fax (936
CHAIN OF CUSTODY RECO 3472 - Quintana Term. Dock1 Maint. I 4c coRESED 4c 10 4c 70 voAc 8	OCHAIN OF CUSTODY RECORD 3472 - Quintana Term. Dock1 Maint. Dredge Serve Hold Repuested Analysis & Remarks NO 4°C CORESED CORESED NO 4°C TPH S&COM NO NO 4°C 7/D NOARSS NO NO 4°C 10 THENSCOM NO NO 4°C 7/D NOARSS NO NO 4°C 7/D NOARSS NO NO 4°C 7/D NOARSS NO NO NO 4°C 7/D NOARSS NO NO NO NO 4°C 7/D NOARSS NO NO NO NO 4°C 7/D NOARSS NO NO NO NO NO 4°C 10 NOARSS NO	2	Laboratory	(Signature	W	(Signature)												40mL	40mL	250mL	250mL	250mL) ing, Inc. p, Suite 401	Servic Servic Woodla) 321-600
CHAIN OF CUSTODY RECO 3472 - Quintana Term. Dock1 Maint. I Serve Hold Requested Analysis & Remarks 4°C CORESED CORESED 4°C 70 WOAS A°C 70 WOAS A°C 70 WOAS A°C 70 WOAS A°C A°C <td>OCHAIN OF CUSTODY RECORD 3472 - Quintana Term. Dock1 Maint. Dredge Serve Hold Represted Analysis & Remarks NO 4°C CORESED CORESED NO 4°C TPH S&COM NO NO 4°C 7/D VOARSED NO NO 4°C 10 THENSCOM NO NO 4°C 7/D VOARSED NO NO 4°C 7/D VOARSED NO NO NO 4°C 7/D VOARSED NO NO NO NO 4°C 7/D VOARSED NO <</td> <td>/</td> <td>By (Signa</td> <td>1</td> <td>1</td> <td></td> <td>~</td> <td></td> <td>VIAL</td> <td>VIAL</td> <td>Glass, FP-cap</td> <td>Glass, FP-cap</td> <td>Glass, FP-cap</td> <td>Type</td> <td>708</td> <td>strict es, Inc. ands, TX 61 - lab@</td>	OCHAIN OF CUSTODY RECORD 3472 - Quintana Term. Dock1 Maint. Dredge Serve Hold Represted Analysis & Remarks NO 4°C CORESED CORESED NO 4°C TPH S&COM NO NO 4°C 7/D VOARSED NO NO 4°C 10 THENSCOM NO NO 4°C 7/D VOARSED NO NO 4°C 7/D VOARSED NO NO NO 4°C 7/D VOARSED NO NO NO NO 4°C 7/D VOARSED NO <	/	By (Signa	1	1		~											VIAL	VIAL	Glass, FP-cap	Glass, FP-cap	Glass, FP-cap	Type	708	strict es, Inc. ands, TX 61 - lab@
CHAIN OF CUSTODY RECO 3472 - Quintana Term. Dock1 Maint. I Arc rec coRESED CORESED Arc ro VOAS Arc ro VOAS Arc ro VOAS arc ro voas VOAS arc ro voas ro voas ro voas ro Arc Presented By (Signature) Interviewed By (Signature) Interviewed By (Signature) Interviewed For Jaborange By (Signature) Interviewed For Jaborange By (Signature)	CHAIN OF CUSTODY RECORD 3472 - Quintana Term. Dock1 Maint. Dredge Serve 4°C coreseb coreseb 4°C robusted Analysis & Remarks 4°C robusted Analysis & Remarks 4°C 4°C robusted Analysis & Remarks 4°C		ture)															Solid	Solid	Solid	Solid	Solid	Content		77385)nwdls.co
(Signature)	FODY RECORD Dock1 Maint. Dredge Image: Signature Image: Signature Image: Signature Image: Signature	-	0 3	0	3	9								I				4°C	4°C	4°C	4°C	4°C	reserve		
Signature	Image: Comparison of the compar	NY	1	ate	140	-Clu					-			_		-			1		0	0	Hold R		CH.
	e de la contra de		Received For Laboratory By (Signature)		1 Del	Received By (Signature)	ll l											₩ ₩	S.	I S&CM	RESED	RESED	uested Analysis & Remarks		
pH Meter C Pe Slop Tem Tem			Air Calit		pe	alibratio															N	R		1.19	
PH Meter Calibratio	Air Calit		D.O.	4 7 10	Buffers																				

	Affinition Weber Balancistant Tal advertises By (Clonate and	Print Name Relinquished By (Signature)	Wan With	Sampler (Signature) Relinquisted By (Signature)	16	15	14	13	12	11	10	φ	<u> </u>	7	0	5 1147-8200 QI-16-05-S V GRAB 40mL VOA Solid	4 1147-8199 QI-16-05-S GRAB 40mL VOA Solid	3 1147-8198 QI-16-05-S GRAB 250mL FP-cap Solid	GRAB 250mL	1 1147-8196 QI-16-05-S 8/4/16 12.43 GRAB 250mL Glass, Solid	e Time Sample Type Containe	Site: 3472 Customer: LLD Quintana Term. Dock1 Maint. Dredge 6565 West Loop, Suite 708 Bellaire, TX 77401	Laboratory Services, Inc. (936) 321-6060 - fax (936) 321-6061 - lab@nwdls.com
me 1530 University by registered in 1530 me 1530	1 1 Baccined Enr Laboration Bu	Received By (Signature)	100	Dates /4/16 Received By (Signature) Dates & 4/16												4°C 7D VOA-S(D)	4°C 7D VOA-S	4°C 14D TPH S&CM	4°C CORESED	4°C CORESED	Content Preserve Hold Requested Analysis & Remarks		3472 - Quintana Term. Dock'i Maint. Dredge
	leter 100% Air Calibr	4 7 10	Time Slope Buffers	pH Meter Calibration															57203	H.O.	NOTES:	1608151.20	

CSN-1782042 Page 1 of 1

	Tone / 530	000	IN IS		/	202	X			1	Lt	
Time Temp °C D.O.	Time:	A /// Received For Laboratory By (Signature)	The state		(Signature)	aboratory By	Relinquished To Laboratory By (Signature)		ber	Marisa Weber	ation	Affiliatic
4 7 10	Date	Received By (Signature)	Date:			lignature)	Relinquished By (1				t Name	Print
Time Slope Buffers	TIME 1400	-	Time: 14		5	m	When W		1	Mito	-Wan W-	(
pH Meter Calibration	Dane 8/4/14	+//b Received By (Signature)	91/1/3000			ignature)	Relinquished By (Signature)				Sampler (Signature)	Sam
		1			2							16
												5
					-							14
												13
												12
												=
												10
												9
												8
												7
				-	-	_		1				Ø
		VOA-S(D) EPA 8550	70	d 4°C	VIAL Solid	40mL	GRAB	6	6	QI-16-06-S	1147-8205	5
		VOA-S EPA szeb	70	d 4°C	VIAL Solid	40mL	GRAB			QI-16-06-S	1147-8204	4
		TPH S&CM	14D	d 4°C	Glass, FP-cap Solid	250mL FF	GRAB	-	_	QI-16-06-S	1147-8203	ω
F12003		CORESED		d 4°C	Glass, FP-cap Solid	250mL G	GRAB		_	QI-16-06-S	1147-8202	N
4.0%		CORESED		d 4°C	Glass, Solid	-	GRAB	9:41	8/4/16	QI-16-06-S	1147-8201	
NOTES:		Preserve Hold Requested Analysis & Remarks	ve Hold	Presen	Container Type Content	Size T	Sample Type	Time	Date	Point	Sample ID	#
1608151.21					õ	g, Inc. Suite 70)1	Customer: LLD Lloyd Engineering, Inc. 6565 West Loop, Suite 708 Bellaire, TX 77401		Maint. Dre	Site: 3472 Quintana Term. Dock1 Maint. Dredge	Quintana Ter	p g
	CORD t. Dredge	CHAIN OF CUSTODY RECORD 3472 - Quintana Term. Dock1 Maint. Dredge	CH 3472	ts.com	rict , Inc. ls, TX 7738 - lab@nwd	er Disti Services Woodland 321-6061	North Water District Laboratory Services, Inc. 8725 Fawn Trail - The Woodlands, TX 77385 (936) 321-6060 - fax (936) 321-6061 - lab@nwdls.com	8725 I 936) 321-		North Water District Laboratory Services, Inc.	North Water Laboratory Ser	D
CSN-1782043 Page 1 of 1											Chain ID: 84020693	Chair

Site: 3472 Quintana Term. Dock1 Mair	Chein ID: 85020683

-	8725		
	8725 Fawn Trail - The Woodlands, TX 77385	Laboratory Services, Inc.	North Water District
	77385		

0	
T	
CHAIN	
-	
Z	
-	
9	
П	
0	
~	
5	
S	
-	
0	
CUSTODY	
2	
70	
Ш	
0	
õ	
RECORD	
2	

	Alimation	IN KARISA Weber	Print Name	L. Wanth	Sampler (Signature)	đ	15	4	13	12	11	10	10	ß	7	σ	5 1147-8210 QI-16	4 1147-8209 QI-16	3 1147-8208 QI-16	2 1147-8207 QI-16-07-S	1 1147-8206 Qi-16	# Sample ID Point	Quin	1. I aboratory Services. Inc.
	1	Weber		X													QI-16-07-S	QI-16-07-S	QI-16-07-S	-07-S	Q1-16-07-5 3/4/16	unt Date	m. Dock1 Maint. D	Wisingt
																1.	4.				10.40	IIIIne	Time	(936) 32
	Learning to Aconstruction of Descentional		Relinquished By	MAN MY	Reinquished By (Signature)												GRAB	GRAB	GRAB	GRAB	GRAB	Sample Type	Customer: LLD Lloyd Engineering, Inc. 6565 West Loop, Suite 708 Bellaire, TX 77401 Cont	(936) 321-6060 - fax (936) 321-6061 - lab/amwdis.com
	Decor	1	(Signature)		(Signature)												40mL	40mL	250mL	250mL	250mL F	Size	o p, suite 7 401	1 321-606
	Pin Carl Ag			F		•											VIAL		CO-CORDER OF	Glass, FP-cap	Glass, FP-cap	Type O	08	I - lab@m
	ae								_								Solid	Solid	Solid	Solid	Solid	Content Preserve Hold	0	wdls.com
	Time	1	Case .	รี	5												4°C	4°C	4°C	4°C	4°C	eserve r		
	153		4	641	one 8/4/16								1				7D VO		14D TP	8		NO NO		- 714
ς.	0 NOT AND A CONTRACT OF A CONT		Received By (Signature)	Pril .	(Received By (Signature)	A											VOA-S(D)	VOA-S EPA 6296	TPH S&CM	CORESED	CORESED	Requested Analysis & Remarks	nipested Analysis & Remarks	3472 - Wulntana Territ, Dock I Maint, Dreuge
	- 1530	Times the	Come	0 00/1-1-	01/4/200																			Dreage
	11110	DO Mete		Time	pH																	NUIES:	100	
		DO Meter 100% Air Calibration		Slope	pH Meter Calibration															17102	14.0°C		1604151.22	
	00.	alibration	4 7 10	Buffers	ation															NON	(2	

۰,

SAMPLE CONDITION CHECKLIST

8725 Fawn Trail - The Woodlands, TX 77385 - www.NWDLS.com - (936) 321-6060

Client Name : Lloyd Engineering	I, Inc.	Contact :	Marisa Weber				
Client Address : 6565 West Loop,	Suite 708	Contact Phone :	8324264656				
JobID: 1608151	Date Received : 08/04/2016	Time Received :	03:30 PM				
Temperature: 4.0 degrees C	Sample pH : Verified upon receipt						
ThermometerID : FTI003	pHPaperID: CRL-17052-33	pHPaperID : CRL-17052-33					
Comments : Include actions taken t	o resolve discrepancies/problem:						
<u> </u>							

	Check Points	Yes	No	N/A
1	All samples were logged or labeled.	~		
2	Bottle count on C-O-C matches bottle received	~		
3	C-O-C signed and dated.	~		
4	Cooler seal present and signed.			~
5	If requested, sample(s) received with signed sample custody seal			~
6	Sample amount is sufficient for analyses requested	~		
7	Sample containers arrived intact. (if no, comment)	~		
8	Sample ID lables Match C-O-C ID's	~		
9	Sample received at 6°C or Less	~		
10	Sample(s) in a cooler.	~		
11	Sample(s) were received in appropriate contatiner. (If no, comment)	~		
12	Sample(s) were received with proper preserative.	~		
13	Samples accepted.	~		
14	Samples received within holding time for analysis requested	~		
15	Zero headspace in liquid VOA vials	~		

SAMPLE CONDITION CHECKLIST

8725 Fawn Trail - The Woodlands, TX 77385 - www.NWDLS.com - (936) 321-6060

		с.	Contact :	Marisa Weber			
Client Address : 656	5 West Loop, Suit	e 708	Contact Phone :	8324264656			
JobID: 1608151		Date Received : 08/04/2016	Time Received :	03:30 PM			
Temperature: 4.0	degrees C	Sample pH : Verified upon receipt					
ThermometerID : FI	1003	pHPaperID: CRL-17052-33					
Comments : Include a	octions taken to re	solve discrepancies/problem:					

Check Points	Yes	No	N/A	
--------------	-----	----	-----	--

CheckIn By: Arturo Razo

CheckIn Date : 08/04/2016

TERM AND QUALIFIER DEFINITION

8725 Fawn Trail - The Woodlands, TX 77385 - www.NWDLS.com - (936) 321-6060

General Term Definition

Conc.	Concentration
DF	Dilution Factor - the factor applied to the reported data due to sample preparation, dilution, or moisture content

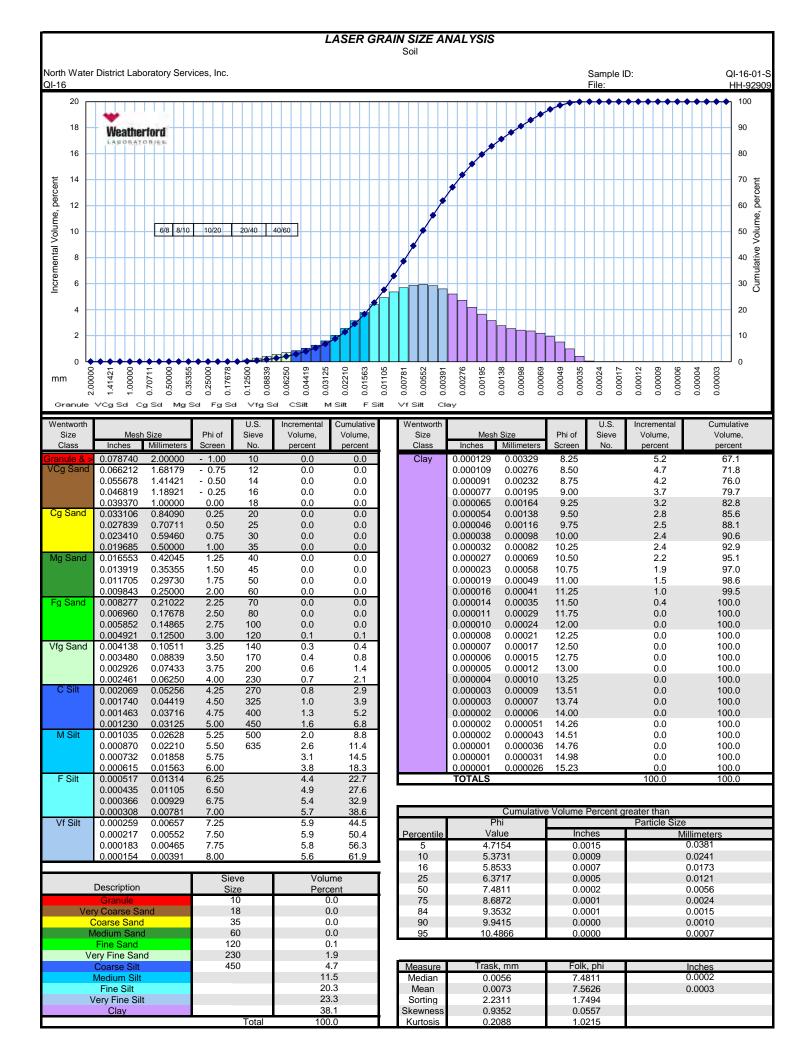
mg/l	Milligrams per Liter
mg/kg	Milligrams per Kilogram
ppm	Parts per Million
µg/L	Micrograms per Liter
µg/g	Micrograms per Gram
ppb	Parts per Billion
gr/gal	Grains per Gallon
SU	Standard Units
CCU	Cobalt Color Units
NTU	Nephelometric Turbidity Units
µS/cm	Microsiemens per cm at 25C
P/A	Presence/Absence
CFU	Colony Forming Units
MPN	Most Probable Number
RB	Reagent Blank
MB	Method Blank
LCS	Laboratory Control Sample
LCSD	Laboratory Control Sample Duplicate
LFM	Laboratory Fortified Matrix (MS – Matrix Spike)
LFMD	Laboratory Fortified Matrix Duplicate (MSD – Matrix Spike Duplicate)
DUP	Sample Duplicate
RPD	Relative Percent Difference
%Rec	Percent Recovery
TNTC	Too numerous to count
NC	Not Calculable
SG	Silica Gel - Clean-Up
BRL	Below Reporting Limit
BDL	Below Detection Limit

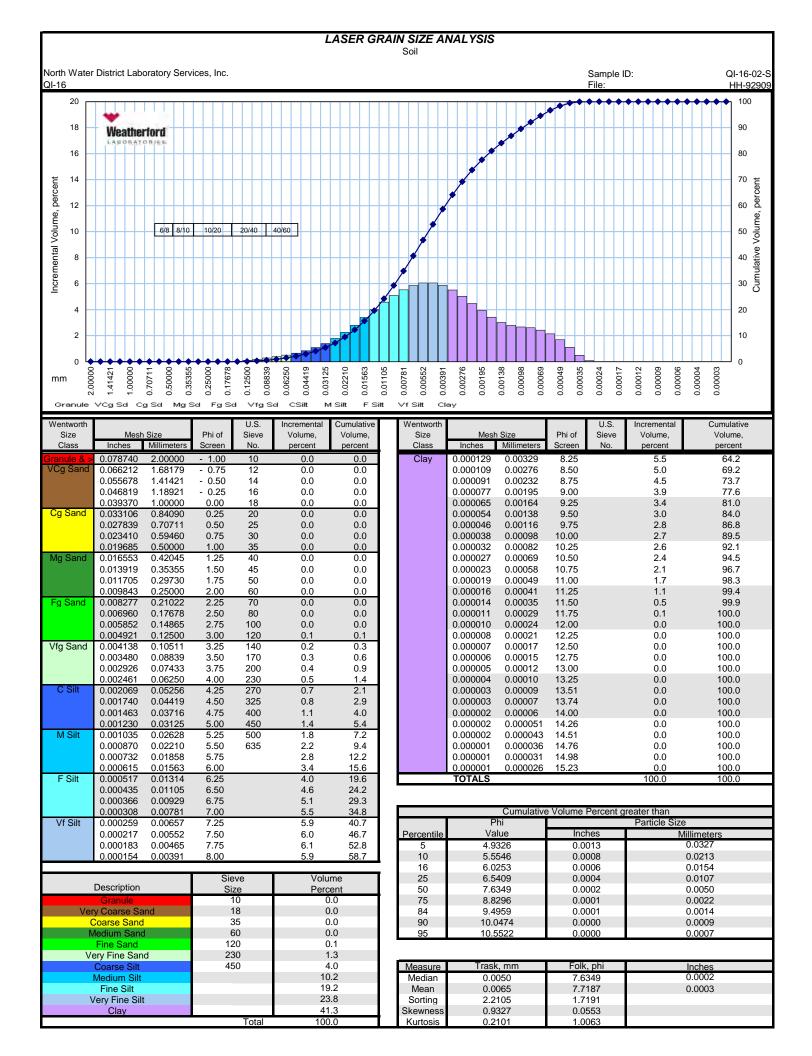
Qualifier Definition

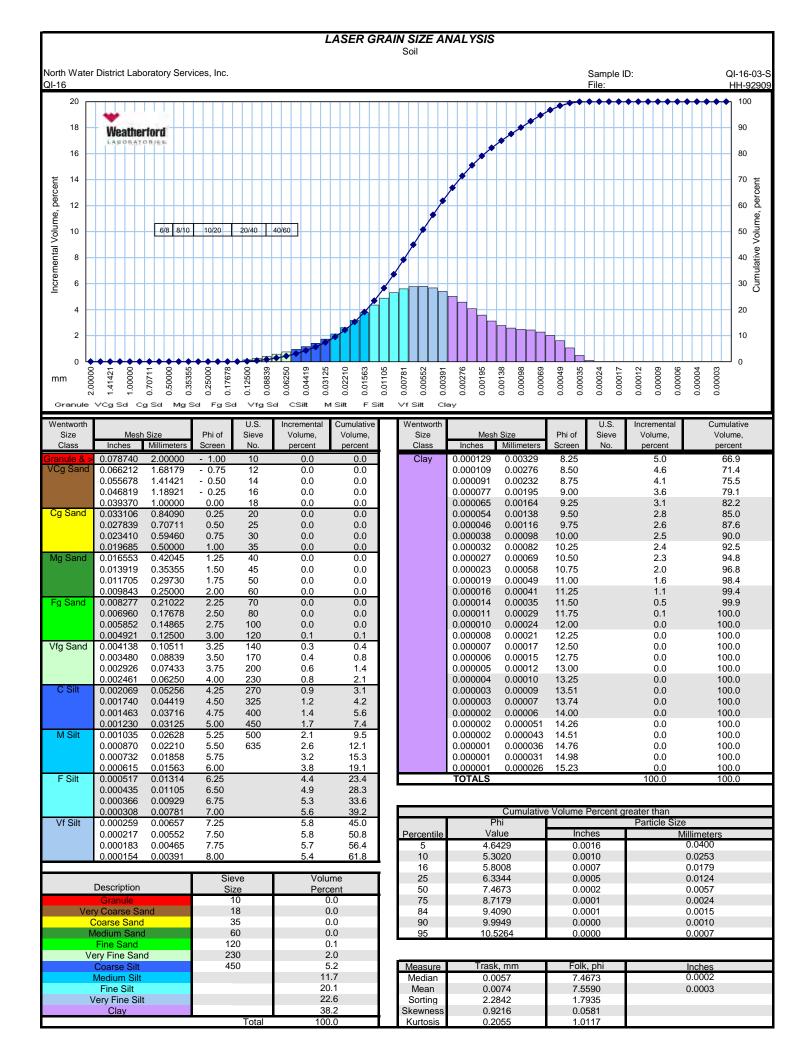
В

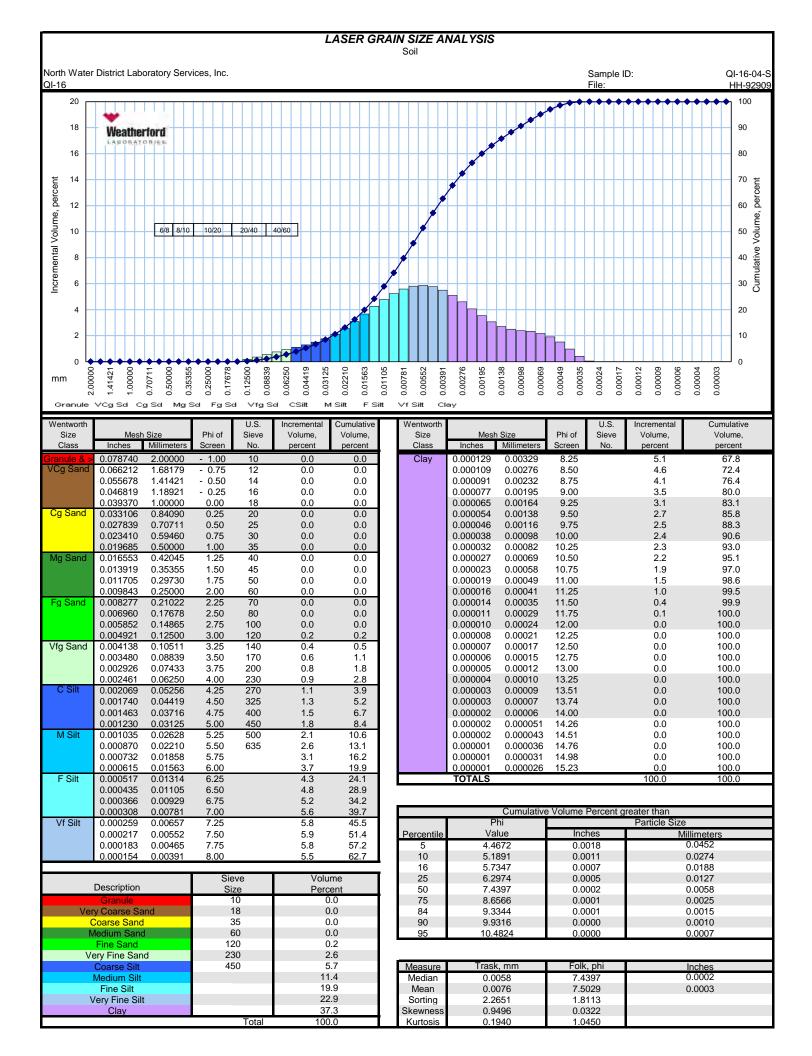
Analyte was found in the associated method blank.

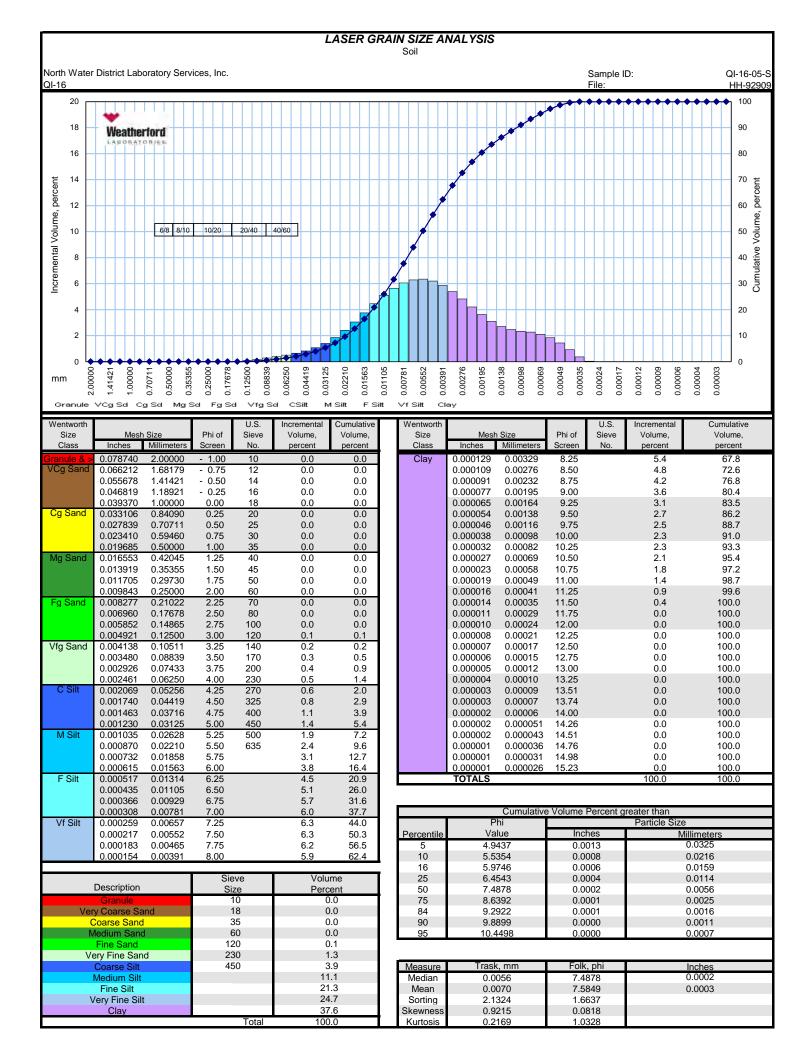
TERM AND QUALIFIER DEFINITION

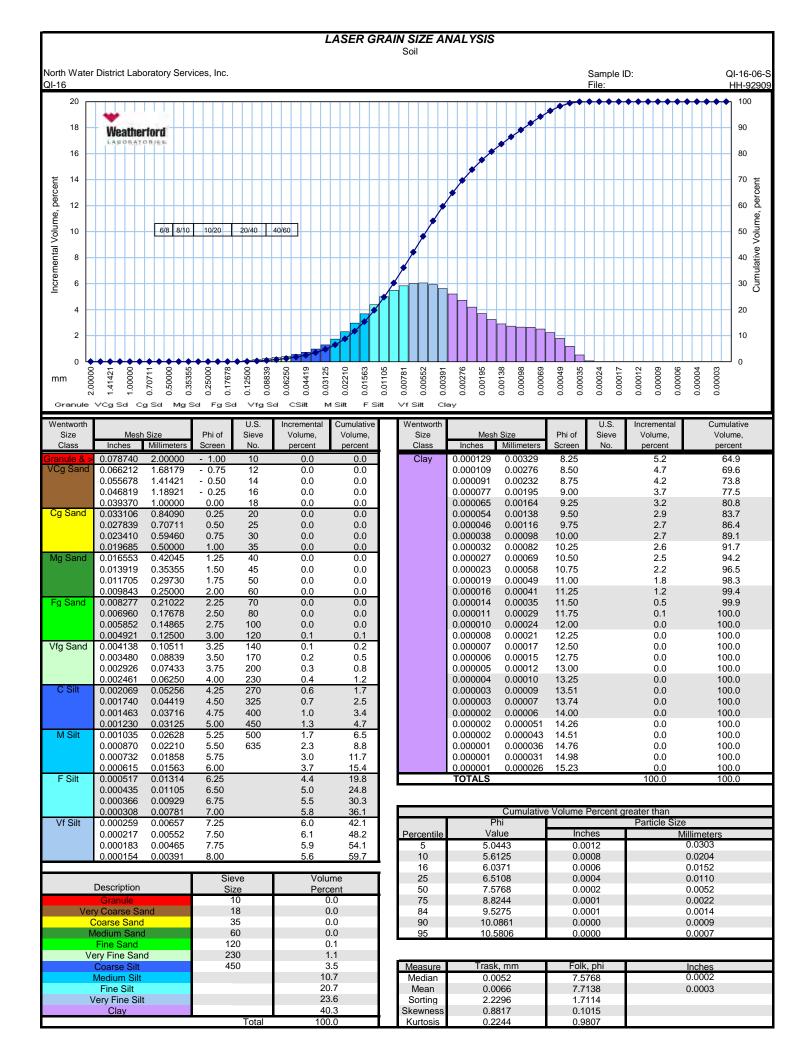


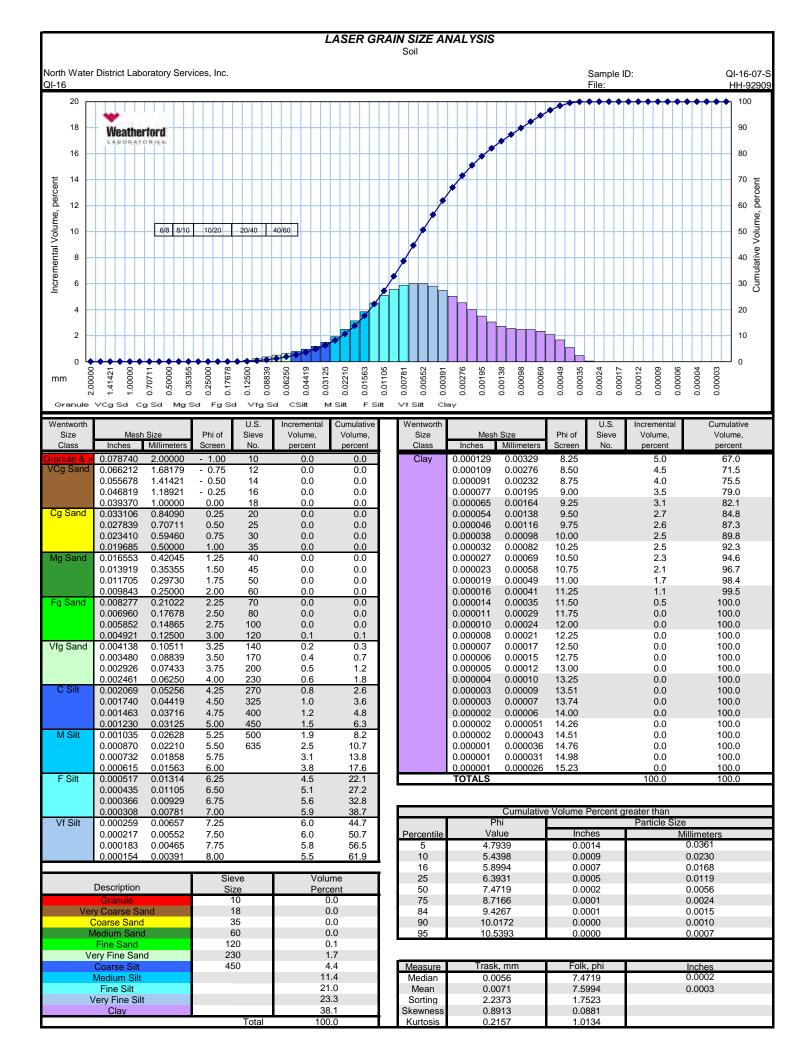

8725 Fawn Trail - The Woodlands, TX 77385 - www.NWDLS.com - (936) 321-6060


- J1 Estimated value-The reported value failed the established quality control criteria for accuracy and /or precision.
- S The surrogate recovery was outside the established laboratory recovery limit.
- U Non-detected compound.
- MDL Method Detection Limit The minimum concentration of a substance (an analyte) that can be measured and reported with a 99% confidence that the analyte concentration is greater than zero. Based on standard deviation of replicate spiked samples taken through all steps of the analytical procedure following 40 CFR Part 136 Appendix B.
- SDL Sample Detection Limit The minimum concentration of a substance (an analyte) that can be measured and reported with a 99% confidence that the analyte concentration is greater than zero. The SDL is an adjusted limit thus sample specific and accounts for preparation weights and volumes, dilutions, and moisture content of soil/sediments. If there are no sample specific parameters, the MDL=SDL.
- LOQ Limit of Quantitation Analyte concentration that corresponds to the lowest level lab reports with confidence in accuracy of quantitation and without qualification (i.e. J-flagged). The LOQ is at or above the lowest calibration standard.
- LRL Laboratory Reporting Limit Analyte concentration that corresponds to the lowest level lab reports with confidence in accuracy of quantitation and without qualification (i.e. J-flagged). The LRL is an adjusted limit thus sample specific and accounts for preparation weights and volumes, dilutions, and moisture content of soil/sediments. If there are no sample specific parameters, the LOQ=LRL.
- TDL Target Detection Limit Performance goal set greater than the lowest, technically feasible detection limit for routine analytical methods and less than the available regulatory criteria or guidelines for evaluating dredged material.
- J Estimated value The reported value is between the detection limit (MDL/SDL) and quantitation limit (LOQ/LRL).


Appendix C


Grainsize Data





Appendix E

Excerpts from Final Environmental Impact Statement for Proposed Port Freeport Channel Widening (2008)

Freeport Channel Widening Permitting

J200.50170

EXECUTIVE SUMMARY

The widening of the Freeport channel seaway of the Outer Turning Basin will generate 3.2 mcy of dredged material, including 2.9 mcy of clay and 300,000 cy of silty sand. The silty sand is suitable for certain beneficial uses in the area; however, no suitable beneficial uses for the 2.9 mcy of clay were identified through the process described below.

A DMMP Working Group was formed consisting of participants from U.S. Army Corps of Engineers (USACE), U.S. Fish and Wildlife Service (USFWS), National Marine Fisheries Service (NMFS), U.S. Environmental Protection Agency (USEPA), Texas Parks and Wildlife Department (TPWD), Texas General Land Office (TGLO), Texas Commission on Environmental Quality (TCEQ) and the National Oceanographic and Air Administration (NOAA), Third Party EIS Contractor (PBS&J), and the Ports Consultant HDRIShiner Moseley and Associates, Inc. (HDRISMA). to identify regulatory issues related to the project and to identify and evaluate potential beneficial uses for the dredged material produced during the project.

There are a total of 17 alternative disposal sites, including confined placement areas, Offshore Dredged Material Disposal Sites (ODMDS), and two types of beneficial uses: habitat restoration and beach nourishment. A preliminary screening reduced the potential candidates to 6 options: three habitat restoration sites, two beach nourishment sites, and, as a last resort, an ODMDS.

Further analysis eliminated two of the beneficial use habitat restoration sites, Swan Lake and Bryan Lake, leaving the SH332 Beneficial Use site. The limited suitable material (300,000 cy) would support only one BU site, either habitat restoration or beach nourishment. Detailed cost estimates indicate that the cost of the SH 332 site restoration would exceed the cost of beach nourishment by approximately \$527,750.

The recommended Dredge Material Management Plan contains the following key features:

- Use a mix of dredging methods:
 - o pipeline dredge to remove the 300,000 cy of silty sand
 - mechanical excavation to deepen the project area to provide hopper dredge access
 - o hopper dredge for the remaining 2.9 mcy of clay
- Place the 300,000 cy of sand on Quintana Beach in front of the Seaway Placement Area to:
 - o provide accessible public beach
 - protect the containment levee.
- Place the 2.9 mcy of clay in the ODMDS, the permitting of which should begin immediately.

TABLE OF CONTENTS

EX	ECUT	IVE SUMMARY	1				
I.	INTRODUCTION						
	1.	Project Description and Area Setting	4				
	2.	Beneficial Uses Concept	5				
	3.	Approach	5				
П.	ALTE	RNATIVES IDENTIFICATION AND EVALUATION	7				
	1.	Introduction	7				
III	. FIND	INGS AND RECOMMENDATIONS	14				
	A. Nev	w construction material volume and characteristics	14				
		aintenance Material Volume and Characteristics					
	C. Dre	edging Methods	14				
	D. Alt	ernative and Recommended Placement Area	14				
	E. Sur	nmary of Recommended Placement Areas	15				

I. INTRODUCTION

1. Project Description and Area Setting

The existing Federal channel is approximately 5.2 miles in length and is approximately 400 ft in width at the bottom. Water depths in the Freeport Ship Channel are currently maintained by the USACE to a depth of -47 ft from Mean Low Tide (MLT). The proposed project entails widening the Freeport Ship Channel from the Outer Turning Basin to the -49 ft contour. The widening increment will be at the same depth as the existing Federal Channel. Portions of the Jetty Channel and all of the Entrance Channel will be widened to a total bottom width of 600 feet. Exhibit A is a copy of the original U.S. Army Corps of Engineers (USACE) Permit Application #23752 that covers the proposed widening. The Brazos River Harbor Navigation District (Port Freeport or Port) is the permit applicant.

The purpose of the project is to permit the use of non-Federal funds to widen the existing Federal Channel. The need is to eliminate operational constraints preventing the transit of larger ships into the Port of Freeport. The constraints are threefold: (a) limits on large vessels when the wind exceeds 20 knots or currents exceed 2 knots, (b) limitations on nighttime transit, and (c) restriction on two way traffic. Elimination of these operational constraints will increase port efficiency and reduce shipping costs due to delays.

Construction of the project will generate approximately 3.2 mcy of uncontaminated dredged material that consists of 2.9 mcy of clay and 300,000 cy of silty sand.

The Freeport area is unique in that it does not have barrier islands or extensive bays. The primary tributaries, the Brazos River and the San Bernard River, drain directly into the Gulf of Mexico from the mainland rather than via bays between the mainland and barrier islands and do not provide freshwater inflow at the Port.

The Freeport Ship Channel follows the lower portion of what is called the "Old River." In 1929 the lower 6.8 miles of the Brazos River were diverted via a new man-made channel into the Gulf approximately 6 miles west of the Old River. The overall effect of this relocation was the elimination of significant currents in the port area, the elimination of riverine flood flows through the port, and the direct discharge of the sediment laden river water into the Gulf. Benefits to the port include less maintenance dredging, fewer operational interruptions due to high water, and increased navigation safety.

The heachfront on both sides of the Ship Channel is developed. On the north lies the community of Surfside, population 763. It is predominately a single family residential area, with some beach related commercial development. On the south lies the community of Quintana, population 38, which is single family residential. A dominant feature of Quintana is the Freeport LNG terminal, which is under construction. Two large dredged material disposal areas and Bryan Beach State Park are also in Quintana.

2. Beneficial Uses Concept

Federal policy suggests that dredged material be used for beneficial purposes if deemed practical. Typically, beneficial uses may include a wide spectrum of purposes:

- Habitat creation or restoration.
- Shoreline restoration.
- Beach nourishment.
- Dune reconstruction.

In making the decision as to whether or not a beneficial use is feasible, a number of factors may be considered:

- Likelihood of success or failure.
- Environmental effects.
- Construction costs.
- Sustainability.
- Type and extent of benefits.

3. Approach

The following steps outline the steps taken during the planning and permitting process. Beneficial uses have been considered throughout the process.

Step 1 - Conducted Regulatory Assessment

Meetings were held with the regulatory and resource agencies (U.S. Army Corps of Engineers (USACE), U.S. Fish and Wildlife Service (USFWS), National Marine Fisheries Service (NMFS), U.S. Environmental Protection Agency (USEPA), Texas Parks and Wildlife Department (TPWD), Texas General Land Office (TGLO), Texas Commission on Environmental Quality (TCEQ) and the National Oceanographic and Air Administration (NOAA)) to get opinions and comments regarding the proposed project. Beneficial uses were proposed during these meetings, primarily wetland restoration and an offshore habitat berm.

Step 2 - Drafted Initial Application

An initial draft permit application was prepared and submitted to the USACE on April 14, 2005 and assigned permit application number 23752. Three beneficial use possibilities were identified and included in the initial permit application: beach nourishment, offshore habitat berm, and onshore wetlands enhancement.

Step 3 - Participated in Joint Evaluation Meeting (JEM)

A Joint Evaluation Meeting was held with the Port, USACE, TXGLO, TCEQ, TPWD, USEPA, USFWS, NMFS, and HDRISMA to discuss the project concept and details of various beneficial uses that were identified. The agencies participating in the JEM generally acknowledged their support for the concept and provided comments.

Step 4 – Scoping Meeting and NEPA Process

The NEPA compliance process formally started with the Scoping Meeting on November 25, 2005. The idea of beneficial use of dredged material was presented to state and federal agency representatives and the public, including the formation of a DMMP Work Group. The Work Group consisted of representatives from the following: U.S. Army Corps of Engineers (USACE), U.S. Fish and Wildlife Service (USFWS), National Marine Fisheries Service (NMFS), U.S. Environmental Protection Agency (USEPA), Texas Parks and Wildlife Department (TPWD), Texas General Land Office (TGLO), Texas Commission on Environmental Quality (TCEQ), Port, Third Party EIS Contractor (PBS&J), and the Ports Consultant HDRIShiner Moseley and Associates, Inc. (HDRISMA).

Step 5 - Operations of Work Group

Between early December 2005, and late February 2006, the Work Group met four times and completed the following steps:

- Step 5-A Decided on an approach to identify and evaluate alternatives.
- <u>Step 5-B</u> Identified a total of 17 disposal sites of which 9 sites were beneficial use alternatives.
- <u>Step 5-C</u> Used available information to screen the 9 potential beneficial uses down to 3 sites meriting further scrutiny.
- <u>Step 5-D</u> Visited the remaining candidate sites and collected additional site specific information and prepared summary documents.
- <u>Step 5-E</u> Reviewed results with the DMMP Work Group and made recommendations for an overall Dredged Material Management Plan.
- <u>Step 5-F</u> Compiled the results into a plan for incorporation in the EIS and other appropriate NEPA compliance documents.

Section II of this document describes the alternatives analyzed and how the process was used to arrive at the recommended DMMP. Section III of this document presents the findings and results of the process.

II. ALTERNATIVES IDENTIFICATION AND EVALUATION

1. Introduction

For preliminary screening purposes, potential onshore placement sites within approximately 5 miles of the project site were considered. Offshore placement was also considered. The potential placement areas included both potential beneficial use sites as well as conventional disposal sites. A total of 17 placement areas were identified in 4 major categories. Of the 17 alternatives below, 9 can be considered beneficial uses (denoted with an asterisk):

Marsh Restoration and Creation/GIWW Bank Stabilization

- Swan Lake *
- Bryan Lake *
- Highway 332 Marsh *
- GIWW Bank Stabilization *

Upland Confined Placement Area (UCPA)

- DMPA "Seaway"
- DMPA "85"
- DMPA "2/3"
- DMPA "86/87"
- DMPA "88"
- DMPA "7"
- DMPA "1"

Offshore Placement

- Offshore Berm Fish Habitat *
- Offshore Berm Wave Protection *
- Nearshore Berm Beach Feeder and Surf Break *
- ODMDS Placement

Beach Nourishment

- Surfside *
- Quintana *

Table II.1 is a matrix that assesses the suitability of each site according to the following criteria:

- Dredge Method
- Potential Capacity Silty Sand
- Potential Capacity Clay
- Beneficial Use
- Containment Requirements
- Regulatory Requirements
- Issues
- Viable Alternatives

All confined placement areas were eliminated due to two reasons: resource agencies require that dredged material be used beneficially, if possible, and the existing confined placement areas have very limited available capacity. The preliminary screening reflected in Table II.1 identifies five potential beneficial uses for the 300,000 cy of silty-sand material that merited further attention:

- Marsh restoration at Swan Lake
- Marsh restoration at Highway 332
- Marsh restoration at Bryan Lake
- Beach nourishment at Quintana Beach adjacent to Seaway DMPA
- Beach nourishment at Surfside Beach

Other potential beneficial use sites were eliminated for the following reasons:

- Gulf Intracoastal Waterways (GIWW) Bank Stabilization was determined to be unsuitable due to inadequate capacity and difficulty of containment.
- Offshore Berm Fish Habitat. These merits are debatable and similar benefits would result from placement in a designated disposal area.
- Offshore Berm Shoreline Protection. A cursory analysis indicated that the benefits were negligible.

• Offshore Berm – Beach Feeder. Benefits would be very minimal and most (90%) of the dredged material is not suitable for beach nourishment.

The three potential habitat restoration sites, refer to Figure 1, are each briefly discussed below. A habitat assessment with photos is included as Exhibit B.

Swan Lake Beneficial Use Site

This potential beneficial use site is located approximately two miles east of the Freeport Jetty Channel. The overall area identified as a potential beneficial use site is roughly 578 acres, which includes open water, tidal streams, wetlands, and potentially some uplands. It is bounded on the north by the GIWW, on the west by a canal connected to the GIWW, and on the east and south by developed properties and roadways. As a potential beneficial use site for the placement of dredged materials, the focus of the initial investigation was on the open water portions for wetland restoration and/or creation. Two distinct bodies of open water were identified by examining an aerial photograph of the area. The western body is roughly 85 acres in size and the eastern body is approximately 225 acres in size, refer to Figure 2. In aggregate, the two bodies of open water encompass approximately 310 acres.

Ownership of these two areas was not confirmed during the initial investigation. However, based on the nature of the bodies of water, it is assumed they are state owned land.

The initial investigation also compared a 2005 aerial photograph against historic photographs available on the Texas General Land Office web site. An aerial photograph from 1944 was used for comparison purposes. Although a significant portion of the 225 acre area was not covered in the 1944 photograph, the nature of both areas appears to be quite similar, with the exception of the western-most portion of the 85 acre site that appears to encompass a larger area that is now the open water. In general, the comparison indicates that over the past 61 years there has been no substantial loss of wetland acreage in this area, beyond that described above for the 85 acre site.

A site visit was performed on 12/20/05 to supplement the initial investigation efforts. Photographs obtained during that visit are provided in Exhibit 2 of Exhibit B.

The following pertinent observations were made during the site visit:

- There is evidence of oyster beds and fishing activities (i.e., presence of traps) in the 225 acre eastern body of open water.
- There is evidence of oyster beds in the 85 acre western body of open water.
- No evidence of sea grass presence was found; however, the visit was limited to an investigation along a portion of the shorelines and not the full bodies of water.

Bryan Lake Beneficial Use Site

This potential beneficial use site is located approximately three miles west of the Freeport Jetty Channel, refer to Exhibit 3 of Exhibit B. The overall area identified as a potential beneficial use site is roughly 913 acres, which includes open water, tidal streams, wetlands, and potentially some uplands. It is bounded on the south by the Gulf Intracoastal Waterway (GIWW), on the west by the Bryan Mound Strategic Petroleum Reserve (SPR) facility, on the north by a levee with roadway, and on the east by a developed roadway. As a potential beneficial use site for the placement of dredged materials, the focus of the desktop investigation was on the open water portions for wetland restoration and/or creation. Three distinct bodies of open water were identified by examining aerial photographs of the area. The east body is approximately 50 acres in size, the west body is approximately 100 acres in size, and the central area is approximately 30 acres in size, refer to Exhibit 3 of Exhibit B. In aggregate, the three bodies of open water encompass approximately 180 acres.

Ownership of these three areas was not confirmed during the desktop investigation. However, based on the nature of the bodies of water it is assumed they are state owned land.

The initial desktop investigation also compared a recent aerial photograph against historic photographs available on the Texas General Land Office web site. An aerial photograph from 1944 was used for comparison purposes. Based on the comparison it is evident that all three bodies of water have been in existence since 1944. Both the western 100 acre area and the central 30 acre area appear to be similar in both photographs. The eastern 50 acre area appears to be smaller in size today as compared to 61 years ago, which may indicate accretion in the area. In general, the comparison indicates that there has been no substantial conversion of wetlands or uplands to open water in this area over the past 61 years.

A site visit was performed on 12/20/05 to supplement the desktop investigation efforts. Photographs obtained during that visit are provided as in Exhibit 2 of Exhibit B. During that site visit discussions were held with Mr. Jimmy Salinas, Environmental Safety and Health Coordinator for the Bryan Mound SPR facility to obtain his input on potential beneficial use projects adjacent to the facility. The following pertinent observations were made during the site visit and discussions with Mr. Salinas:

- There is evidence of oyster beds in the 100 acre western body of open water.
- Mr. Salinas indicated that the SPR facility would likely have strong reservations about marsh creation in the 100 acre and 30 acre areas because of security concerns. Specifically, the growth of marsh grasses would restrict perimeter security vision in this area.
- There was no obvious evidence of oyster beds in the 50 acre area and SPR did not have any specific concerns with potential beneficial use for marsh creation in this area.
- No evidence of sea grass presence was found; however, the visit was limited to an investigation along a portion of the shorelines and not the full bodies of water.

SH 332 Bridge Beneficial Use Site

This potential beneficial use site is located approximately one mile northeast of the Freeport Jetty Channel, refer to Exhibit 1 of Exhibit B. The overall area identified as a potential beneficial use site is roughly 328 acres, which includes open water, tidal streams, wetlands, and potentially some uplands. It is bounded on the north and west by canals, on the south by developed land and roadways, and on the east by undeveloped land. State Highway (SH) 332 runs through the center of this area in a general north-south direction. As a potential beneficial use site for the placement of dredged materials, the focus of the desktop investigation was on the open water portions for wetland restoration and/or creation. Four distinct bodies of open water were identified by examining aerial photographs of the area. Two areas, 42 acres and 12 acres in size respectively, are located west of SH 332 and two areas, each 4 acres in size are located east of SH 332, refer to Exhibit 1 of Exhibit B. In aggregate, the four areas of open water encompass approximately 62 acres.

Ownership of these four areas was not confirmed during the desktop investigation. However, based on the nature of the 42 acre body of water, it is assumed that it is state owned land.

The desktop investigation also compared a recent aerial photograph against historic photographs available on the Texas General Land Office web site. Aerial photographs from 1944 and 1965 were used for comparison purposes. Although the 1944 photograph of the area is not very clear, the 1965 photograph indicates that the two 4 acre areas were bodies of water 40 years ago, with stronger evidence of this on the northernmost 4 acre area. Furthermore, the comparison with the 1965 photograph indicates that the areas west of SH 332 were wetlands and have broken up over the past 40 years to become predominantly open water.

A site visit was performed on 12/20/05 to supplement the desktop investigation efforts. Photographs obtained during that visit area provided in Exhibit 2 of Exhibit B for informational purposes. The following pertinent observations were made during the site visit:

- No evidence of oyster beds in any of the areas was found; however, the visit was limited to an investigation along a portion of the shorelines and not the full bodies of water.
- No evidence of sea grass presence was found; however, the visit was limited to an investigation along a portion of the shorelines and not the full bodies of water.
- The two 4 acre areas and the 12 acre area appear to be functional wetlands with tidal conveyances.
- The 42 acre site appears to be broken up marsh area with a predominance of open water.

For the reasons discussed above, the only viable marsh restoration project is at the SH 332 bridge area. The other alternative beneficial use is placement of the material on the beach to counter shoreline erosion. The 300,000 cy of silty sand from the Jetty Channel is available and suitable for either beneficial use.

A cost comparison of using the silty sand for the SH 332 marsh creation and beach nourishment was completed. The two alternatives are discussed below:

Marsh Restoration.

Dredged material produced during this project consists of silty sand and stiff clays. Stiff clays are not suitable for proper vegetation growth and wildlife habitat and therefore not suitable for marsh restoration uses. Approximately 300,000 cy of the silty sand material located in the Jetty Channel is available to be placed in the SH 332 Bridge Beneficial Use location. Roughly 200,000 cy would be used to properly fill one of the two areas to an elevation that would allow growth of low marsh habitat for marsh restoration. The remaining 100,000 cy would be used to properly fill in the other area to an elevation that would allow growth of low marsh restoration.

Assumptions used in the analysis are as follows:

- A single 20" to 24" hydraulic dredge unit will be mobilized and used for the placement of materials in both the SH 332 Bridge Beneficial Use locations.
- The average pumping distance for the SH 332 Bridge Beneficial Use areas is approximately 1.7 nautical miles. The pipeline will cross the GIWW. The high volume of barge traffic associated with the GIWW will require significant operational interruptions. The pipeline will have to be outfitted with a diffuser or baffle at the discharge end to allow for a better control of the discharged dredged material into the marsh area.

Beach Nourishment. Approximately 300,000 cy of the silty sand material, located in the Jetty Channel is available to be placed on either the Surfside or the Quintana Beach, but not a combination thereof due to the relatively small amount of material available. Assumptions include:

- A single 20" to 24" hydraulic dredge unit will be mobilized and used for the placement of the materials on one or the other beach, but not split between the two.
- The average pumping distance for beach placement is approximately 2.0 nautical miles. No crossing of the ship channel is assumed here; however, one will be required if the material goes to Quintana Beach.

ITEM DESCRIPTION Beach Nourishment Mob/Demob (2) 300 hp bulldozer 200 hp bulldozer Pipeline Dredge 25% Contingency Marsh Placement Mob/Demob (2)	QUANT	TTY	UNIT COST	TOTAL	EXTENDED TOTALS	
TIEM DESCRIPTION	NUMBER	UNIT	UNIT COST	TOTAL		
Beach Nourishment					\$1,066,000	
	1	LS	\$2,000.00	\$2,000	+=,,	
	360	HR	\$160.00	\$57,600		
	360	HR	\$120.00	\$43,200		
	8,500	FT	\$12.00	\$102,000		
	360	ĤR	\$1,800.00	\$648,000		
25% Contingency				\$213,200		
					\$1,593,750	
Mob/Demob (3)	1	LS	\$4,500.00	\$4,500		
Dredge (4)	450	HR	\$1,800.00	\$810,000		
Backhoe/barge						
1. Levee	300	HR	\$350.00	\$105,000		
2. Discharge	450	HR	\$350.00	\$157,500		
3. Deconstruct	100	HR	\$350.00	\$35,000		
Pipeline	9,000	FT	\$12.00	\$108,000		
Weir	1	LS	\$20,000.00	\$20,000		
Marsh Buggy	100	HR	\$350.00	\$35,000		
25% Contingency				\$318,750		
Difference	The second			Service Providence	\$527,750	

The costs of the two alternatives are as follows:

Notes:

- 1. Original mob/demob of dredge equipment assumed same for both options at ~\$500,000
- 2. Beach nourishment requires additional mob/demob of two bulldozers
- 3. Marsh placment requires additional mob/demob of marsh backhoe with barge and marsh buggy
- 4. Dredge production reduced by 25% due to shallow depths at marsh and need for elevation control

Summary

- The additional cost associated with marsh restoration at SH 332 bridge, relative to beach placement, is approximately \$527,750.
- There is a great deal of public support for placement of the silty sand material on either the Quintana or Surfside beach. Removing the littoral zone material and placing it further inland on a marsh is contrary to the evident public desires.
- The nature of the stiff clay material is not optimally suited for either habitat restoration or beach nourishment; consequently, it should go to an Offshore Dredged Material Disposal Site (ODMDS).

III. FINDINGS AND RECOMMENDATIONS

A. New construction material volume and characteristics

1. The initial construction of the widening will generate 3.2 mcy of dredged material, which includes 300,000 cy of silty sand and 2.9 mcy of stiff clay.

2. The 300,000 cy of silty sand can be used for either of two types of beneficial use in the immediate project area: habitat restoration or beach nourishment.

3. The stiff clay is not suitable for the identified beneficial uses.

B. Maintenance Material Volume and Characteristics

1. The average maintenance volume for the widening increment is on the order of 1 mcy per year.

2. It is fine silty clay and is not suitable for any of the available beneficial uses.

C. Dredging Methods

1. Several scenarios are possible depending on the equipment available at the time of dredging. The most likely scenario involves a mix of hopper dredge, pipeline dredge, and mechanical excavation.

2. A pipeline dredge will be used to excavate the silty sand and pump it to the beach nourishment site.

3. Mechanical excavation will be used to deepen the project area to about 25-30 feet, which is the minimum operation depth for a hopper dredge.

4. A hopper dredge will be used to excavate the stiff clay and transport it to the Offshore Dredged Material Disposal Site (ODMDS).

D. Alternative and Recommended Placement Areas

1. A total of 17 potential placement areas were identified (see Table II.1) and divided into four separate categories:

- Upland Confined Upland Placement Area (UCPA).
- Offshore Dredged Material Disposal Sites (ODMDS).
- Beneficial Uses Habitat Restoration (BU HR).
- Beneficial Uses Beach Nourishment (BU-BN).

2. An initial screening reduced the original 17 alternatives to 5 alternatives meriting further attention.

- All existing UCPAs were eliminated due to other commitments and limited capacity. No new UCPAs were proposed due to the scarcity of suitable upland sites.
- To comply with existing Federal guidance, the ODMDS are considered only as a last resort if no other practical options exist.

- Three potential Beneficial Use Habitat Restoration sites were identified: Swan Lake, Bryan Lake, SH 332 Bridge.
- Two Beneficial Use sites Beach Nourishment were identified: Quintana and Surfside.

3. The above surviving alternatives were subjected to further evaluation, which included site visits to better characterize existing conditions, placement options, and potential benefits.

- Two of the BU HR sites, Swan Lake and Bryan Lake, were eliminated due to the presence of oysters and existing good habitat that might be significantly degraded by any restoration attempts.
- The other BU HR site SH 332 Bridge appears to offer potentially attractive habitat restoration options.
- Both the BU BN sites offered positive potential. Closer evaluation favors Quintana in front of the Seaway Confined Placement Area for two public purposes:
 - reestablish public access to the public beach in front of the disposal area
 - provide erosion protection for the containment levee of the Seaway Confined Placement Area.
- Because of the limited volume of suitable material (300,000 cy of suitable silty sand) for the beneficial uses, only one project can be done – either the habitat restoration or beach nourishment.
- A more in depth cost comparison of the SH 332 and Quintana Beach was done. Placement at the SH 332 exceeds the cost of placement at Quintana by approximately \$527,750.
- Public support is for beach nourishment.


E. Summary of Recommended Placement Areas

- Place the 300,000 cy of silty sand on the Quintana beach in front of Seaway UCPA to provide improved public access and provide erosion protection for the UCPA containment.
- Place the remaining 2.9 mcy of stiff clay in the ODMDS.
- Maintenance material should be placed in the ODMDS.
- Permitting of the ODMDS should be expedited.

Figure II.1
Freeport Entrance & Jetty Channel Widening Project
Dredge Material Management Plan - Placement Evaluation Matrix

			<u></u>				Autom Mailin	
Placement Alternative	Dredge Methodalugy	Potential Capacity Silty-Shud Material	Potential Capacity Cluy Material ²	Beneficial Use	Containment Requirements	Regulatory Requirements (Beyond 444/10 Peemit)	ไรราย คร	Viable Alternative
Swan Lake Marsh Restoration/Creation	Hydraulic	- 100K CY (33%)	~ 250K CY (20%)	Yes	ICW Interface	Nane	Presence of oyster beds Active fishing area Freeport Wiggles Sect. 216 study (conflict)	No
Bryan Lake Mursh Restoration/Creation	Hydraulie	- 60K CY (20%)	~ 0K CY (0%)	Yes	None	None	Presence of oyster beds Strategic Petroleum Reserve security concerns Potential future mitigation or development site (Part)	Na
332 Bridge Marsh Restoration/Creation	Hydraulic	- 300K CY (10%)	-0CY (0%)	Yes	Drainage Cimal Interface	None	 Presence of oyster boils Antive fishing area 	Yes
ICW Bank 'Stabilization'	Hydraulic	Not Suitable (0%)	??% ³	Yes	Yes	None	Construction difficulty (long, narrow placement corridor) Containment needs slong bank a major factor	No
Beach Phicement - Quintana or Surfside	Hydraulic	100% (Suimble Mar'l Only)	Not Suitable (8%)	Yes	None	None	Quality of sandy material	Yes
Beach Placement - DMPA "Scaway" Levee Protection	Hydrautic	Not Suitable (0%)	~ 150K CY (12条)	Yes	None	None	 Undertaking would most likely preclude driving on this section of beach Material would be sacrificial in nature, fines would be on beach for a long time 	No
Upland Confined Macement DMPA "Seaway"	Hydraulic	Not Considered for Sandy Mat'i	- 150K CY (12%)	No	Dike Raising Required	None	 Freeport LNG borrow pit not large enough to accommodate material without additional office raising efforts Port Freeport prefers not to place material in this Port controlled DMPA 	No
Upland Confined Placement DMPA "85"	Hydraulic	Not Considered for Sandy Mat'l	-0 CY (0%)	No	Dike Raising Required	None	 DMPA Capacity has been reached without significant dike ratising 	No
Upland Confined Placement DMPA '2 / 3"	Hydraulic	Not Considered for Sandy Mat'l	-0CY (0%)	No	In Place	None	 Linúted existing capacity is already designated for use (Freepurt LNG) 	No
Upland Confined Placement DMPA "86 / 87"	Hydraulic	Not Considered for Sandy Mat'l	-0CY (0%)	No	In Place	Nooe	 DMPA is designated for ICW maintenance unsteriol placement 	No
Upland Confined Placement DMPA "38"	Hydraulie	Not Cansidered for Sandy Mat's	~ 0 CY (0%)	No	In Place	None	 DMPA is designated for ICW maintenance material placement 	No
Upland Confined Placement DMPA 'T	Hydraulic	Not Considered for Sandy Mot [*]	-0 CY (0%)	No	in Place	None	 DMPA capacity has been reached Adjacent property restrictions do not allow expansion 	No
Upland Conflord Placement DMPA "f"	Hydraulic	Not Considered for Sandy Mat ^{*1}	~0CY (0%)	No	In Place	None	 Limited existing capacity is already designated for use (Freeport LNG and Federal Channel Maintenance) 	No

Figure II.1 Freeport Entrance & Jetty Channel Widening Project Dredge Material Management Plan - Placement Evaluation Matrix

Plucement Alternative	Dredge Methodology	Potential Capacity Silty-Sond Material ¹	Potential Capacity Clay Material ²	Beauficial Lise	Containment Requirements	Regulatory Requirements (Beyond 404/10 Pernót)	Excues	Viable Alternative
Offshore Bern – Fish Habitat	Mechanical / Hydraulic	100% (Including Entrance Chnl)	100% (Iacludiag Entrance Chol)	Yes (See Issues)	Ноле	102/103	 The typical application of this concept is considered a Beneficial Use; however the project's application was not considered a the Beneficial Use through further analysis (i.e., concept is not similar to model concept in Mobile, AL. The same through would accur with placement in the ODMES, just is a different location (i.e., a location that has been used for dredge material placement in the past. 	No
Offshore Berns - Wave Protection	Meehanical f Hydraulic	(00% (Including Entrance Conl)	100% (Including Entrance Chol)	Yes (See Issues)	None	102/103	 The typical application of this concept is considered a Beneficial Use: however the project's application was not considered a Beneficial Use through further analysis. 	No
Neurshore Berm Beach Forder Berm / Surf Break	Hydraulic	100% (Including Entrance Chnl)	Not Considered for Clayey Mat'l	Yes	None	102/103	 Sandy materials better suited for direct bench placement in this project's application. 	No
ODMDS Placement	Mechanical / Hopper	100% (Including Entrance Chril)	100% (Including Enuance Chul)	No	None	102/103	Designated ODMDS	Yes

1

Based on profiminary analysis of geotechnical information, the quantity of silty-sand materials in the Jetty Channel is assumed to be approximately 300,000 eubic yards. legated in the Eurance Channel. J ICW 'Bank Stabilization' Capacity was not calculated because of the multiple factors that make this alternative non-visible.

Exhibit B-Habitat Assessment

.

332 Bridge

The 332 Bridge site is located approximately one mile northeast of the Freeport Jetty Channel (Exhibit 1). Photographs of the site taken during the January 23rd site visit are provided in Exhibit 2. This 328 acre site is comprised of four potential BU areas including a four acre area located at the northern corner of the site, a four acre area located at the eastern corner of the site, a 12 acre area located just south of Hwy 332 near the western extent of the site, and a 42 acre area located at the southern corner of the site (Exhibit 1). A fifth potential BU area was identified and considered as well; this area is approximately 14 acres in size and is located adjacent to the 12 acre area described above.

The January 23rd site visit revealed that approximately 132 acres of the 328 acre site is low marsh and consists of characteristic wetland vegetation including *Spartina alterniflora*, *Distichilis spicata*, *Batis maritima*, and *Salicornia virginica*. Also observed within the low marsh habitat were vegetated flats consisting mostly of *Monanthochloe littoralis* and *Salicornia virginica*. Open water areas that could be elevated for low marsh plant growth occupy approximately 76 acres of the site. Open water areas at the site appear to be tidally connected via a natural channel that connects to an existing drainage canal at both the northwestern and southwestern ends of the site (Exhibit 1). Approximately 7 acres of the 328 acre site contain oyster beds. A test pit sample at the 328 acre site revealed a low chroma silty clay soil, which is indicative of hydric soils.

The northern four acre area is an open water pond which is connected to adjacent water bodies via the natural channel. The pond is surrounded by functional low salt marsh habitat consisting mostly of *Spartina alterniflora*. This low marsh transitions into high salt marsh and vegetated flats to the south. The water in the pond is approximately 1-1.5 ft. deep at this location. No evidence of oysters was observed (Exhibit 1). During the site visit, several waterfowl species, including Reddish Egrets, Griebs, and Great Egrets, were observed utilizing this area.

The eastern four acre area is located adjacent to Hwy 332 and due to low tide, was not inundated during the site visit. This area is also surrounded by functional low marsh habitat consisting mostly of *Spartina alterniflora*. Several oyster beds, with an approximate total acreage of 0.1 acres, were observed fringing the perimeter of the area (Exhibit 1). Approximately 60% oyster coverage was observed within the 0.1 acre area. The natural channel also provides tidal influence to this location.

The 12 acre area is located adjacent to an upland area containing a Texaco Station and a fish market. The area consists of functional estuarine low marsh habitat and an open water area approximately 1-1.5 ft. in depth. The area also contains several oyster beds with an approximate total acreage of 0.3 acres and an estimated percent coverage of 60%. Oyster beds were also located along an existing channel adjacent to the 12 acre area. Oyster beds within this channel have an approximate total acreage of 0.6 acres with an estimated percent coverage of 60% (Exhibit 1). Conversations with Mr. Kurt Evans, owner of the Texaco Station, revealed that historically most of the 12 acre area consisted

of low marsh habitat with little open water. Over time, it appears that subsidence has caused a transition from a dominant low marsh habitat to a more open water habitat with functional fringing low marsh. Mr. Evans also presented an historical aerial photo of the area, dated early 1980s, that showed low marsh habitat extending approximately 10-15 ft. from the upland area with little open water.

The 42 acre area consists mostly of open water with a few fringing low marsh areas along its western boundary (Exhibit 1). Several oyster reefs, with an approximate total acreage of 6 acres, were observed along the western boundary of the 42 acre area (where the natural channel flows through this location) and also in several locations within the middle of the water body (Exhibit 1). It should also be noted that small scattered oyster clumps were appeared to be located in other parts of the area. Approximately 30% oyster coverage was observed within the 6 acre area. Water depths during the site visit were approximately 2-2.5 ft. Mr. Evans stated that historically, the 42 acre area contained more of a low marsh habitat but that over time subsidence had transitioned the area to open water. He estimated that 60% of the existing open water areas were marsh 30 years ago. He also stated that this area was frequently used for fishing.

The 14 acre area consists entirely of open water with fringing low marsh along its eastern, northern and western boundaries and the drainage canal along its western boundary, with a large opening into the canal. Based on conversations with Mr. Evans this area was excavated for fill material approximately 40 to 50 years ago. The water depth in this area is roughly 5-6 ft. on average with a soft bottom. Mr. Evans also stated that this area is an extremely popular recreational fishing area with a typical abundance of trout, redfish and flounder being caught.

Marsh Restoration/Creation Potential at 332 Bridge Site:

Both the northern and eastern 4 acre sites are surrounded by healthy functional marsh and do not have the capacity to receive a substantial quantity of dredged material from the project (approximately 3,200,000 CY total and 300,000 CY of silty sand material from the jetty channel). Water depths at these locations are shallow (1-1.5 ft at northern 4 acre site; 0-1 ft. at eastern 4 acre site) and site acreages are too small to utilize a significant amount of dredged material for marsh restoration. In addition, the shallow open water of these sites provides diversity within the entire existing low marsh complex and infilling would likely reduce rather than improve the habitat quality.

The 12 acre area also appears to be a healthy functional marsh consisting of low marsh habitat interspersed with shallow open water areas. In our opinion, it appears that this area may not benefit from additional dredged material to raise elevations for low marsh vegetation growth. The 12 acre open water area also provides circulation, habitat diversity and contains several oyster beds that would most likely be displaced should dredged material be placed in this area.

Of the potential BUs at the 332 Bridge site, the 42 acre area and the 14 acre area appear to have the most potential for marsh creation / restoration. The 42 acre area is almost entirely open water with water depths of 2-2.5 ft; however a deeper water natural channel is still apparent on the aerial photo. If many of the oyster beds correspond to the edges of this 'channel', dredged material may be strategically placed to avoid them. The goal of dredged material placement would be to raise elevations to a water depth (1-1.5 ft) that would be suitable for low marsh vegetation such as *Spartina alterniflora* establishment. Although there are several oyster beds within the 42 acre area, they are found mostly on the western fringe and are distributed sparsely within the main water body. The 14 acre area is open water with depths of 5-6 ft. If dredged material is placed to raise the elevation to 1-1.5 ft., low marsh vegetation would likely establish. The primary drawback of filling this area would be the loss of recreational fishing grounds. Should these potential BU areas be utilized, well-controlled placement of the dredged material, maintenance and/or creation of tidal conveyances, and containment measures to prevent material from entering the drainage canal would be needed.

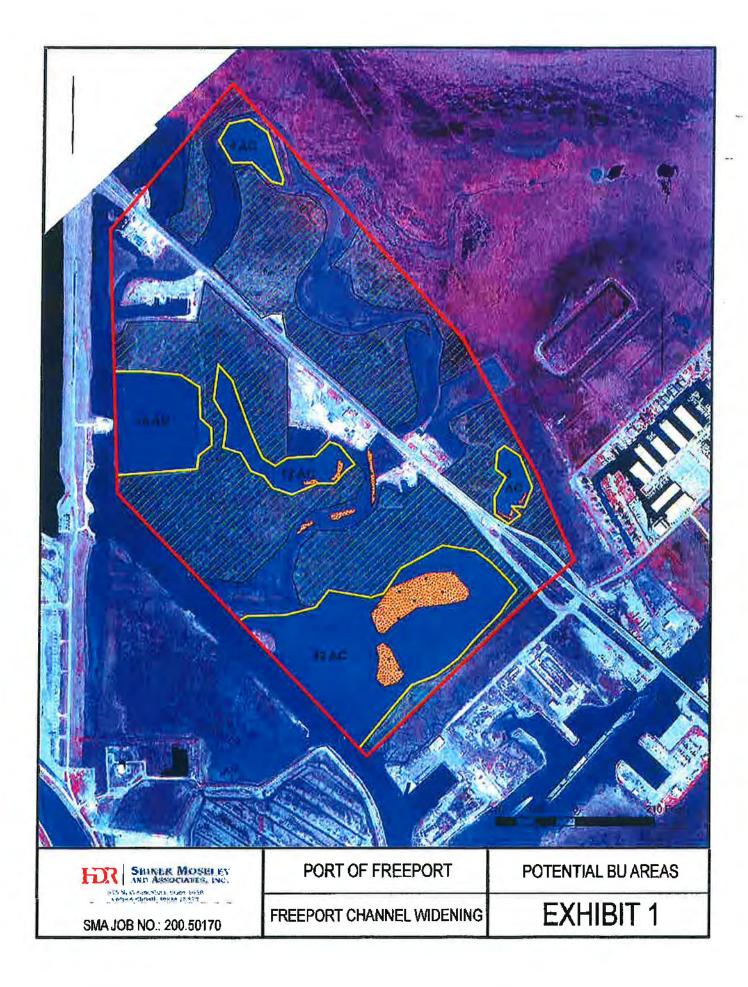
Bryan Lake

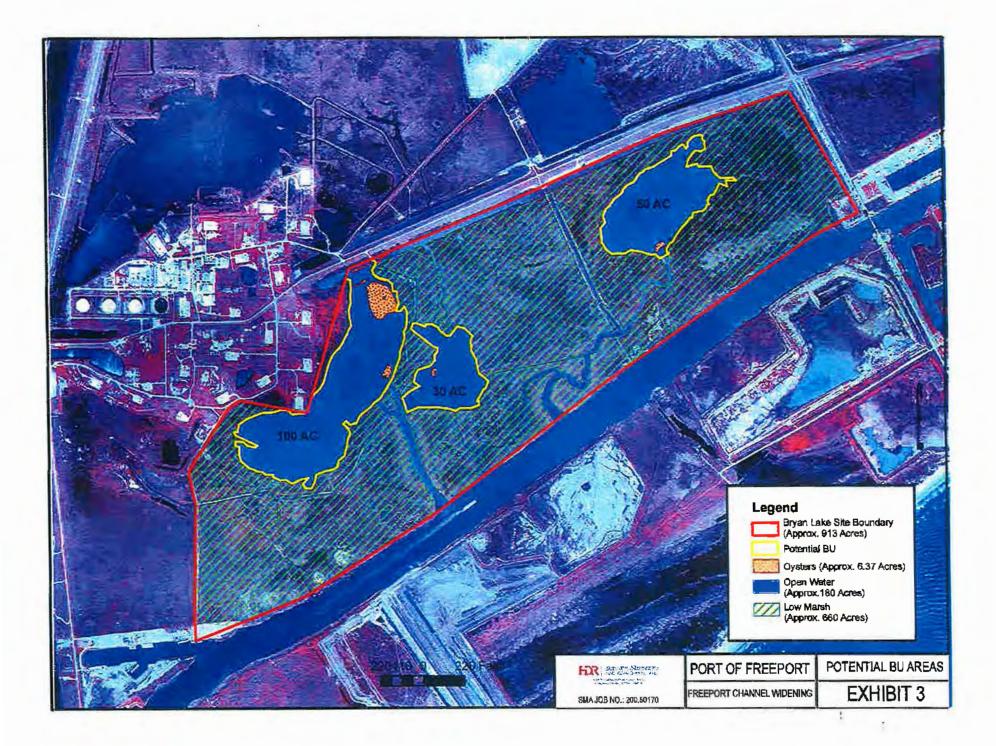
The Bryan Lake site is located approximately three miles west of the Freeport Jetty Channel (Exhibit 3). Photographs of the site taken during the January 23rd site visit are provided in Exhibit 2. The roughly 913 acre site is comprised of three potential BU areas including a 100 acre area, 30 acre area, and 50 acre area. The 30 acre and 100 acre areas are located just east of the Bryan Mound Strategic Petroleum Reserve facility. The 50 acre area is located east of the 100 and 30 acre areas.

The January 23rd site visit revealed that approximately 660 acres of the 913 acre site is low estuarine marsh and consists of characteristic wetland vegetation including *Spartina alterniflora*, *Bolboschoenus robustus*, *Distichilis spicata*, *Batis maritima*, and *Salicornia virginica*. *Spartina alterniflora* mainly fringes the perimeter of the marsh. In some areas, *Bolboschoenus robustus* is found growing immediately landward of *Spartina alterniflora*. High marsh habitat consisted mostly of *Iva frutescens* which fringed the perimeter of the marsh just landward of *Spartina alterniflora* and *Bolboschoenus robustus*. Open water areas that could be elevated for low marsh plant growth occupy approximately 180 acres of the site. The 100 acre and 30 acre sites appear to be tidally connected to the Gulf Intracoastal Waterway (GIWW). Approximately 6 acres of the site contains oyster beds.

The 100 acre area can be characterized as open water. A natural channel connects the 100 acre area with the 30 acre area and the GIWW. Low marsh habitat surrounds the 100 acre area and several oyster beds were observed fringing the shoreline on the northern section of the water body. Scattered oyster beds, with an approximate total acreage of 5.8 acres were also observed within the main water body and along connecting channels at this location. Approximate percent coverage of oysters within the 5.8 acre area is estimated at 70%. Water elevations at this location were approximately 1-1.5 ft. During the site visit, several waterfowl, including Great Egrets and Roseate Spoonbills, were observed utilizing this area.

The 30 acre area is tidally connected to the 100 acre area and the GIWW via a natural channel. Low marsh habitat surrounds the perimeter of this area and evidence of oyster beds was observed. Approximately 0.2 acres of oyster beds were located within the 30 acre area with an estimated percent coverage of 60%. Several waterfowl species, including a flock of Roseate Spoonbills, were seen utilizing this area. Water depths at this location are approximately 1-1.5 ft, on an average tide.


The 50 acre area, located east of the other two sites, is also surrounded by low marsh habitat. A natural channel connects this area to the GIWW and water depth at this location is less than 1 ft. A small oyster bed was observed at the mouth of the natural channel, with an approximate acreage of 0.4 acres and an estimated percent coverage of 50%. Several waterfowl species were also seen utilizing this site.


Marsh Restoration/Creation Potential at Bryan Lake:

The three open water areas at Bryan Lake are not well suited as viable BUs. All three water bodies are shallow (1.5 ft or less) and contain oysters. The surrounding low marsh habitat is healthy and functional and the area does not appear to require additional dredged material to raise elevations for low marsh vegetation growth. In addition, the shallow open water of these sites provides diversity within the entire existing low marsh complex. This area also appears to be frequently utilized by waterfowl for foraging and loafing.

Conclusion and Recommendations

It is our opinion that of the sites reviewed during the January 23rd site visit, only the 42 acre area and the 14 acre area located within the 332 Bridge site should be considered potentially viable BU options for the placement of dredged material. Although these areas are considered potentially viable for this purpose, it must be reiterated that filling of these areas to create low marsh vegetation grounds will negatively impact some functioning oyster beds as well as popular and functioning recreational fishing grounds.

